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Multi-Robot Path Deconfliction through

Prioritization by Path Prospects

Wenying Wu∗, Subhrajit Bhattacharya†, Amanda Prorok∗

Abstract—This work deals with the problem of planning
conflict-free paths for mobile robots in cluttered environments.
Since centralized, coupled planning algorithms are computa-
tionally intractable for large numbers of robots, we consider
decoupled planning, in which robots plan their paths sequentially
in order of priority. Choosing how to prioritize the robots is a key
consideration. State-of-the-art prioritization heuristics, however,
do not model the coupling between a robot’s mobility and its
environment. In this paper, we propose a prioritization rule that
can be computed online by each robot independently, and that
provides consistent, conflict-free path plans. Our innovation is
to formalize a robot’s path prospects to reach its goal from
its current location. To this end, we consider the number of
homology classes of trajectories, and use this as a prioritization
rule in our decentralized path planning algorithm, whenever
any robots enter negotiation to deconflict path plans. This
prioritization rule guarantees a partial ordering over the robot
set. We perform simulations that compare our method to five
benchmarks, and show that it reaches the highest success rate
(w.r.t. completeness), and that it strikes the best balance between
makespan and flowtime objectives.

I. INTRODUCTION

Technological advances are enabling the large-scale de-

ployment of robots to solve various types of problems in

logistics and transport, including product delivery [12], ware-

housing [9], mobility-on-demand [18], and connected au-

tonomous vehicles [14]. Robot teams also hold the promise

of delivering robust performance in unstructured or extreme

environments [16]. The commonality of many of these ap-

plications is that they require methods that assign and guide

individual robots to goal locations on collision-free paths. The

challenge of providing fast, optimal and complete solutions to

this problem is very current, as we continue to complexify

the problem domain by considering increasingly large and

heterogeneous robot teams in navigation-constrained, cluttered

environments. In light of these developments, our work focuses

on the coupling between a robot’s mobility traits and the built

environment. In particular, we posit that a robot’s ability to

reach its goal can be measured, and that by integrating this

measure in planning routines, better joint path plans can be

found.

Approaches to multi-robot path planning can generally be

described as either centralized (assuming the existence of a

central component that knows the state of the whole robot

system) or decentralized (where no single component has the

full picture, but cooperation must still be achieved). Central-

ized methods can be further categorized according to whether
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Fig. 1: An example problem where considering path diversity is important
for the prioritization. The red robot has two possible paths, whereas the larger
blue robot only has one. On the left, the red robot has first priority. It takes the
shorter of its two paths, however this forces the blue robot to wait in place
until it can follow. On the right, the blue robot, with lower path diversity,
has first priority. The red robot is able to take its alternative path to avoid it,
giving a faster overall solution.

they are coupled or decoupled. Coupled approaches operate

in the joint configuration space of all the robots, allowing

for completeness (e.g., see [13, 25]). However, solving for

optimality is NP-hard [26], and although significant progress

has been made towards alleviating the computational load,

e.g., [11, 20, 25], these approaches still scale poorly in en-

vironments with a high number of path conflicts. On the other

hand, decoupled approaches plan for each robot separately,

and solve conflicts between paths as they arise, to ensure

that collisions with other robots are avoided. Approaches

to decoupled planning include sequential programming [6],

vehicle prioritization [23] and velocity tuning [15]. These

methods offer improved scalability, but often at the cost of

completeness and optimality [2].

Prioritized planning, first proposed in [10] as a centralized

strategy, is a very efficient method because it allows robots to

plan sequentially in space-time in order of priority, eschewing

the combinatorial complexities of coupled approaches. In this

approach, each robot plans a minimum-cost path to its goal

that avoids the computed trajectories of any higher-priority

robots. Clearly, the chosen priority order will affect the solu-

tion found. It is generally desirable to optimize metrics such as

makespan (the time at which the last robot in the team arrives),

flowtime (the sum of all robots’ travel times), or success rate

(completion); targeting the optimization of either one of these

objectives (but commonly not all simultaneously), researchers

have proposed heuristics for choosing a planning order [2, 22–

24].
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The original prioritized planning idea in [10] used a fixed

total priority ordering, and has been adapted in various papers

to work in a decentralized manner (e.g., [5, 24]). However,

choosing how to prioritize the team of robots still remains

a key consideration. Moreover, as the operational conditions

of the robots vary throughout time, and environments are in

general not static, it is crucial to consider online (dynamic)

priority schemes. Although several dynamic priority schemes

have been considered thus far (e.g., [1, 7, 8, 19]), none of these

schemes account for the coupling between robot mobility and

the environment, and hence, may fail to find better solutions.

