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Abstract— Legged systems need to optimize contact force in
order to maintain contacts. For this, the controller needs to have
the knowledge of the surface geometry and how slippery the
terrain is. We can use a vision system to realize the terrain, but
the accuracy of the vision system degrades in harsh weather,
and it cannot visualize the terrain if it is covered with water or
grass. Also, the degree of friction cannot be directly visualized.
In this paper, we propose an online method to estimate the
surface information via haptic exploration. We also introduce a
probabilistic criterion to measure the quality of the estimation.
The method is validated on both simulation and a real robot
platform.

I. INTRODUCTION

Legged robots have many practical applications in both
industry and the public sector; particularly, in places that
are too dangerous for humans, such as mining inspections
in underground tunnels or the aftermath of an earthquake.
The need for legged systems instead of wheeled systems is
apparent since the passages are normally uneven and difficult
to maneuver.

Yet, vision systems may degrade in harsh conditions,
such as in dusty and foggy environments. Moreover, vision
systems are unable to detect/realize terrain under cover (e.g.,
A LiDAR system may not be able to distinguish a water
surface or high grass from a solid contact.) The challenge
here is how can the robot maneuver over an unknown
environment when the perception system fails?

Model-based control has shown promising results in
the robotic community, ranging from bi-manual manipula-
tion [1], quadruped locomotion [2], to whole-body humanoid
control [3][4]. This control mechanism is particularly impor-
tant for legged locomotion, where the robots need to maintain
appropriate contact forces at the point-of-contacts to avoid
slippage. However, those methods require the terrain friction
and surface geometry to be provided a priori, since this
information is needed for contact force optimization [5][6].
Additionally, the surface properties are also required for
footstep planning over rough terrain [7][8].

The surface geometry can be gathered via vision sys-
tem [9][10]; on the other hand, the accuracy can be disturbed
in harsh weather conditions. Besides, the surface friction can
not be directly visualized. Without sensing skills or prior
information about the environment, this framework could
only be applied successfully in laboratory settings.
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Fig. 1: ANYmal robot walking over an uneven terrain

One potential solution is to utilize a single foot as a
haptic sensor while standing on the other three. This concept
was motivated by how humans explore the environment. For
example, when entering a dark room for the first time, we use
our hand to touch our surroundings to avoid bumping into a
wall, before making a move. The robot can use a single foot
to touch the surface near the next desired footstep position
and estimate the terrain information.

Previous work on estimation of surface normal takes the
learning by demonstration approach, where the users move
the robot on the contact surface to sense the constraint,
and then estimate the constraint offline [11][12][13][14].
However, it is not practical to provide demonstrations to
all environments for the robots where the constraints vary.
Instead of learning from human demonstration, in [15], the
robot performs a set of trajectories to collect the motion data.
Nevertheless, the data collection took 2 minutes in this work,
which is also not practical in real robotic applications.

We can also find work related to the online estimation of
terrain information in the literature of quadruped locomo-
tion. [16] estimates the height of the support surface using
proprioception and LiDAR, and [17] proposed a method to
find the surface normal under the assumption that terrain is
consistent for all standing legs. In contrast, our work relaxes
such assumptions.

Additionally, the estimation of the friction coefficient has
been carried out in many works. While most measures the
contact force using force-torque sensor [18][19], no sensor
is required in our work. On top of that, previous work only
attempted to find the friction coefficient on a flat surface.

In this paper, we propose a method to estimate the surface
properties when the robot loses information about the terrain.
The contribution of this paper includes (1) an efficient online
method that estimates the surface normal, (2) a haptic sensing
strategy that senses the environment by the robot itself,
and (3) a probabilistic criterion that evaluates the result of
the estimation, so the robot can stop exploring when it is
confident about the estimation. These methods have been
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Fig. 2: An illustration of the friction cone constraint. The
surface normal n̂ controls the direction of the cone, and the
friction coefficient µ controls the size of the cone.

evaluated in simulation and on ANYmal [20] (see Figure 1).

II. BACKGROUND

First, we define the problem and clarify what quantity we
aim to estimate in §II-A and briefly review the Bayesian
inference method in §II-B. Finally, we highlight our contri-
bution in §II-C.

