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Abstract— Robotic automation has the potential to assist
human surgeons in performing suturing tasks in microsurgery,
and in order to do so a robot must be able to guide a
needle with sub-millimeter precision through soft tissue. This
paper presents a robotic suturing system that uses 3D optical
coherence tomography (OCT) system for imaging feedback.
Calibration of the robot-OCT and robot-needle transforms,
wound detection, keypoint identification, and path planning are
all performed automatically. The calibration method handles
pose uncertainty when the needle is grasped using a variant
of iterative closest points. The path planner uses the identified
wound shape to calculate needle entry and exit points to yield
an evenly-matched wound shape after closure. Experiments on
tissue phantoms and animal tissue demonstrate that the system
can pass a suture needle through wounds with 0.200 mm overall
accuracy in achieving the planned entry and exit points, and
over 20× more precise than prior autonomous suturing robots.

I. INTRODUCTION

Suturing is a basic surgical skill used in microsurgery
to repair wounds and severed blood vessels and nerves,
but it is tedious, time-consuming, and requires substantial
training [1]. Robotic assistance has been proposed for sutur-
ing in open surgery, laparoscopic surgery, and microsurgery,
with teleoperated surgical systems increasing the surgeon’s
dexterity, as well as autonomous techniques that can alleviate
burden on the surgeon. Automation of suturing is still a
challenging task due to deformation of the tissue as the
needle passes through it, the need for regrasping to complete
multiple throws, and incorporation of imaging feedback to
estimate wound shape and guide the needle successfully
along planned paths. Tracking of needles and 3D tissue
is challenging due to translucent tissue, deformation, and
occlusion of the needle as it passes through the tissue. The
challenge is particularly acute in the microsurgery setting,
since existing sensing and actuation technologies do not
perform at the required level of precision needed to complete
reliable suturing.

This paper presents a robotic system that achieves sub-
millimeter suturing precision, consisting needle calibration,
planning, and insertion under optical coherence tomography
(OCT) imaging guidance (Fig. 1). OCT is a laser-based
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Fig. 1. Our system performs a sub-centimeter multi-throw suture in
porcine tissue with a notch-shaped wound. Dotted lines delineate wound
edges before (a) and after (b) closure, showing good approximation between
the second throw’s right bite point and left exit point. The OCT volume
projection is shown before (c) and after (d) closure. (e) The highlighted B-
scan (green line in (c)) in the OCT volume before closure. (f) The B-scan
after closure, showing no dead space [5].

imaging technique that exploits interference to resolve the
distance of reflectors along the beam’s path to within several
micrometers [8]. By scanning the beam, a cross-sectional
view (or B-scan) of the tissue is produced, and further
sweeping the beam in a raster pattern yields a 3D volume
(a ∼1 cm3 cube in our system). Although OCT has deepest
penetration in transparent tissues like those of the eye, it
can also be used to image the surface and first millimeters
in depth of scattering tissues like skin. OCT has also been
used to track tissues and surgical tools in eye surgery [12]. To
guide the needle precisely, we perform calibration, percep-
tion, and planning in the OCT imaging frame. To calibrate
the needle tip and robot with respect to the OCT frame,
we use the observed needle surface voxels to simultaneously
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Fig. 2. The flow chart of the overall robotic suturing procedure, which
can be divided into coordinates calibration, wound detection, suturing path
planning, automatic needle insertion, and performance grading.

optimize the needle, robot, and OCT frames with a modified
iterative closest points (ICP) [2] algorithm that emphasizes
an accurate fit at the needle tip. A suturing path planner
chooses a suturing path such that the two sides of the wound
will match after closure, without dead space [5]. Fig. 2 shows
the overall procedure for our robotic suturing process.

Closed-loop imaging guidance is challenging due to OCT
artifacts including refraction and shadowing by the needle
driver. Instead, our experiments observe that open-loop ex-
ecution of a circular suture path leads to high accuracy
between the planned and actual needle entry and exit points,
even under significant tissue deformation. A unique aspect
of our experiments is that we use 3D OCT to image the
resulting suture path after the needle is pulled through and
the tissue returns to a rest state. Experiments in a tissue
phantom and porcine skin show the targeted entry and exit
points are reached with root mean square error (RMSE) of
0.200 mm, which is less than half the width of the needle
and over 20× more precise than prior autonomous suturing
robots.

