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Abstract— We aim for mobile robots to function in a variety
of common human environments. Such robots need to be
able to reason about the locations of previously unseen target
objects. Landmark objects can help this reasoning by narrowing
down the search space significantly. More specifically, we can
exploit background knowledge about common spatial relations
between landmark and target objects. For example, seeing a
table and knowing that cups can often be found on tables aids
the discovery of a cup. Such correlations can be expressed as
distributions over possible pairing relationships of objects. In
this paper, we propose an active visual object search strategy
method through our introduction of the Semantic Linking Maps
(SLiM) model. SLiM simultaneously maintains the belief over a
target object’s location as well as landmark objects’ locations,
while accounting for probabilistic inter-object spatial relations.
Based on SLiM, we describe a hybrid search strategy that selects
the next best view pose for searching for the target object based
on the maintained belief. We demonstrate the efficiency of our
SLiM-based search strategy through comparative experiments
in simulated environments. We further demonstrate the real-
world applicability of SLiM-based search in scenarios with a
Fetch mobile manipulation robot.

I. INTRODUCTION

Being able to efficiently search for objects in an environ-
ment is crucial for service robots to autonomously perform
tasks [9], [27], [7]. When asked where a target object can
be found, humans are able to give hypothetical locations
expressed by spatial relations with respect to other objects.
For example, a cup can be found “on a table” or “near a
sink”. Table and sink are considered landmark objects that
are informative for searching for the target object cup. Robots
should be able to reason similarly about objects locations, as
shown in Figure 1.

Previous works [10], [13], [26] assume landmark objects
are static, in that they mostly remain where they were
last observed. This assumption can be invalid for dynamic
landmark objects that change their location over time, such as
chairs, food carts and toolboxes. Temporal assumptions can
mislead the search process if the prior on the landmarks’
locations is too strong. Further, there also exists uncertainty
in the spatial relations between landmark objects and the
target object, and between landmark objects themselves. For
example, a cup can be “in” or “next to” a sink.

Considering the problem of dynamic landmarks, we pro-
pose the Semantic Linking Maps (SLiM) model to account
for uncertainty in the locations of landmark objects during
object search. Building on Lorbach et al. [18], we model
inter-object spatial relations probabilistically via a factor
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Fig. 1: Robot tasked to find a coffee machine.

graph. The marginal belief on inter-object spatial relations
inferred from the factor graph is used in SLiM to account
for probabilistic spatial relations between objects.

Using the maintained belief over target and landmark
objects’ locations from SLiM, we propose a hybrid strategy
for active object search. We select the next best view pose,
which guides the robot to explore promising regions that
may contain the target and/or landmark objects. Previous
works [30], [6], [25], [2] have shown the benefit of purpose-
fully looking for landmark objects (Indirect Search) before
directly looking for the target object (Direct Search). The
proposed hybrid search strategy draws insights from both
indirect and direct search. We demonstrate the efficiency of
the proposed hybrid search strategy in our experiments.

In this paper, we describe the Semantic Linking Maps
model as a Conditional Random Field (CRF). Our descrip-
tion of SLiM as a CRF allows us to simultaneously maintain
the belief over target and landmark object locations with
probabilistic modeling over inter-object spatial relations. We
also describe a hybrid search strategy based on SLiM that
draws upon ideas from both indirect and direct search
representations. This SLiM-based search makes use of the
maintained belief over objects’ locations by selecting the next
best view pose based on the current belief. In our experi-
ments, we show that the proposed object search approach
is more robust to noisy priors on landmark locations by
simultaneously maintaining belief over the locations of target
and landmark objects.

ar
X

iv
:2

00
6.

10
80

7v
1 

 [
cs

.R
O

] 
 1

8 
Ju

n 
20

20



II. RELATED WORK

Existing works have studied object search with differ-
ent assumptions on prior knowledge of the environment.
Some assume priors on landmark objects’ locations in the
environment, and utilize the spatial relations between the
target object and landmark objects to prioritize regions to
search. Kollar et al. [10] utilize object-object co-occurrences
extracted from image tags on Flickr.com to infer target
object locations. Kunze et al. [13] expanded the generic
notion of co-occurrences to more restrictive spatial relations
(e.g. “in front of”, “left of”), which provide more confined
regions to search, thus improving the search efficiency. Toris
et al. [26] proposed to learn a temporal model on inter-
object spatial relations to facilitate search. These methods
assume the landmark objects to be static, however, we believe
accounting for the uncertainty in landmark objects’ locations
is important for object search.