A. Problem Definition

Let q, q̇, q̈ ∈ Rd+6 be the generalized positions, velocities,
and accelerations of a floating-based n degree-of-freedom
robotics system, the rigid body dynamics with k contacts
can be described as

Mq̈ + h = Bτ +

k∑
i

J>c,i λc,i (1)

where M ∈ R(d+6)×(d+6) is the inertia matrix, h ∈ R(d+6)

is the Coriolis, centrifugal, and gravitational force, B ∈
R(d+6)×d is the selection matrix, τ ∈ Rd is the control
torque, Jc,i ∈ R3×(d+6) is the constraint Jacobian that relates
the joint space to the ith stance foot, and λc,i ∈ R3 is the
reaction force at the ith contact.

For model-based controllers, such as [2][6], the goal is to
find the control torques for the desired tasks while satisfying
a set of kinematics and dynamics constraints. A typical
constraint that avoids robots from slippage is the friction
cone constraints [21]. Given a unit vector n̂ normal to the
contact surface, we can divide the contact force λc into three
components such that λn = n̂>λc is normal to the contact
surface, and λx, λy are tangential to the contact surface. By
Coulomb’s Law, the magnitude of the tangential force should
not exceed the friction coefficient µ times the magnitude of
the normal force to avoid slipping

µλz ≥
√
λ2
x + λ2

y (2)

where µ is the friction coefficient which depends on the
material of the surface.

An example can be seen in Figure 2. The surface normal
n̂ determines the direction of the friction cone, and the
friction coefficient µ determines the shape of the friction
cone. Geometrically, the controller needs to find the torque τ
such that the resulting contact force λc lies with the friction
cone.

Ideally, we need to provide the n̂ and µ to the controller
before the optimization of control torques. Instead of provid-
ing this information to the controller a priori, the goal of this
paper is to explore and estimate these values by the robot
itself.

B. Bayesian inference

Given a random variable X with unknown distribution and a
set of observations D, Bayesian inference [22] is a method to
infer the probability of the unknown variables X. The prior
distribution P(X) is the distribution of the parameters before
the observations. The likelihood P(D|X) is the distribution
of the observations, conditional on the variable. The posterior
probability P(X|D) is the conditional probability after some
observations, which is determined by Bayes’ rule

P(X|D) ∝ P(D|X)P(X)

If the prior and posterior have the same distribution, the prior
is the conjugate prior of the likelihood distribution.

In this work, we would like to know the probability of
our estimation n̂ and µ without knowing the true distribution
of these two variables. In §III-C and §IV-B, we will use
Bayesian inference with conjugate prior to approximate the
probability of our estimation.

C. Contributions

In this paper, our goal is to estimate n̂ and µ with minimum
prior information. The contributions of this paper include the
following:
• Previous work on estimation of n̂ takes the offline

learning approach [11][12][13], while we introduced an
efficient online.

• In [15], the robot explores the environment by sliding
on the contact surface. This work took 2 minutes to
finish one estimation since it was hard to slide on an
unknown surface. Here, the robot explores by touching
and finishes in a realistic time frame.

• Instead of using force/torque sensor to estimate
µ [18][19], our method does not require the F/T sensor,
which tends to be noisy.

• While previous work cannot quantify how well the
estimation is, we proposed a probabilistic criterion that
evaluates the results of the estimation, so the robot may
stop exploring when it is confident about the estimation.

III. SURFACE NORMAL ESTIMATION

In this section, we describe our method for surface normal
estimation. When the robot loses its visual accuracy, we will
collect data of the surface via haptic exploration. Namely,
we use a single foot as a haptic sensor while standing on the
other three.

A. Data Collection via Haptic Exploration

Let p, ṗ, p̈ ∈ R3 denotes the position, velocities, and
accelerations of the feet. The joint space and end-effector
space are related through the Jacobian ṗ = J(q)q̇ and
p̈ = J(q)q̈ + J̇q̇.



Fig. 3: The left front leg is the swing leg, and the red point
is the desired foot position p∗ for this leg.

Let p∗ ∈ R3 be the desired foot position for the current
swing leg according to some predefined footstep planner.
Before making that contact and shift the center-of-mass, the
swing foot tries to explore the area around p∗ to sense the
area. An example can be found in Figure 3, the left front
leg is the swing leg, and the red point is the desired foot
position p∗ for this leg.