II. RELATED WORK

Several researchers have studied the use of robots and
imaging guidance for suturing and micromanipulation assis-
tance. Using direct teleoperation, human surgeons are able to
complete suturing for anastomoses of 3mm artificial blood
vessels using the Intuitive Surgical DaVinci robot [1], but to
our knowledge surgical robots have not yet been used for
microsurgical suturing in vivo.

Autonomous suturing has been studied for at least two
decades. Early work by Kang and Wen proposes a laparo-
scopic robot that can perform manually controlled or semi-
autonomous motions for several tasks, including suturing
and automatic knot tying [10]. Each motion is initiated by
a surgeon. Staub et al. present an image-based guidance
system for improved accuracy in guiding a suturing needle
to pierce the tissue at a surgeon-indicated spot, as directed
by a laser pointer [16]. 3–10 mm errors were observed from
their system. More recent work has addressed multi-throw
suturing using a dual armed laparascopic robot, using a spe-
cial needle gripper that reduces grasp positioning errors and
feedback from a stereo vision system [15]. Their calibration

system obtains needle predictions with translational error of
approximately 2.9mm, and completes 86% of throws. Our
path planner is highly related to the method of Jackson and
Cavusoglu for path planning of needles entering triangular
shaped wounds [9]. The geometry of a circular needle enter-
ing a wound was analyzed, and we adopt many of the same
conventions here. Their paths were executed on a DaVinci
robot with a 12.7 mm radius needle. A similar approach was
adopted by Pedram et al. who studied the problem of needle
selection for varying wound geometries [14]. The errors of
their entry and exit points were greater than 4.5 mm with a
15 mm radius needle. Overall, accuracy must be improved
significantly for autonomous suturing in microsurgery. Our
system integrates the planner with imaging feedback, calibra-
tion, and analysis of errors in the suture path for a needle with
4.14 mm radius, and we obtain over an order of magnitude
improvement in accuracy.

In the microsurgical domain, OCT-guided robots have
been studied as a method for assisting surgeons to complete
telemanipulated tasks, primarily in the eye. Yu et al. present
a B-mode OCT-integrated forceps tool for haptic-controlled
microsurgery to assist in retinal membrane peeling [17].
Nasseri et al. present an OCT and robot guidance system
to assist in precise injections for macular degeneration [13].
Draelos et al. present a hand-guided robot that provides
stabilization and OCT guidance in the cornea [3], which
they further extend with autonomous needle insertion capa-
bilities [4].

Our calibration process is highly related to the work of
Zhou et al. that presents an OCT-based needle tip tracking
and calibration scheme [18]. This work identified pixels
likely to belong to the needle from the OCT B-scans and
segmented the needle from the background using a voting
scheme. Calibrating the robot-OCT frame and tracking the
needle led to an impressive ≈10 µm error as the needle
moved along an XYZ translation stage. They also extended
their method to 6 degree of freedom (DOF) tracking using
ICP with similar levels of accuracy [19]. Our work differs
in that we consider a curved needle grasped by a needle
driver, which makes needle identification more difficult due
to artifacts caused by shadowing, saturation artifacts, and
mirror images from the complex conjugate of the needle
driver. Furthermore, our calibration process accounts for
regrasping errors rather than using a fixed needle mount.

III. METHODS

Our system is designed to calibrate a robot-mounted
circular needle and automatically insert it through a wound,
all using OCT imaging. To focus on the calibration and path
planning problems, we show only the single-throw problem
and leave multi-throw suturing for future work. Our method
assumes that 1) the needle body is a circular arc; 2) the
needle diameter is larger than the wound width, so that no
significant travel is needed to bring the wound sides together;
3) the entire wound is within the robot and OCT workspaces;
and 4) the patient anatomy permits needle insertion by
rotation about an axis parallel to the wound.



Consider the plane of the needle and a cross sectional
view of a wound, where the needle is passing from right
to left. To close the wound, the needle passes through the
right bite point, right exit point, left bite point, and the left
exit point in sequence (Fig. 3). If the right exit point and
left bite point are not well-aligned with the wound’s deepest
point, the resulting dead space after wound closure (Fig. 4)
promotes infection [5]. Our planner generates a suture path
that avoids such dead space.