Existing works have also explored known priors on spatial
relations between landmark and target objects. Given exact
spatial relations between landmark and target objects, Sjöö
et al. [25] used an indirect object search strategy [30], [6],
where the robot first searches for landmark objects, and then
searches for a target object in regions satisfying given spatial
relations. On the other hand, given a probabilistic distribution
over the spatial relations between objects, Aydemir et al. [2]
formulate the object search problem as a Markov Decision
Process. In our work, we learn the probabilistic inter-object
spatial relations by building on ideas of Lorbach et al. [18],
where inter-object relations are being probabilistically mod-
eled via a factor graph.

There are also works that do not assume prior knowledge
of the environment. Researchers have explored object search
with visual attention mechanisms [23], [24], [19], such as
saliency detection. Similar to [10], [13], other research [17],
[4], [8] utilizes object-object co-occurrences to guide the
search for a target object. Positive and negative detections
of landmark objects will result in an updated belief over
the target object. We expand object-object co-occurrences
to finer-grained spatial relations between objects, i.e., “in”,
“on”, “proximity”, “disjoint”, which specify more confined
regions for object search.

Other literature [29], [12], [28] has also explored object-
place relations to facilitate object search. Wang et al. [29]
build a belief road map based on object-place co-occurrences
for efficient path planning during object search. Kunze
et al. [12] bootstraps commonsense knowledge on object-
place co-occurrences from the Open Mind Indoor Common
Sense (OMICS) dataset. Samadi learned similar knowledge
by actively querying the World Wide Web (WWW). Our
work also takes object-place co-occurrences into account.
Aydemir et al. [1] made use of place-place co-occurrences
to infer the type of the room next door, as the robot explores
an environment during search. Manipulation-based object
search, as in [32], [31], [14], is not within the scope of this
paper.

III. PROBLEM STATEMENT

Let O = {oi|i = 1, · · · ,N} be the set of objects of
interest, including landmark objects and the target ob-
ject for search. Given observations z0:T and robot poses
x0:T , we aim to maintain the belief over object loca-
tions P(OT |x0:T ,z0:T ), while accounting for the probabilistic
spatial relations Ri j between objects oi,o j ∈ O. For this
work, we consider the set of spatial relations to be Ri j ∈
{In, On, Contain, Support, Proximity, Disjoint}. For exam-
ple, the relation Ri j = In indicates that object oi is inside
object o j. The probabilistic spatial relations between object
oi,o j is represented by the belief over Ri j, denoted as B(Ri j).

Based on the maintained belief P(OT |x0:T ,z0:T ), the robot
searches for the target object by selecting the next best view
pose ranked by an utility function U : τ 7→R. τ specifies the
6 DOF of camera view pose. The utility function U trades
off between navigation cost and the probability of search
success. Upon a user request to find a target object, the robot
iterates between the belief update of objects’ locations and
view pose selection, until the target object is found or the
maximum search time is reached.

IV. SEMANTIC LINKING MAPS

For Semantic Linking Maps (SLiM), we consider inter-
object spatial relations, while maintaining the belief over tar-
get and landmark objects’ locations. Building on our previous
work [33], we probabilistically formalize the object location
estimation problem via a Conditional Random Field (CRF).
The model is now extended to account for probabilistic inter-
object spatial relations, as shown in Figure 2.

The posterior probability of object locations O history is

p(O0:T |x0:T ,z0:T ) =

1
Z

T

∏
t=0

N

∏
i=1

φp(oi
t ,o

i
t−1)φm(oi

t ,xt ,zt)∏
i, j

φc,B(Ri j)(o
i
t ,o

j
t ) (1)

where Z is a normalization constant. Robot pose xt and
observation zt are known. We assume that the robot stays
localized given a metric map of the environment.

φp(oi
t ,o

i
t−1) is the prediction potential that models the

movement of an object over time. We assume objects to
remain static or move with temporal coherence (varies across
object classes) during the search, i.e.