Such a scenario is exemplified in Fig. 1, which shows how

considering a robot’s path diversity leads to a reduction of

both flowtime and makespan.

In this work, we focus on how the coupling between the

built environment and a robot’s mobility traits determines

its path options to reach its goal. In specific, we propose

a decentralized planning method that makes use of a novel

prioritization rule based on an estimate of the robot’s path

prospects. The key idea that underpins this method is that

individual robots have distinct path prospects within the same

environment, due to unique conditions arising from kinematic,

dynamic, or environmental constraints. The purpose of this

work is to provide a formal introduction to the concept of path

prospects, and a demonstration of its utility in multi-robot path

planning.

II. RELATED WORK

Several papers have proposed prioritization heuristics and

decentralized adaptations since prioritized path planning was

first proposed in [10].

In [23], Van Den Berg et al. propose a static heuristic based

on the length of the path from a robot’s start to its goal when

ignoring the presence of other robots. Robots with a smaller

path length are given lower priority; the intuition is that they

can afford to spend more time planning around other robots

without impacting the makespan of the overall solution. In a

similar approach, the work in [24] uses a robot’s planning time

(rather than path length) to determine static priorities. This

approach is generalized in [5] to account for asynchronous

communications. Although the aforementioned approaches are

based on decentralized computational models, they use static

prioritization methods and rely on global knowledge.

The algorithm proposed in [1] considers an online prioritiza-

tion method, whereby robots with conflicting paths consider all

possible priority orders, and choose the best one. Similarly, the

work in [17] evaluates space of all possible priority orderings

in a conflict-driven combinatorial search framework. However,

this style of exhaustive negotiation does not scale to conflicts

beyond a small number of robots, since for N robots there

exist N ! different priority orders.

Regele et al. [19] define a method whereby a robot can raise

its own priority if it detects that it will become blocked by

another robot. The disadvantage is that the first robot to raise

its priority and demand right of way will usually obtain it; the

paper states that it is difficult to predict which solution will be

chosen by the algorithm in a given situation since just a small

time difference in the execution of a robot’s plan can result

in a completely different solution. The algorithm proposed in

[7] (and also its extension in [8]) has every robot maintain a

list of the robots currently within its field of view. Replanning

is triggered whenever a new robot comes into range, and a

robot avoids the paths of higher priority robots in its list when

planning. The authors use a dynamic heuristic based on the

current local workspace; they define a function which counts

the number of environmental obstacles within some range of

the robot, and allow robots whose workspace is more crowded

to have higher priority. Although this work has some similarity

to our approach in that it considers how environmental clutter

might hinder a robot’s ability to reach its goal efficiently, it

fails to truly model the paths available to a robot, given the

robot’s specific mobility traits and its motion constraints in the

surrounding environment.

Contributions. Overall, none of these existing approaches

use heuristics or schemes that explicitly account for the

coupling between a robot’s mobility and the environment.

This work focuses on decentralized multi-robot path plan-

ning. Within this context, our main contribution is a novel

prioritization heuristic, based on the number of robots’ path

prospects, that implicitly takes into account the coupling

between environment and mobility traits. To this end, we

develop a prioritization rule that has two key components:

(1) a method that estimates the number of path options a

robot has to reach its goal, based on theory from algebraic

topology, and (2), a method that defines the area of relevance,

within which these path options are computed. We show

how our prioritization rule is embedded in a decentralized,

dynamic planning algorithm to de-conflict robot trajectories.