A. Error Analysis

The overall needle guidance error is influenced by many
elements:

• Needle grasping uncertainty is introduced when the
needle driver grasps the needle.

• Wound calculation errors can be introduced during
wound segmentation and keypoint identification.

• Needle and OCT calibration error remain after calibra-
tion, although needle grasping uncertainty is reduced.

• Robot repeatability and accuracy limits the overall
system performance.

• Tissue deformation from friction as the needle passes
through the tissue can be significant.

• Conjugate image overlap in OCT can produce artifacts
that cause errors in needle identification.

Fig. 3. Cross-sectional geometry of the incised wound and suturing path,
showing a) suturing center, b) left exit point, c) wound start point, d) wound
end point, e) right bite point, f) left bite point, g) right exit point, h) distance
from the deepest point to the left bite point (set to be equal to the distance
to the right exit point), i) wound deepest point.

Fig. 4. (a) The left bite point is higher than the right exit point, so a dead
space remains after closure. (b) The suturing depth is not sufficiently deep,
which leaves a dead space after the wound is closed. (c) When the suturing
path equalizes the wound sides and is sufficiently deep, then no dead space
remains post-closure.

We mitigate these errors through calibration to signifi-
cantly reduce the needle grasping uncertainty and surgeon
supervision of wound analysis. Robot error is minimized
with a repeatability of 10 µm. The overall error is thus dom-
inated by residual calibration error and tissue deformation.
Closed-loop corrections under OCT imaging feedback would
further reduce this error, but mid-insertion images suffer from
shadowing, saturation artifacts, and refraction.

B. Hardware

We use a custom OCT engine with a 100 kHz swept-
source laser centered at 1060 nm (Axsun Technologies; Bil-
lerica, MA), an adjustable transmissive reference arm, and
balanced detection. We configured this engine [3] to cap-
ture OCT volumes with sampling density 725×800×1327
pixels and field of view 10× 10× 7.15 mm. Our robot to
perform the suturing needle insertion is a 6-joint IRB 120
Robot (ABB Robotics; Shanghai, China) with a specified
repeatability of 10 µm.

A taper point, half-circle 4-0 suturing needle with 13 mm
arc length is used for tissue phantom and porcine skin inser-
tions. The needle’s width, as marked in Fig. 3 is 0.448 mm.
The needle is grasped with a locking Castroviejo needle
driver (Ambler Surgical; Exton, PA) which is mounted to the
robot’s end-effector with a custom holder. This holder keeps
the grasped needle’s rotation axis approximately coincident
with the robot’s last joint axis. This minimizes robot wrist
and elbow movement to avoid collision with the surgical field
and patient. The experimental hardware is shown in Fig. 5.

C. Calibration

Our calibration procedure calculates the transformations
from the world frame to the OCT frame and from the robot
end-effector frame to the needle frame. We define the needle
origin at the interface between the needle tip and the needle
body which facilitates path planning. The needle tip’s conical
nature causes the body and tip to follow separate paths
when rotated [9]. This misalignment may cause friction and
deformation between the needle body and the suturing path.

Fig. 5. Photo of the experimental hardware. On the left are the OCT
scanner and suture target. On the right, the IRB 120 robot holds a needle
driver holder, which holds a needle driver, which holds a suturing needle.



1) Needle Segmentation in OCT volumes: Our needle
segmentation method is similar to [12]. We first generate the
projection map of the OCT volume (Fig. 6(a)), and apply a
brightness threshold to obtain a binary image. As the needle
driver’s projection always appears at one side of the binary
image, we clip the corresponding side of the image to remove
the needle driver. We then apply the connected component
algorithm [6] to find the largest connected component in the
volume, which includes parts of the needle and the saturation
artifacts (Fig. 6(b)). The points in the OCT volume under
the connected component’s projection are the needle and
the saturation artifacts’ point clouds with noise (Fig. 6(c)).
We then remove the saturation artifacts in the OCT volume,
which appear as straight lines that are parallel to the OCT
volume’s B-scan direction and always touch or approach the
edge in the OCT volume. Finally, we perform point cloud
outlier removal [20] to filter out the noise below and above
the needle’s point cloud (Fig. 6(d)).