φp(oi
t ,o

i
t−1) = e−(o

i
t−oi

t−1)
T Σ−1(oi

t−oi
t−1)

φm(oi
t ,xt ,zt) is the measurement potential that accounts

for the observation model, and zt = {zi
t |i = 1, · · · ,N} are

(potentially noisy) detections for each object oi at time t.
Because zi

t and o j are independent if j 6= i, we simplify
φm(oi

t ,xt ,zt) to φm(oi
t ,xt ,zi

t) s.t.,

φm(oi
t ,xt ,zi

t) =


PFN , if oi

t ∈ E i
t but zi

t = /0
PT N , if oi

t /∈ E i
t and zi

t = /0
PT P, if π(oi

t) ∈ zi
t

PFP, otherwise

(2)

where each P stands for the probability of false negative, true
negative, true positive, and false positive detection. E i

t is the



Fig. 2: CRF-based SLiM model: (a) Known: {xt} robot poses,
{zt} sensor observations; Unknown: Ot = {o1

t ,o
2
t , · · · ,oN

t }.
(b) Plate notation: at time t, the spatial relations between
each object pair oi,o j is parameterized by the belief over
their spatial relations B(Ri j).

effective observation region for oi given robot pose at time
t. Note, E i

t is larger for larger objects, which can be reliably
detected from longer distance compared to small objects. π

is the camera projection matrix, and π(oi
t) ∈ zi

t denotes that
the projected object lies in the detected bounding box in zi

t .
We model the spatial relations between objects with con-

text potential φc,B(Ri j). Here, we extend φc from our previous
work by parameterizing it with the belief B(Ri j) over the
inter-object spatial relation between oi,o j,

φc,B(Ri j) = ∑
r
B(Ri j = r)φc,r(oi

t ,o
j
t ,Ri j = r) (3)

where r can take any value in the set of possible relations
{In, On, Contain, Support, Proximity, Disjoint}.

For r ∈ {In, On, Contain, Support}, φc,r(oi
t ,o

j
t ,Ri j = r) is

equal to 1 if objects oi
t ,o

j
t satisfy the spatial relation given

the width, length and height of the object, otherwise 0. For
r = Proximity, φc,r(oi

t ,o
j
t ,Ri j = Proximity) corresponds to a

Gaussian distribution that models o j
t ∼ N (oi

t , Σi j) and Σi j

is determined by the size of objects oi,o j. The larger the
size of oi,o j, the larger the variance in Σi j. For r = Disjoint,
φc,r(oi

t ,o
j
t ,Ri j = Dis joint) = 1− ∑

r 6=Dis joint
φc,r(oi

t ,o
j
t ,Ri j = r).

A. Inference

We propose a particle filtering inference method for
maintaining the belief over object locations, as shown in
Algorithm 1. Examples of the belief update over time are
available in Figure 3. Instead of estimating the posterior of
the complete history of object locations p(O0:T |x0:T ,z0:T ), we
recursively estimate the posterior probability of each object
oi

t ∈ Ot , similarly to [33], [15].
To deal with particle decay, we reinvigorate the particles of

each oi by sampling in known room areas, as well as around
other objects o j based on B(Ri j). In step 5, j ∈ Γ(i) only if
1−B(Ri j = Disjoint)> 0.2. Across our experiments, we use
100 particles for each object. The inference algorithm does
not assume single object instance for each object class. The
inference algorithm has a complexity of O(nKM2), where K
is the average cardinality of Γ(i). Further works can be done
to decrease the complexity down to O(nKMC) by sampling

Algorithm 1: Inference of objects locations in SLiM.

Input: Observation zt , Robot pose xt ,
Particle set for each object:

oi
t−1 = {〈o

i(k)
t−1,α

i(k)
t−1〉|k = 1, · · · ,M}, i ∈ 1 : N

1 Resample M particles oi(k)
t−1 from oi

t−1 with probability
proportional to importance weights α

i(k)
t−1 ;

2 for i = 1, · · · ,n do
3 for k = 1, · · · ,M do
4 Sample oi(k)

t ∼ φp(oi
t ,o

i(k)
t−1) ;

5 Assign weight
α

i(k)
t ∝ φm(o

i(k)
t ,xt ,zt) ∏

j∈Γ(i)
φc,B(Ri j)(o

i(k)
t ,o j

t−1) ;

6 where φc,B(Ri j)(o
i(k)
t ,o j

t−1) =

∑
r

M
∑

l=1
B(Ri j = r)α j(l)

t−1φc,r(oi
t ,o

j
t ,Ri j = r)

7 end
8 end

C representative and divergent particles from the original M
particles (C < M).