We prove that this dynamic planning algorithm provides a

partial ordering over the robot set, and hence, is cycle-free.

Our results demonstrate that the planned solutions provide very

competitive makespan and flowtime performance; moreover,

they provide the best trade-off between these two conflicting

objectives.

III. PROBLEM DESCRIPTION

We consider a D−dimensional workspace W ⊆ R
D and a

set of B static obstacles O = {o1, . . . , oB} with oi ⊂ W .

A team of N robots R = {r1, . . . , rN} navigate in this

shared workspace. The robot team is heterogeneous in size;

the effective space occupied by robot rn is referred to by ρn.

Graph representation. Each robot travels along the edges

of a directed graph Gn = 〈Vn, En〉, which allows only fea-

sible motion and accounts for all constraints (morphological,

kinematic, dynamic). In particular, a robot rn that travels along

edges in Gn cannot collide with any obstacles in O. The set Vn
is defined by vertices vi = 〈xi, ti〉 with xi ∈ W and ti ∈ R

+.

The set En is defined by directed edges eij : R
+ 7→ R

D,

between vertex vi and vj , such that eij(ti) = xi, eij(tj) = xj ,

and ti ≤ tj . In other words, the graph Gn exists in a (D+1)-
dimensional space, where the last dimension represents time.

Labeled assignment. Robot rn is assigned a start location

sn ∈ W (corresponding to vertex vi with xi = sn and

ti = 0). Similarly, robot rn is assigned a goal location



gn ∈ W (corresponding to a set of vertices vi with xi = gn

and ti ∈ R
+). A labeled assignment A is a set of tuples

{〈s1,g1〉, . . . , 〈sN ,gN 〉}, for all robots in R.

Conflict-free trajectories. A robot rn has a trajectory πn :
R

+ 7→ W that represents a sequence of edges traversed in

Gn such that two consecutive edges share a common vertex.

A trajectory πn is said to be satisfying if πn(0) = sn and

there exists a time tfn such that πn(t
f
n) = gn. A robot rn

navigating along this path defines a volume V (πn, ρn) that

depends on its size. To coordinate the navigation in W , two

robots rn and rm can share their path plans with each other if

they are within communication range, i.e., if their positions are

separated by a quantity less than c. We make use of a function

TRIM(Gn, ρn, V (πm, ρm)) that removes all unfeasible paths

in Gn that would collide with the volume defined by robot

rm. Any path in the graph returned by TRIM is ensured to be

conflict-free with the path πm of robot rm.

In order to facilitate the definition of a given robot’s

configuration space, we define the notion of an effective

obstacle, which is a set of original obstacles in O, such

that no trajectories in a given graph passes between them

(see Figure 6). Specifically, a robot rn has a set of effective

obstacles Õn = {õ1, . . . , õB̃}, B̃ ≤ B, with õi ⊆ O and

∪iõi = O and ∩iõi = ∅.
Figure 2 shows a labeled assignment for two robots that

must plan minimum-cost trajectories from their start positions

to their goal positions. Figure 3 demonstrates how robot r2
circumnavigates the path plan of robot r1, after execution of

TRIM(G2, ρ2, V (π1, ρ1)).
Assumptions. We assume that a robot is able to check for

collisions between its own planned path and another robot’s.

To facilitate this, we assume all their clocks are synchronized.

Messaging delay can be accommodated, however, it must be

negligible with respect to robot dynamics (i.e., the speed

at which the motion graph is traversed). We assume that

robot detections are always mutual (when they come into

communication range).

Objective. Our goal is to find a method that strikes the best

balance between minimizing the mean flowtime (
∑

n t
f
n/N )

and minimizing the makespan (maxn t
f
n), such that each robot

rn follows a satisfying trajectory πn which is conflict-free

with all other robots’ paths. We note that, in general, these

objectives demonstrate a pairwise Pareto optimal structure, and

cannot be simultaneously optimized [26].