The robot explores the area around p∗ by making K
contacts with that area according to

p∗k = p∗ + δk

δk = [α cos(θk), α sin(θk), z]
> (3)

where α defines the magnitude of δi (i.e., how far it is from
the p∗) and θk defines the angle between [1, 0] and δk. In
an ideal world, only K = 3 points are needed to define the
normal vector. In reality, more contact points will be needed
due to sensory noise.

Example Let p∗ = [0, 0, 0]
> be the desired position for

the n/ext footstep. We use (3) to set the exploration points.
Let α = 1 and θk = [0, 90, 180, 270], the robot will try to
make contact at p∗1 = [1, 0, 0]

>, p∗2 = [−1, 0, 0]>, p∗3 =
[0,−1, 0]>, and p∗4 = [0, 1, 0]

>.

For each k exploration, when the robot detects collision
between the swing foot and the contact surface, the contact
positions of the foot c ∈ R3 are recorded. (Note that, c
may not be identical with p, since there might be an early
collision and/or tracking error) A set of K data points will
be collected P = [c1, c2, . . . , ck]. An example of exploration
can be found in Figure 4.

In the above example, the magnitude of the exploration
is set to α = 1. In practice, a reasonable choice of α is
proportional to the size of the foot. Recall that, the reason
for gathering the terrain properties is to optimize the contact
force for the stance legs, and the only information that
matters is the terrain underneath each foot. This simplifies
the complexity of dealing with highly uneven terrain.

B. Estimation of surface normal

After the exploration, we have a set of K points
[c1, c2, . . . , cK] on the contact surface S. We define D ∈
R3×V be a set of V =

(K
2

)
vectors D = [v1,v2, ...,vv] such

p*
c2

c1c1

c4

c3

Fig. 4: Examples of making contact with the surface. The red
point is the desired position for the next footstep p∗, and the
blue points are the potential contact points c1, c2, c3, c4 from
exploration.

v2

v3
v4

v5
v6

v11

Fig. 5: An example of contact vectors. The red point is
the desired position for the next footstep p∗, and the blue
points are the potential contact points c1, c2, c3, c4 from
exploration. and the green vectors D = [v1,v2, ...,v6] are
the result of connecting the contact points.

that vk = ci − cj ∀ i 6= j is a vector that connects two
contact points (see Figure 5).

Remark D can be interpreted as a set of vectors that lie in
the contact surface S. This also means, all vectors in D are
orthogonal to the surface normal., i.e., v>k n̂ = 0, ∀vk ∈
D. Therefore, we seek to solve the homogeneous linear
equations

D>n̂ = 0 . (4)

Let D> = U S V> be the singular value decomposition of
D such that U is the matrix of left singular vectors, S is a
diagonal matrix of singular values, and V is a matrix of the
right singular vectors. Let A ∈ R3×3 = DD> such that

A =
(
U S V>

)> (
U S V>

)
= V(S>S)V>

(5)

Remark In (5), we aim to make A a Hermitaian matrix (i.e.,
A ≡ A>) such that the eigenvalues S>S ∈ R are always
real, and it is always possible to find an orthogonal basis.
The surface normal n̂ can be found by taking the columns
of V that corresponds to the smallest singular value.

The rank of the constraint can be seen from the rank of S>S:
• rank(S>S) = 1: The observations D spans a plane.

There is a 1-dimensional constraint and the robot can
stand on a surface. This observation means that A has
a vanishing singular value, and any linear combination
of the corresponding right-singular vectors is a valid
solution. Since we are looking for a unit vector, the
solution is the right-singular vector.



• rank(S>S) = 2: There is a 2-dimensional constraint
and the robot can stand on a line. If this is the case,
we know the desired footstep position p∗ is not a good
choice for the robot since the foot is likely to be stuck.
This is a special case and out of the scope of this work.

C. Stopping Criterion

In this section, we introduce a criterion to evaluate the
confidence of the estimation. Specifically, we would like to
know how well our estimated contact normal n̂ is without
the knowledge of the true contact normal n̂∗. We will use
the conjugate prior [22] to represent the unknown mean and
variance of the ground truth, and then infer the probability
of our estimation.