B. Probabilistic Inter-Object Spatial Relations

To get the belief over inter-object spatial relations B(Ri j)
for each object pair oi,o j ∈ O, we use a factor graph by
building on preceding work by Lorbach et al [18]. We
generalize [18] by relaxing the assumption on known spatial
relations between landmark objects.

The factor graph G : {V,F,E} consists of variable vertices
V= {Ri j|∀i6= j oi,o j ∈O}, factor vertices F= {FCS,FLC} and
edges E which connect factor vertices with variable vertices.
Specifically, FCS : Ri j 7→ R is a unary factor that considers
commonsense knowledge on spatial relation between objects,

FCS(Ri j) = Frequency(Ri j)

Similar to [18], we extract commonsense knowledge on Ri j
from online image search engine (e.g. Flickr) by counting the
frequency of certain spatial relation between objects oi,o j.
For example, the frequency of Rcup,table = On is computed
as the number of search results of a query “cup on the
table” divided by the number of search results of a query
“on the table”. These extracted frequencies can be noisy.
For example, the frequency of “laptop on kitchen” is larger
than 0, but it is not a valid expression because it refers to a
laptop being on top of the room geometry of a kitchen. We
manually encode the FCS(Ri j) for invalid expressions to 0.

FLC : (Ri j,Rik,R jk) 7→ {0,1} is a triplet factor that considers
logical consistency between a triplet of objects oi,o j,ok,

FLC(Ri j,Rik,R jk) =

{
1, if consistent.
0, otherwise.

For example, if oi is in o j, and o j is in ok, then oi

should be in ok to satisfy logical consistency, i.e., FLC(Ri j =
In,Rik = In,R jk = In) = 1. Previous work [18] assumes the
spatial relations between landmark objects to be known,



Fig. 3: Examples of belief updates in SLiM. given observations. Upper: Evolution of particles of fridge, sink, coffee machine
over time. Lower: RGB observation (with object detection) over time. (Best viewed in color).

and only relations Rtarget, j connecting target object otarget
and landmark object o j to be unknown. Their pairwise
factor enforcing logical consistency is a binary function
FLC : (Rtarget, j,Rtarget,k) 7→ {0,1}. In contrast, our formula-
tion employs a trinary factor FLC considering all possible
combinations of (Ri j,Rik,R jk) and evaluating their logical
consistency.

By applying Belief Propagation [11] on the factor graph
formulated as above, we can get the marginal belief over
inter-object relations B(Ri j) between all object pairs. We use
the libDAI [20] library for inference. An example of the
probabilistic inter-object spatial relations inferred from the
factor graph is as shown in Figure 5, and it is used in our
experiments.

V. SEARCH STRATEGY

Based on the belief over the object locations, we actively
search for the target object, by generating promising view
poses and select the best one ranked by a utility function.
Given the particle set 〈o(k)t ,α

(k)
t 〉 of the target object o as

being maintained in IV, we fit Gaussian Mixture Models
(GMMs) through Expectation Maximization to the particles
by auto selecting the number of clusters [5],

〈o(k)t ,α
(k)
t 〉 ∼ 〈N (xn,Σn),ωn〉 (4)

A. View Pose Generation

For each Gaussian component N (xn,Σn), we generate a
set of camera view pose candidates {τ i

n = (ci
n,ψ

i
n)}, where cn

and ψn denote the translation and the rotation of the camera
respectively.

Initially, we sample the location of the camera cn evenly
from a circle with a fixed radius around the center xn of the
Gaussian component, and assign a default value to rotation
ψn. Note, that these initially sampled view poses can put
the robot in collision with the environment, and the camera

is not necessarily looking at xn. Thus, we formulate a view
pose optimization problem under constraints as below,

argmin
τn

1−vn ·
xn− cn

‖xn− cn‖
s.t xn ∈ Eτn , c(τn)> 0 (5)

where vn is the view direction given τn, Eτn denotes the
effective observation region of the target object at camera
pose τn, and c : τ 7→ R is a function that computes a signed
distance of a configuration τ to the collision geometry of the
environment.