IV. DECENTRALIZED COORDINATION

Our decentralized path planning algorithm can be broken

down into two levels: at the higher level (i.e., coordinated

planning), we consider how robots communicate and negotiate

a priority ordering; at the lower level (i.e., individual planning),

we consider how an individual robot (re)plans a trajectory to

its goal given its current knowledge about the environment

and the plans of other robots within communication range.

We make use of the following definitions.

Definition 1 (Priority ordering). A priority ordering ≺ is such

that a robot rn ∈ R with priority ξn is of higher priority than

robot rm with priority ξm iff ξn ≺ ξm.
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Fig. 2: Planar workspace with two robots, r1 and r2, and their respective
start and goal positions. Robot r2 has an effective size ρ2 that is twice that
of robot r1. The minimum-cost paths would result in a collision.
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Fig. 3: On the left, we plot the space-time graph G1 with a minimum-cost
trajectory π1 for robot r1. On the right, we see how trajectory π2 sweeps a
volume V (π2, ρ2) that does not intersect with V (π1, ρ1).

Definition 2 (Ordered robot set). Given a priority ordering

≺ on a set of robots R, the pair (R,≺) is a strict partially

ordered robot set.

Definition 3 (Ordered robot neighborhood). Given a priority

ordering ≺, for a given robot rn, Hn = {rm|ξm ≺ ξn} is

the set of robots with higher priority, and Ln = {rm|ξm ≻
ξn} is the set of robots with lower priority. The neighborhood

of robot rn defined as Nn = Hn ∪ Ln ∪ {rn} is strongly

connected (by symmetry of communication). By definition, the

robot neighborhood Nn is an ordered robot set (Nn,≺).

A. Coordination Strategy

Our coordination strategy is detailed in Algorithm 1, and is

based on two main elements, described as follows:

Computation of an ordered robot neighborhood: Each robot

is able to detect other robots when they come into the

communication range c, and when they leave it. A robot rn
has a priority score ξn, which it can compute independently by

a function COMPUTEPRIORITY (see Section V). Each robot



Algorithm 1: Dynamic Prioritized Path Planning

1 Hn ← ∅ // list of higher priority robots

2 Ln ← ∅ // list of lower priority robots

3 πn ← COMPUTENEWPLAN(Hn)
4 while TRUE do

5 if new robot rm (with priority ξm) in range c or

received new priority ξm from rm then

6 ξn ← COMPUTEPRIORITY(rn)
7 Hn,old ← Hn and Ln,old ← Ln

8 Hn ← {ri|ξi ≺ ξn ∧ ri ∈ Hn,old ∪Ln,old ∪ {rm}}
9 Ln ← {ri|ξi ≻ ξn ∧ ri ∈ Hn,old ∪Ln,old ∪ {rm}}

10 if Hn,old 6= Hn then

11 πn ← COMPUTENEWPLAN(Hn)

12 else if rm left range c then

13 Ln ← Ln \ rm
14 if rm ∈ Hn then

15 Hn ← Hn \ rm
16 πn ← COMPUTENEWPLAN(Hn)

17 else if receive new plan πm from rm then

18 if rm ∈ Hm then

19 πn ← COMPUTENEWPLAN(Hn)

Algorithm 2: Re-plan trajectory

Function: COMPUTENEWPLAN(Hn)
1 G← Gn

2 for rm ∈ Hn do

3 RECEIVEPLANFROM(rm)
4 G← TRIM(G, ρn, V (πm, ρm))

5 πn ← PLANPATHFROMCURRENTPOSITION(G,gn)
6 ξn ← COMPUTEPRIORITY(rn)
7 BROADCASTPLANIFCHANGED(πn)
8 BROADCASTPRIORITYIFCHANGED(ξn)
9 return πn

rn maintains two lists of robots currently in its range: Hn

contains the robots with higher priority whilst Ln contains

the robots with lower priority. In a dynamic priority scheme,

rn recomputes ξn whenever a new robot comes into range. It

then broadcasts this updated priority value to ensure all robots

within range (i.e., in its neighborhood) have a consistent plan.