1) Likelihood: Given a set of observations D; we would
like to know what is the likelihood of this observation
given the current estimate of contact normal. We assume
that the inner product of v and n̂ has normal distribution
v>n̂ ∼ N (µD, σ

2
D) where µD is the observation mean,

and σ2
D is the observation variance. The likelihood of the

observations given the estimation P(D|n̂) can be inferred
from the probability density function

P(D|n̂, µD, σ2
D) =

∏
k

1√
2πσ2

D

exp
− (v>k n̂−µD)2

2σ2
D (6)

If the estimation is correct, then (4) is satisfied, so we can
assume µD = 0. Let % = 1

σ2
D

denotes the precision of the
observations. The above equation can be re-written as

P(D|n̂, %) = 1

(2π)n/2
%n/2 exp−

%
2

∑
k(v>k n̂)2 (7)

2) Prior distribution: The conjugate prior of a normal
distribution with unknown mean and variance can be repre-
sented by Normal-gamma distribution n̂ ∼ NG(ñ, κ, α, β)
where ñ, κ, α, β are the unknown hyper-parameters of the
distribution. The probability of n̂ given % is defined by

P(n̂, %|ñ0, κ0, α0, β0) =

βα0
0

Γ (α0)

√
κ0

2π
%α0−0.5 exp−

%
2 [κ0

∑
(n̂−ñ0)2+2β0] (8)

3) Initial values: Initially, we assume the robot is going
to walk over flat terrain, so the initial guess of the contact
normal is set to ñ0 = [0, 0, 1]> The parameters of the prior
distribution are set to α0 = 0.1, β0 = 0.1, κ0 = 1.

4) Posterior distribution: The likelihood of the estimation
n̂k given the observed data samples D, or posterior distri-
bution, can be written as P(n̂k|D) = P(D|n̂k)P(n̂k). By
the property of Normal-gamma distribution, if the prior is a
Normal-gamma distribution n̂k ∼ NG(ñk, κk, αk, βk), the
posterior can be proven to be a Normal-gamma distribution
n̂k+1 ∼ NG(ñk+1, κk+1, αk+1, βk+1).

Remark By multiplying (7) and (8) and simplifying the
expression, the posterior distribution can be described by
another Normal-Gamma distribution. For each iteration, we

fw

cλ

f⊥

f||

Fig. 6: The force exerted by the robot fw is divided into the
normal component f⊥ and the tangential component f‖.

only need to update the hyper-parameters of the distribution
in order to evaluate the estimation.

ñk+1 =
λ0µ0 + kn̂

κ0 + k

κk+1 = κ0 + k

αk+1 = α0 +
k

2

βk+1 = β0 +
1

2

∑
(Dn̂)2 +

[
κ0k

∑
(n̂− ñ0)

2

2κ0 + k

] (9)

As soon as the cumulative density is high enough, i.e.,
P(n̂k|D) ≥ εΛ, we can stop the exploration.

IV. SURFACE FRICTION ESTIMATION

After learning the surface normal, we can decompose the
contact force into normal and tangential parts. In this section,
we describe a method to estimate the friction coefficient µ.

A. Surface Friction Estimation

Since we use the swing leg to perform the exploration and
standing with the other three legs, the force exerted by the
robot is the only force that acts on the contact surface.
Therefore, the action force (e.g., the force applied by the
foot) is equal to the reaction force (e.g., the ground reaction
force) but the opposite direction; specifically,

− fw = λc (10)

where fw ∈ R3 is the force exerted by the robot at the swing
foot. We use f⊥ and f‖ to denote the normal and tangential
components of fw, and fw = f⊥ + f‖ (see Figure 6).