2) ICP Estimates of Needle Tip Transform: To estimate
the needle transform in the OCT frame, we use Iterative
Closest Points [2] which aligns points in the OCT field
(source point cloud) and the needle CAD model (target point
cloud). We identify the needle points as a subset of the bright
pixels in the OCT maximum intensity projection (MIP).
Standard ICP frequently mismatches the needle tip, however,
because the point is dominated by body points (Fig. 7(a)).
We overcome this problem by estimating tip points from an
initial ICP fit and increasing their weight for a second ICP fit
(Fig. 7(b)). The second fit yields better alignment, especially
at the needle tip.

3) Calibration Algorithm: We seek to solve

TICP = T−1
OCT TEETN , (1)

where TN is the needle frame in the end-effector frame, TOCT
is the OCT frame in the world, TEE is the end-effector frame
in the world from forward kinematics, and TICP is the ICP-
derived transformation from the needle frame to the OCT
frame. As described below, the robot will be guided to m
different poses, yielding paired observations TICPi and TEEi ,
for i = 1, . . . ,m. We minimize the error in Eq. 1 over TN and
TOCT using a Levenberg-Marquardt method.

Fig. 6. (a) The clipped projection of an OCT volume during calibration.
(b) The largest connected component after clipping out the needle driver.
(c) The point cloud including the part of needle, the saturation artifacts, and
the noise. (d) The point cloud with saturation artifacts and noise removed.

Fig. 7. The yellow point clouds are the source point clouds captured in the
OCT system, and the blue point clouds are target point clouds built in the
CAD software. (a) Original ICP result. We transfer the source point cloud
to the target point cloud frame. The needle tip of these 2 point clouds has
mismatching. (b) The modified ICP result. The mismatching of the 2 point
clouds has been alleviated. (Best viewed in color)

4) Calibration Set Sampling: Our calibration set is an
automatically defined set of m = 9 robot configurations.
These should be chosen so that needle poses are sampled
roughly uniformly across the OCT workspace and with a
diversity of needle orientations. The needle tip’s point cloud
must also be visible and not shadowed by the body or needle
driver.

First, we manually jog the robot to move the needle
tip into the center of the OCT volume. The robot then
moves its end effector a small distance to produce two
additional needle poses. Based on these 3 poses, we perform
a rough calibration of T̃OCT and T̃N . Because these poses
are near each other and the OCT volume’s center, the rough
calibration is typically not sufficiently precise at the edge of
the OCT frame. We thus define m desired ICP poses TICPdes
in the OCT frame such that the needle’s poses uniformly
sample the field of view with different orientations. Using
the below equation

TEE = T̃OCT T−1
ICPdesT̃

−1
N , (2)

we compute m end effector transforms, and m robot config-
urations are automatically generated by inverse kinematics
(IK) solver [7]. Calibration is run a final time to obtain more
precise estimates of TOCT and TN .

D. Wound Analysis

Wound analysis processes an OCT B-scan image and
produces the following shape information: the top layer, the
start point, the end point and the deepest point. We begin by
using the adjusted mean arc length (AMAL) graph search
method of Keller et al. [11] to find the top layer of the
wound (Fig. 8(a)). Next, we rotate the top layer such that
the non-wound portion is horizontal. We use a Gaussian 1D
filter to denoise the top layer, and then calculate the gradient
of the smoothed top layer (Fig. 8(b)). We define the start
point as the first point from left to right where the gradient
falls below a threshold. Similarly, we define the end point as
the first point from right to left where the gradient exceeds a
threshold. The point that has smallest position is the deepest
point of the wound.