Re-planning: Re-planning is triggered for rn in three cases:

(i) when a new robot comes into range that has a higher prior-

ity, (ii) when an updated plan is received from a higher priority

robot, or (iii), when a robot rm broadcasts a new priority ξm.

When rn re-plans, it calls a function COMPUTENEWPLAN

that takes into account the planned trajectories of robots with

higher priority (in Hn). The robot then communicates its new

plan to robots in Ln.

Proposition 1. Algorithm 1 is deadlock-free.

Proof: Since each robot rn in R executes Algorithm 1,

the result is a collection of ordered robot neighborhoods Nn,

∀n. If two robot neighborhoods Nn and Nm share a common

robot rj , then, by transitivity, there must be a partial ordering

in Nn ∪ Nm, since Algorithm 1 ensures that robot rj can

only have one priority score ξj that is broadcast. Hence,

Algorithm 1 constructs an ordered robot set (R,≺). Since

partial orderings are acyclic, no planning deadlocks can arise.

B. Individual Robot Planning

Each robot handles the computation of its own minimum-

cost trajectory from its current location to its goal location gn

(see function COMPUTENEWPLAN). The resulting trajectory

avoids the static obstacles in the environment as well as the

planned paths of any higher-priority robots. In our implemen-

tation, all robots use the HCA* algorithm proposed in [21]

which applies A* search to a space-time map, and uses a

reservation table to record the trajectories of other robots to be

avoided. This effectively implements the function TRIM. The

complexity of TRIM is O(|πm|log|En|) assuming the usage

of a fast spatial lookup structure, such as a quadtree.

Our approach is general, in that any path planning algorithm

that is able to avoid dynamic obstacles with known trajectories

can be used; indeed it is even possible for different robots

to use different algorithms so long as an implementation of

the function TRIM, which reconciles heterogeneous space-time

graphs, can be embedded into the planning function.

V. PRIORITIZATION BASED ON PATH PROSPECTS

During navigation, when robots come within communica-

tion range, they enter negotiations to deconflict their path

plans. To facilitate this negotiation, we implement a rule that

prioritizes robots with fewer path options. Our prioritization

rule has two key components: (1) a method that estimates the

number of options a robot has to reach its goal, and (2), a

method that defines the area within which these path options

are computed. The following paragraphs detail our approach.

A. Homology Classes of Trajectories

To develop a method for (1) above, we build on theory from

algebraic topology. For a particular robot, we consider the

trajectories in different homology classes as the path prospects

for the robot. Homology classes (of trajectories) in an envi-

ronment represent topologically distinct classes of trajectories

(Figure 5). Two trajectories connecting the same start and goal

points on a planar domain are said to be in the same homology

class if the closed loop formed by the two trajectories are null

homologous, i.e., it forms the oriented boundary of a two-

dimensional obstacle-free region [4]. The homology class of

a loop, in turn, can be quantified by winding numbers around

the connected components of effective obstacles, with the

null homologous class having zero winding number around

every obstacle. Thus, in a planar domain with z connected

components of effective obstacles, the homology invariant of

a loop is given by a vector of integers, [h1, h2, · · · , hz] ∈ Z
z ,

where hi is the winding number around the ith obstacle.

However, there are infinitely many homology classes since

a trajectory can loop/wind around the same obstacle multiple



start

goal

Fig. 4: Homology classes of trajectories. τ2 and τ ′2 are in different classes
in regular homology, but map to the same class in Z2-coefficient homology.

times, and for every different number of windings the class

assigned to the loop is different. In order to prevent the

separate counting of the multi-looping homology classes,

one can compute the homology invariants in the “mod 2”

coefficient [3], Z2 = Z/2Z = {0, 1}. Simply put, the homol-

ogy invariant in the Z2 coefficients become [h1, h2, · · · , hz]
mod 2 ∈ Z

z
2. Doing so identifies all the even winding

numbers to 0 and all the odd winding numbers to 1, thus

preventing the creation of separate homology classes for loops

that wind around obstacles multiple times (Figure 4). Zz
2 is

a finite set, and in fact has 2z elements. Thus, the number

of Z2 coefficient homology classes in a planar domain with

z connected components of effective obstacles is 2z , which

we use in the construction of heuristics in the path prospect

algorithm.