During the last haptic exploration, we collected a set
of contact points c1, c2, ..., cK. Since all these points are
on the contact surface, we want to move the feet around
these points. Namely, we generate the desired trajectory by
interpolating the positions between all ci, and this trajectory
will provide the desired foot position for the impedance
controller

Λ¨̃p + D ˙̃p + Kp̃ (11)

where p̃ = p∗w − p is the error between ci and the foot
position, and p∗w denotes the desired foot position during
exploration. To ensure that the motion is moving on the
contact surface, we project the motion onto the contact
surface by

f‖ = (I3−n̂>n̂)
[
Λ¨̃p + D ˙̃p + Kp̃

]
(12)



Remark Since n̂ is a unit vector, the pseudo inverse is
equal to its transpose. Therefore, the projection is defined
by
(
I3−n̂>n̂

)
instead of

(
I3−n̂†n̂

)
From (2), we know that the foot cannot slide on the contact
surface if µλz ≥

√
λ2
x + λ2

y , and the vice versa. Substitut-
ing (10) into (2) indicates that{

−µf⊥ ≥ ||f‖|| → foot does not move

−µf⊥ < ||f‖|| → foot may move
(13)

Therefore, we can vary the values of µ ∈ [0.2, 1.0] to get the
normal force

f⊥ = n̂

( ||f‖||
µ

)
(14)

During the exploration, we start with a large friction co-
efficient. If there is a slippage, the friction coefficient will
be reduced. Finally, the total force at the swing foot will
be fw = f⊥ + f‖, and the torque of the swing leg is
τw = hw +J>w fw.

B. Stopping Criteria

During the exploration, we would like to know how likely
our estimated friction coefficient µ is smaller or equal to
the true friction value µ∗, so we can stop exploration if
we are confident about our estimation. For this, we will
use the Bernoulli distribution with Beta distribution as the
conjugate prior to [23] model the probability distribution of
our estimation.

1) Likelihood distribution: During the exploration, the
swing foot is either sliding or non-sliding on the contact
surface. We represent the outcome of the kth step as a
boolean variable zk ∈ {0, 1} where zk = 1 denotes no-
slippage and zk = 0 denotes slippage. Since we don’t have
the true friction coefficient, we cannot use (13) to determine
slippage; instead, the slippage is determined by how much
the desired end-effector velocity v∗ 6= 0 is different from
the observed end-effector velocity v on the contact surface:

z =

{
1, if ||(I3−n̂>n̂)(v∗ − v)|| ≥ ε

0, if ||(I3−n̂>n̂)(v∗ − v)|| < ε
(15)

Since the observation is binary, we represent the likelihood
as Bernoulli distribution zk|µk ∼ Bernoulli(P(µk)), and
the probability density is defined as

P(zk|µk) = P(µk)z
k

(1− P(µ))1−z
k

(16)

Namely, if there is no slippage, the probability that the
observation should not slip is the probability that the current
friction coefficient setting is sufficient.

2) Prior distribution: The Beta distribution is the conju-
gate prior of the Bernoulli distribution. Although we do not
have the true distribution of µ, the prior distribution can be
described as

µk ∼ B(ak, bk) (17)

where B denotes beta distribution and ak, bk > 0 are the un-
known shape parameters of the distribution. The probability

Fig. 7: The result of estimating surface normal on different
inclinations. We can see that the estimated cone is normal
to the contact surface.

of the prediction P(µk) can be estimated by the probability
density function of beta distribution.

3) Initial Guess: The initial guess of the friction coeffi-
cient is µ0 = 1.0, since it is larger than friction coefficients
in most scenarios. These shape parameters are set to a0 =
1, b0 = 1 at the beginning of the experiment. This is
equivalent to a uniform distribution on the interval of 0 and
1 where all potential solutions have the same probability.

4) Posterior distribution: If the prior is of the form of
a Beta distribution, then the posterior will be of the same
distribution [23]. Therefore, the posterior distribution µk+1,
given samples zk also has a beta distribution

µk+1 ∼ B(ak + zk, bk + (1− zk)) (18)

Remark For each iteration, we only need to update the
hyper-parameters of the distribution to evaluate the estima-
tion.

αk+1 = αk + z

βk+1 = αk + (1− z)
(19)

Then, we update the prior by substituting in the posterior
and repeat. This process continues until we have enough
confidence in the estimate. Specifically, we want to ensure
the estimated friction coefficient is smaller than the true
friction coefficient. The estimation is completed if

P(µ∗ > µk) > εµ (20)

where P(µ∗ > µk) = 1 − P(µ∗ < µk) ∈ [0, 1], εµ is
a predefined threshold function, and P(µ∗ ≤ µk) is the
cumulative distribution function of beta distribution.

V. EVALUATION

In this section, we describe how we validate our proposed
method, in both simulation and on a real robotic platform.