B. View Pose Selection

We propose two different utility functions to rank the view
pose candidates:

1) Direct Search utility: UDS encourages the robot to
explore promising areas that could contain the target object
while accounting for navigation cost,

UDS(τk) = ωn +α
1

arctan(σdnav)
(6)

where ωn is the weight of the Gaussian component (as in (4))
that τk is generated from, and dnav is the navigation distance
from the current robot location to view pose τk. Parameter
α trades off between the probability of finding the target
object and the navigation cost. Parameter σ determines how
quickly the arctan(σdnav) plateaus.

With UDS, the object search is direct because we are di-
rectly considering promising areas represented by the GMMs
for the target object.

2) Hybrid Search utility: UHS encourages the robot to
explore promising areas that could contain the target object
and/or any landmark object, while accounting for navigation
cost

UHS(τk) = ωn +α
1

arctan(σdnav)

+β max
j,n

CoOccur(o,o j)ω j
nI j

n

(7)



Fig. 4: Simulation experiments setup in Gazebo: an
apartment-like environment with four rooms. There are 6
landmark objects and 3 target objects: coffee machine, laptop,
cup. Each target object has two equally possible locations.

where the additional term compared to UDS acts to encourage
the robot to also explore areas that could contain landmark
object o j which co-occurs with the target object o with
probability CoOccur(o,o j). Specifically, CoOccur(o,o j) =
(1−B(Rtarget, j = Disjoint)), and ω

j
n is the weight of the n-

th Gaussian component of GMMs fitted to the belief over
the location of the landmark object o j. And I j

n is 1 if the
n-th Gaussian of object o j is within the effective observation
region at camera pose τk, otherwise 0.

UHS is inspired by the indirect object search strategy
as studied in [6], [30]. Previous studies demonstrated that
purposefully looking for an intermediate landmark object
helps quickly narrow down the search region for the target
object if the landmark object often co-occurs with the target
object, thus improving the search efficiency.

With UHS, the object search can be considered hybrid
because we are considering promising areas represented by
GMMs for both the target object (as in direct search) and
landmark objects that co-occur with the target object (as in
indirect search).

In our experiments, we use a A∗ based planner to compute
dnav. We empirically set α = 0.1, β = 0.4 , and σ = 0.5 such
that arctan(σdnav) plateaus as dnav goes beyond 3m.

VI. EXPERIMENTS

We perform object search tasks in both simulation and
real-world environments with a Fetch robot. In the sim-
ulation experiments, we quantitatively benchmark various
methods, including methods that resemble previous works
and our proposed method. In the real-world experiments, we
demonstrate qualitatively that the proposed method scales to
real-world applications. In both simulation and real-world
experiments, the robot accelerates to at most 1m/s and turns
at most at 1.7rad/s.

1) Simulation Experiments: The simulation experiments
are performed in an apartment-like environment (10mx11m)
setup in the Gazebo simulator, as shown in Figure 4. The

Fig. 5: Marginal belief on inter-object spatial relations, as
well as object-room relations, inferred from the factor graph
as explained in Sec. IV-B. CM: coffee machine, CT: coffee
table

room types and considered landmark objects are annotated
in Figure 4, along with the placements of target objects.
The marginal belief Ri j inferred from the factor graph as
explained in IV-B is depicted in Figure 5.

We set up an object detector in simulation that returns a
detection of an object, if the object is in view, not fully
occluded, and within the effective observation range. For
large objects (e.g. sofa, bed, fridge), mid-sized objects (e.g.
desk, table, sink), and small objects (e.g. cup, laptop, coffee
machine), we assume an effective observation range of 5m,
4m, 2.5m respectively.

We benchmark following methods:

• UDS: Uninformed direct search (Eq.6). The robot does
not account for the spatial relations between the target
and landmark objects (omitting Eq. 3 in SLiM). This
baseline represents a naive approach for object search.

• IDS-Known-Static: Informed direct search (Eq.6) with
a known prior on landmark object locations. The robot
assumes that landmark objects are static at the locations
provided by the prior. This method resembles previous
works [10], [13], [26].

• IDS-Known-Dynamic: Informed direct search (Eq.6)
with a known prior on landmark object locations. This
is similar to IDS-Known-Static except that the robot
does not assume the landmark objects to remain at the
locations expressed in the prior.

• IDS-Unknown: Informed direct search (Eq.6) without
prior on landmark object locations. The particles for
landmark objects are initialized uniformly across the en-
vironment. This method resembles previous works [17],
[3].