B. Path Prospect Algorithm

We use the number of Z2 coefficient homology classes in

an area with z effective obstacles to return an estimate of a

robot rn’s path prospects P
(t)
n at time t in that area. Next,

we develop a method for computing a relevant area (and its

associated vertices), to define the component (2), above.

A robot rn’s path prospects P
(t)
n are an indicator of the

number of distinct paths to goal gi from its current location

at time t. This can be estimated by counting the effective

obstacles Õn which rn will likely come across as it moves

towards its goal gn from its current position. Specifically, we

do not wish to count any effective obstacles that lie behind the

robot, given gn and its current location. To achieve this, we

define a set of forwards vertices F
(t)
n ⊆ Vn and count only

the effective obstacles whose areas intersect the area in W
containing all vertices in F

(t)
n and the edges that link them.

To define F
(t)
n , we use the notion of true distance as

proposed in [21]. The true distance of a vertex v ∈ Vn is the

length of the shortest satisfying path in Gn from v to gn. We

define F
(t)
n ⊆ Vn to be the set of vertices that are reachable

from rn’s location at time t by only transitioning from a vertex

vi to a vertex vj , if vj can still lead to paths that are shorter

than the estimated longest true distance of the robot team.

This can be computed using a variant of Dijkstra’s algorithm

(see Algorithm 3). Note that the longest true distance can

be estimated locally by broadcasting TRUEDISTANCE(sn,gn)

start

goal

(a) At t = 0, P
(0)
n = 2

3.

current

goal

(b) At t = 17, P
(17)
n = 2

1.

Fig. 5: Illustration of path prospects for a robot navigating to its goal,
computed for two different moments in time. In (a), only 4 representative
paths out of 8 are shown, for clarity.

current

goal

(a) P
(t)
n = 2

2.

current

goal

(b) P
(t)
m = 2

1.

Fig. 6: Example where two robots with different sizes have different path
prospects. In (b), the two central obstacles merge into a single effective
obstacle. The lighter borders around each obstacle depict their inflation by
the robots radius ρn, which is one method for computing effective obstacles.

along with priority ξn in Algorithm 1. Figure 5 illustrates the

path prospects for a robot navigating towards its goal, at two

consecutive moments in time.

C. Prioritization Heuristic

We use the path prospect algorithm (Algorithm 3) to prior-

itize robots with conflicting paths. For robots rn and rm, we

define the ordering ≺ such that

P (t)
n < P (t)

m ⇔ ξn ≺ ξm. (1)

Priority orderings are negotiated through Algorithm 1. By

prioritizing robots that have fewer path prospects, we force

those robots that have more options to deviate from their

preferred (best) plans, and to give way to the robots that

have fewer options. Figure 6 illustrates how different robot

sizes affect the available path prospects (and hence the priority

ordering).

VI. EVALUATION

We implement our method in grid-worlds. This allows us

to easily create valid graphs Gn for all robots, implement the

corresponding TRIM function, and create a set of effective

obstacles Õn for any robot rn by inflating original obstacles in

O by ρn. We note that this dilation can be done more generally

(beyond regular grid-worlds) by applying Minkowski addition.

We evaluate the performance of our method in two ex-

periments. The first experiment (S1) tests the method across



Algorithm 3: Path Prospects

Input : current position of rn: vn, goal location gn,

untrimmed graph Gn, effective obstacles Õn,

estimated longest path length T

Output: path prospects P
(t)
n

1 F
(t)
n ← GETFORWARDSVERTICES(vn,gn, Gn, T )

2 A← COMPUTEAREA(F
(t)
n , En)

3 κ← 0

4 for o ∈ Õn do

5 if o ∩ A = o then

6 κ← κ+ 1 // count this obstacle

7 return 2κ

Algorithm 4: Compute Set of Forwards Vertices

Function: GETFORWARDSVERTICES(v,g, G, T )
1 visited ← ∅
2 priority queue ← {v} // prioritizes by smallest t
3 while priority queue 6= ∅ do