A. Learning surface normal

In the first experiment, we would like to demonstrate the idea
in simulation. First, we made different slopes in simulated
scenarios, where the true inclination of the surface can
be controlled. We tested on the slope with inclination =



Fig. 8: Resulting friction cones using the estimated friction
coefficient. From the left to right are µ∗ = 0.4, 0.6, 0.8.
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Fig. 9: The progression of (a) posterior distribution and (b)
cumulative distribution for estimating surface friction. The
true friction coefficient is 0.5.

0.1, 0.2, ...0.5 radians. The right front leg is used as a haptic
sensor during the experiment.

On average, the mean and standard deviation of the predic-
tion accuracy

∑
(n̂− n̂∗)2 is (5.61×10−4)±(6.63×10−4).

Figure 7 shows an example of the resulting friction cone
using the estimated surface normal. We can see that the
resulting friction cone is perpendicular to the contact surface,
and the resulting contact force falls within this friction cone.

B. Learning surface frictions

In this experiment, we would like to test the accuracy of
friction estimation in simulated scenarios. We generated
terrains with different friction coefficients µ∗ ∈ [0.4, 0.8] and
used the method in §IV to estimate the friction coefficient.

Overall, the mean and standard deviation of accuracy is
(3.08 ± 1.81) × 10−3 over 5 experiments. Figure 8 shows
the resulting friction cones, from the left to right are µ∗ =
0.4, 0.6, 0.8. We can see that the shape of the friction cone
changes as the friction coefficient gets bigger.

Figure 9 shows the progression of probability distribution
over time. In this example, the true friction coefficient is
µ∗ = 0.5. In Figure 9(a), the x-axis is the friction coefficient,
the y-axis is the probability density. The blue curve is
the final estimation (at step k), and the red lines are the
estimation at formal steps k − 10, k − 20, k − 30. We can
see that the posterior distribution of the estimate slowly
converges to the unknown mean, and the variance decreases
as we receive more observations.

Figure 9(b) shows the cumulative distribution of the same
example. In this figure, the x-axis is the iteration, the y-
axis is the cumulative probability, and the red curve is
the cumulative distribution over iterations. The blue line is
the cut-off point where the cumulative distribution is good
enough, indicates that the robot can stop exploration.

Fig. 10: The mockup terrain with random inclinations

C. Real Robotic Platform

Finally, we conduct experiments using ANYmal [20], a
torque-controlled quadruped robot made by ANYbotics1.
The robot weights approximately 35 kg and has 12 joints
actuated by Series Elastic Actuators (SEAs). Currently, the
soft real-time control cycle is 2.5 ms. The control software
is developed based on Robot Operating System (ROS).

The terrain consisted of wedges with random inclination
(see Figure 10). Each wedge was about 50 × 50 cm. The
robot used the proposed methods to estimate surface normal
and friction before moving forward.

We do not have the ground truth of the surface normal,
and the ground truth is approximated by measuring the
dimensions of the wedges. The accuracy of predicting the
surface normal is 8.02 × 10−3 ± 1.01 × 10−2. The friction
coefficient is also not well defined, especially, it depends
on the materials that interact. Therefore, we cannot evaluate
the accuracy of the friction coefficient. The evaluation is
based on whether the robot can maintain contact with the
terrain after the estimation. Please see the supplementary
video https://youtu.be/SnafS_5361g for the result
on the real robotic platform.

VI. CONCLUSION

This paper proposes a method for estimating surface infor-
mation via haptic exploration. We use one of the legs to
act as a haptic sensor for exploring the environment before
walking. While collecting data, we estimate the surface
normal and friction coefficient of the terrain, so the controller
can optimize the contact force accordingly. Probabilistic
criteria are introduced to evaluate the quality of the estimate.
The method was validated on both a simulated environment
and the quadruped robot ANYmal.

Future work will focus on incorporating vision data with
the haptic exploration (e.g., explore the area where vision
data are too noisy to evaluate) and applying this technique for
footsteps planning. In addition, one issue we notice during
the experiment is that the accuracy of contact detection (i.e.,
determining whether the robot is in contact or not) affects
the accuracy of data collection. We will incorporate a better
contact estimation [24][25] with our haptic exploration.
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