E. Suturing Path Planning

Once the wound is identified, we generate a suitable
suturing path in the B-scan plane. We fix the suturing center
to reduce the interaction forces between the needle and



Fig. 8. Wound top layer detection and geometric analysis. (a) The AMAL
detection result is shown in yellow while the de-noised reult is shown in
black. The estimated start and end of the wound are shown in green, while
the deepest point is shown in red. (b) The gradient of the top layer of the
wound after being de-noised.

tissue compared to the moving center suturing approach.
To avoid the dead space (Fig. 4(a)-(b)), the distance from
the left bite point to the deepest point, and the distance
from the deepest point to the right exit point should be
equal. According to standard suturing practice, the suturing
depth should exceed 50% of the wound depth. We therefore
choose a target suturing depth of 80%, from which we can
calculate the left bite point and the right exit point. Using the
known needle radius, we obtain two solutions for the suture
center corresponding to these points in the B-scan plane. One
solution lies within the tissue whereas the other is above it.
We reject the in-tissue solution because its suturing path does
not have the right bite point and the left exit point and use
the other solution for planning.

After we obtain the suturing center in 3D, we generate
the robot’s path in joint space. First, we choose three points
in the needle frame (the needle tip PN1 , the needle body
PN2 , and the needle tail PN3 , every point is a 3×1 matrix).
These three points determine the suturing needle position
and orientation. Second, we uniformly interpolate needle tip
PO1 milestones along the suturing path in the OCT frame.
Because the relationship between these three points is fixed,
for each milestone, we calculate the corresponding PO2 and
PO3 . Using TOCT from the calibration process, we transfer
the milestones from the OCT frame to the world frame (PW1 ,
PW2 and PW3 ). For each milestone on the suturing path, we
use the relationship[

PW1 PW2 PW3
1 1 1

]
= TEETN

[
PN1 PN2 PN3
1 1 1

]
. (3)

Finally, we use the Klamp’t [7] numerical inverse kinematics
solver to compute the robot configuration from the TEE

of every milestone. For the first IK solution, the solver
is seeded with the robot’s current configuration. For the
remainder, the solver’s is seeded from the last solution.
Collision detection is used to prevent the robot from colliding
with the environment or itself.

IV. EXPERIMENTS AND RESULTS

A. Parameter Selection and Calibration Results

We evaluated our system in two materials: a silicone
rubber tissue phantom (Your Design Medical; Brooklyn, NY)
and porcine skin. Because the scope of this paper does not
include needle grasping, we stopped the robot after each full
insertion to detach the needle and pull the attached suture
through the tract. This allows the tissue to relax to its rest
deformation, although the tissue is not perfectly elastic and
therefore may not relax completely. The suture path is then
imaged using the OCT system.

We performed 25 suturing needle insertions (12 for tissue
phantom and 13 for porcine skin). We adjusted the OCT
scanner before each attempt to ensure that the wound was
within its the field of view. Furthermore, in real surgical
settings, the needle will be grasped at a slightly different
location every time. To simulate errors caused by grasping,
we grasped the needle at the different location on the jaw
for each insertion, such that transformations TOCT and TN
changed. Notably, the wound shape varied across all 25
insertions. The wound width was 2.493 mm – 5.110 mm
whereas the wound depth was 1.188 mm – 3.082 mm. The
tissue surface was also not necessarily level with tilts of ±9◦

to simulate the real wound environment.
For calibration, we sampled 9 robot configurations to

estimate the TOCT and TN . With these 9 robot configurations,
the suturing needle was uniformly sampled in the OCT space
with different positions and orientations, and we estimated
TOCT and TN . Comparing the difference between T−1

ICPi
and

T−1
OCT TEEiTN for our 25 groups of data, the translation RMSE

Fig. 9. Snapshots of the needle insertion process, showing the OCT B-scan
data and the planned path for the needle, showing planned arcs for the inside
face (red), outside face (blue), and needle tip (green, almost overlapping with
the blue line). The yellow line is the wound top layer in the undeformed
state. In (a) – (b), the path is executed without the tissue phantom present,
showing high accuracy of the calibration process. In (c) – (d), the needle
is inserted into the tissue phantom, showing significant deformation. Note
that OCT cannot see the needle outside face path because the laser cannot
penetrate metal. The needle shadows the tissue, and also appears distorted
in the tissue due to refraction.



Fig. 10. The method used for suture grading. The tissue shape is after
the needle pulled out, and the green line is the AMAL result before needle
insertions. k) right bite point error. m) right exit point error. i) left bite point
error. j) the left exit point error.