4 q ← POPSMALLEST(priority queue) with

q = 〈xq, tq〉
5 if xq /∈ visited then

6 neighbours ← FINDNEIGHBOURS(G, q)
7 for n ∈ neighbours with n = 〈xn, tn〉 do

8 if tn + TRUEDISTANCE(n,g) ≤ T then

9 APPEND(priority queue,n)

10 visited ← visited ∪{xq}

11 return visited

different types of environment. We generate six different

cluttered grid-worlds, depicted in Figure 7, of size 75×75. We

use a team of 10 robots of five different sizes, with two robots

per size, and sizes ranging from 1 to 5. For each base envi-

ronment, we generate 500 problems (random assignments),

and record the performance of the solutions provided by our

algorithm (with two alternative tie-break options to guarantee

strict orderings), as well as by five additional benchmark

algorithms (described below). We solve each problem across

communication ranges c that vary between 30 and 50.

The second experiment (S2) tests the performance of our

method in a large environment with a large number of robots.

We quadruple environment Maze-1 (Fig. 7 (a)) to produce

a map of size 150×150. We use a team of 100 robots

of size ranging from 1 to 4, in equal proportion, with a

communication range of 50. We generate 500 problems and

record the performance of all seven algorithms (as above).

A. Benchmarks

In order to test the efficacy of our prioritization method,

we perform an ablation analysis. The aim of this ablation

study is to identify the efficacy of our proposed path prospects

heuristic by isolating its two key components: (i) the spatial

area within which it is applied, and (ii) the consideration of

(a) Maze-1 (b) Maze-2 (c) Crossing

(d) Clutter (e) Corridor (f) Tunnel

Fig. 7: Examples of path solutions (blue lines) for the six maps used in our
problem sets. In each problem, 10 robots (blue squares) of five different sizes
are assigned random start and goal positions.

the robot-environment coupling. To this end, we implement

seven variant schemes for online decentralized prioritization.

Four of these schemes incorporate state-of-the art heuristics,

two of the schemes represent our proposed method, and the

final scheme incorporates a random rule:

(1) Naive Surroundings (NS): This prioritization heuristic

follows the idea in [7], whereby robots with the most cluttered

surrounding workspace are prioritized. Our implementation

of this method counts the number of original obstacles in

O within a range z = 30 (which corresponds to the best

performing range found via grid-search). This variant does

not consider the coupling between robot mobility and the en-

vironment, and we term it naive. We break ties by prioritizing

robots with longest remaining paths. (2) Coupled Surround-

ings (CS): This prioritization heuristic also follows [7], yet

we adapt it to consider the coupling between robot mobility

and the environment, whereby effective obstacles in Õ are

counted (instead of original obstacles). When robot priorities

are equal, we tie-break by giving a higher priority to the

robot that has the longest remaining path. (3) Longest First

(LF): This method prioritizes the robot that has the longest

remaining path to its goal, which corresponds to the heuristic

used in [23]. When robot priorities are equal, we tie-break by

giving a random priority order. (4) Forwards Looking (FL):

We consider a naive approach that disregards the coupling of

robot mobility and the environment. It is naive in that it uses

original obstacles in O instead of obstacles in Õ to compute

the number of path options. The number of path options is

considered in the area that contains paths with a cost less

than the cost of the currently longest path known, as specified

by Alg. 4. We tie-break this method by prioritizing robots

with the longest remaining paths. (5) Path Prospects (PP-R):

This method implements our path prospect algorithm. We tie-

break randomly. (6) Path Prospects (PP-LF): This method

implements our path prospect algorithm. We tie-break with

longest-first. (7) Random (R): Finally, we also implement a

prioritization rule that randomly assigns the priority order.



(a) Clutter (b) Corridor (c) Crossing

(d) Maze-1 (e) Tunnel

Path Prospects (PP-LF)

Path Prospects (PP-R)

Random (R)

Naive Surroundings (NS)

Forwards Looking (FL)

Longest First (LF)

Coupled Surroundings (CS)

(f) Maze-2

Fig. 8: Experiment S1. Percentage increase over the ideal flowtime and ideal makespan, for the seven variant prioritization heuristics. We show a 95%
confidence interval. Blue nodes correspond to path prospect heuristics, red nodes represent the alternate benchmarks.