• IHS-Unknown: Informed hybrid search (Eq.7) without
prior on landmark object locations.

All methods except for UDS are using the full SLiM
model. We assume that an occupancy-grid map of the en-
vironment is given. We also assume that the room types are
accurately recognized across the environment. IDS-Known-
∗ methods are provided with a noisy prior on landmark
object locations which differ from the actual locations, to
emulate the common cases where perfect knowledge about
landmark locations is not available. For all methods, the
particles for the target object are initialized uniformly across



Fig. 6: Examples of search paths generated by each method while searching for cup. Methods from left to right: UDS,
IDS-Known-Static, IDS-Known-Dynamic, IDS-Unknown, IHS-Unknown. (Best viewed in color).

Target Object Metrics UDS IDS known, static IDS known, dynamic IDS unknown IHS unknown

Coffee Machine

Views 7.83 6.17 4.67 6.33 3.67
Search Time (s) 107 76 60 75 50
Search Path (m) 8.68 6.70 5.80 6.74 4.93
Success Rate 1.0 1.0 1.0 1.0 1.0

Laptop

Views 11.00 12.50 7.17 5.67 4.17
Search Time (s) 197 222 124 91 78
Search Path (m) 28.27 26.86 13.13 7.69 8.40
Success Rate 0.83 0.50 1.00 1.00 1.00

Cup

Views 13.17 14.50 12.67 11.83 9.00
Search Time (s) 184 229 189 185 139
Search Path (m) 22.64 29.81 23.40 19.68 13.91
Success Rate 0.83 0.33 0.83 0.83 1.00

TABLE I: Benchmark results for object search in simulation experiments. Among methods that reached 100% success rate,
IHS unknown successfully found target objects within the smallest number of views and least search time.

the environment.
For each target object, we run 6 trials per method. In each

trial, the robot starts at the same location, depicted in Figure
4. The object search is terminated if (1) the belief over the
target object location has converged, or (2) the maximum
search time of 5mins has been exceeded. A trial is successful
if the robot finds the target object before timeout. For each
target object and each method, we measure the number of
view poses, search time, distance travelled by the robot, and
search success rate averaged across all trials.

The benchmark result is as shown in Table I. Examples of
the resulting search path from each method are depicted in
Figure 6. As we can see, UDS is not as efficient because it
is not making use of the spatial relations between the target
and landmark objects in the environment. Given a noisy
prior on landmark object locations, IDS-Known-Dynamic
outperforms IDS-Known-Static because it accounts for the
uncertainty of the landmark object locations, whereas IDS-
Known-Static is misled by the noisy prior.

Given no prior information, IHS-unknown outperforms
IDS-unknown because it encourages the robot to explore
promising regions that contain the target and/or useful land-
mark objects, whereas IDS-unknown only considers promis-
ing regions that contain the target object. With IHS-unknown,
the robot benefits from finding landmark objects which help
narrow down the search region for the target object.

2) Real-World Experiments:: The real-world experiment
is executed in an environment (8mx8m) that consists of a

kitchen and a living room. The robot stays localized in the
pre-mapped environment based on its LIDAR, and navigates
based on a MPEPC based path planner [21]. The target
object is a cup, and landmark objects include table, sofa,
coffee machine and sink. IHS-Unknown reached average
success rate of 0.7 (7 out of 10 trials). The average number
of view poses, search time and search path is 4.86, 103s,
and 8.32m repectively. The failure cases were due to false
negative detection of the cup due to lighting (we used Faster
R-CNN [22] trained on COCO dataset [16]). Examples of
real-world experiments with a Fetch robot is available in
online video https://youtu.be/uWWJ5aV6ScE.

VII. CONCLUSION

In this paper we present an efficient active visual object
search approach through the introduction of the SLiM model.
SLiM simultaneously maintains the belief over target and
landmark objects locations, while accounting for the prob-
abilistic inter-object spatial relations. Further, we propose a
hybrid search strategy that draws insights from both direct
and indirect object search. Given noisy or no prior on
landmark objects locations, we demonstrate the benefit of
modeling landmark objects locations under uncertainty in
SLiM, and the hybrid search strategy that encourages the
robot to explore promising areas that can contain the target
and/or landmark objects in both simulation and real-world
experiments.

https://youtu.be/uWWJ5aV6ScE
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