Fig. 11. OCT B-scan images of the sutures after the needle has passed
through the tissue. (a) is in the tissue phantom, and (b) is porcine skin. The
planned needle paths are shown for the needle inside face (red), outside
face (blue), and suture top layer (yellow).

was 0.075 mm – 0.227 mm, and the rotation RMSE was
0.014 rad – 0.090 rad.

To empirically tune and evaluate wound analysis, we
gathered 590 B-scans of different size wounds, and compared
our method against manual grading as ground truth. With
the AMAL [11] parameter x = 1.02, AMAL detected all
wound top layers successfully. The denoising Gaussian ker-
nel standard deviation is set to be 8 pixels, and the gradient
threshold to detect the start point of the wound and the
end point of the wound is chosen to be −1.5 and +1.5,
respectively. With these values, our methods successfully
detected 582 wounds and keypoints as compared to manual
grading (98.6% success rate).

B. Needle Insertion Results

We first executed suturing paths in free space to vi-
sualize whether the needle follows our planned path. A
representative result is shown in Fig. 9(a)-(b), demonstrating
close agreement. Next, we performed insertions in the tissue
phantom (Fig. 9(c)-(d)). Because it is difficult to observe the
suture path with OCT when the suture passes far below the
tissue surface, we graded the accuracy of insertions by cal-
culating the distance between the planned and actual points
where the suture intersects the tissue (Fig. 10). However,
due to tissue deformation, it is difficult to judge whether the
needle bites and exits at our planned points. Therefore, we
manually removed the needle from the needle driver, and
pulled the suture through the wound. Because the friction
from the needle is removed and the suture is loose, the wound
will approximately return to its resting shape (Fig. 11). By
inspection, the sutures’ paths are in the planned boundary of
the needle. The RMSE for each of the four grading points for

TABLE I
TISSUE PHANTOMS SUTURE RMSE (MM, N = 12)

B-scan (X) A-scan (Y ) C-scan (Z) 3D

Right Bite 0.081 0.059 0.142 0.174
Right Exit 0.076 0.116 0.084 0.162
Left Bite 0.091 0.132 0.076 0.177
Left Exit 0.151 0.077 0.091 0.192

Total 0.104 0.100 0.102 0.177

TABLE II
PORCINE SKINS SUTURE RMSE (MM, N = 13)

B-scan (X) A-scan (Y ) C-scan (Z) 3D

Right Bite 0.070 0.049 0.111 0.140
Right Exit 0.104 0.139 0.076 0.190
Left Bite 0.074 0.170 0.092 0.207
Left Exit 0.269 0.097 0.107 0.305

Total 0.153 0.123 0.098 0.219

the tissue phantom and porcine skin are shown in Tables I
and II, respectively. The RMSE for each of the grading points
and overall was lower than half the width of the needle, and
0.200 mm averaged over both tissue conditions.

Our final test performed a multi-throw suturing task on
the porcine skin (Fig. 1). After each insertion, we manually
unmounted the needle from the needle driver, pulled the
suture through, and then re-mounted the needle for the next
throw. Needle calibration was performed after each throw
as usual. After three throws, we manually closed the wound
by pulling on both ends of the suture. OCT images show
good alignment of the wound boundary and no dead space.
The problem of autonomous regrasping and wound closure
in multi-throw micro-suturing is left for future work.

V. CONCLUSION

We presented a method for OCT-guided calibration and
path planning for a suturing needle to be guided au-
tonomously and accurately through soft tissue. Calibration,
wound detection, and path planning are all performed using
the input from OCT imaging. Execution performance was
graded by the observing the path followed by the suture,
demonstrating sub-millimeter errors between the planned and
executed entry and exit points, with error magnitude less than
half the width of the needle.

In the future, we hope to address some remaining issues in
our work. First, the needle calibration error is approximately
20× larger than the best-reported OCT-based calibration
results in the literature, because the curved needle and nee-
dle grasping error introduce more challenging initialization
and imaging conditions. More advanced image processing
techniques may address OCT imaging artifacts such as high-
lights, refraction, shadowing, and mirror images to perform
needle and wound tracking in real time. Solving these issues
is a prerequisite for closed-loop guidance during suturing.
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