B. Results

For each run, we record the flowtime, makespan, and

whether the run succeeded (i.e., all robots reached their goal

locations). First, we evaluate the seven algorithm variants

by computing two performance metrics: we consider the

percent increase in makespan and flowtime, over the ideal

makespan and flowtime, respectively, that assumes a collision-

free world without robot interactions. Figure 8 shows a scatter

plot of these values, for each base environment in S1. On

all plots, our two proposed methods PP-R and PP-LF lie

on the empirical Pareto front (i.e., lowest values over both

dimensions). Compared to LF, our method provides a valuable

trade-off when flowtime is important. When comparing PP-

R and LF to CS, the panels show that CS incurs a loss

of performance in makespan or flowtime performance, or

both. This shows that the area within which path options are

considered is important. The panels also show that our two

methods consistently outperform the naive variant, FL, which

uses the same area for computing path prospects (i.e., forwards

vertices), but disregards the robots’ mobility within this area.

This demonstrates the importance of considering the coupling

between the robot and its environment.

Figure 9 shows the success rates for the seven algorithms.

The results show that success rates increase significantly with

heuristics that explicitly account for the robot-environment

coupling. The highest success rates are achieved by our two

methods, PP-R at 95.7% and PP-LF at 94.1%.

Figure 10 shows the percent increase in makespan and

flowtime for the large map used in our second experiment

(S2). The results corroborate the results obtained over the

smaller environments; the experiment also demonstrates the

(PP-LF)(PP-R)(R) (NS) (FL) (LF) (CS)

Fig. 9: Success rates for the seven variant heuristics, averaged over all envi-
ronments and communication radii. The errorbars represent 95% confidence
intervals. The two columns to the right (blue) correspond to our path prospect
heuristics that account for the robot-environment coupling.

applicability of our method to large numbers of agents.

C. Discussion

We presented a method for dynamic prioritized path plan-

ning for teams of robots. Our decentralized, decoupled plan-

ning algorithm provides a deadlock-free means of negotiating

path plans among robots, and uses a prioritization heuristic that

is based on Z2 coefficient homology classes, which quantifies a

robot’s number of available path options. This heuristic makes

use of two key components. First, it estimates the number

of path options available to a robot for it to reach its goal.

Second, it defines an area within which these path options

are computed. We compared our method to five alternate



Path Prospects (PP-LF)

Path Prospects (PP-R)

Random (R)

Naive Surroundings (NS)

Forwards Looking (FL)

Longest First (LF)

Coupled Surroundings (CS)

Fig. 10: Experiment S2 obtained on a large map of size 150×150 with 100
robots. Percentage increase over the ideal flowtime and ideal makespan, for
the seven variant prioritization heuristics. We show a 95% confidence interval.
Blue nodes correspond to path prospect heuristics, red nodes represent the
alternate benchmarks.

heuristics. Although our objectives (minimum makespan and

minimum flowtime) cannot be simultaneously optimized, we

showed that our method strikes the best balance, and lies on

the empirical Pareto front of these considered benchmarks.

Future work will consider the application of this method to a

wider variety of configuration spaces (beyond grid-worlds), in

3-dimensional, continuous domains.

The use of a prioritization heuristic is efficient; this is

particularly true when the technique eschews the need to

evaluate all possible total priority orderings. In our presented

decentralized algorithm, each robot is able to independently

compute its own priority, since this is an absolute value

that depends only on the robot itself and the environment

it is moving in. Hence, we reduce the otherwise exponential

computational complexity to a linear one (in the centralized

case); the decentralized solution is distributed, and depends

linearly on the number of neighboring robots. In this case-

study, we not only expose the tight coupling between a robot’s

mobility and its surrounding environment, but also, we show

that by explicitly considering this relationship, we are able to

improve performance.
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