
MagNet: Discovering Multi-agent Interaction Dynamics using Neural
Network

Priyabrata Saha, Arslan Ali, Burhan A. Mudassar, Yun Long and Saibal Mukhopadhyay

Abstract— We present the MagNet, a neural network-based
multi-agent interaction model to discover the governing dy-
namics and predict evolution of a complex multi-agent system
from observations. We formulate a multi-agent system as a
coupled non-linear network with a generic ordinary differential
equation (ODE) based state evolution, and develop a neural
network-based realization of its time-discretized model. MagNet
is trained to discover the core dynamics of a multi-agent system
from observations, and tuned on-line to learn agent-specific
parameters of the dynamics to ensure accurate prediction even
when physical or relational attributes of agents, or number of
agents change. We evaluate MagNet on a point-mass system in
two-dimensional space, Kuramoto phase synchronization dy-
namics and predator-swarm interaction dynamics demonstrat-
ing orders of magnitude improvement in prediction accuracy
over traditional deep learning models.

I. INTRODUCTION

Multi-agent systems are prevalent in both the natural world
and engineered world. Engineered distributed systems of
mobile robots, multiple sensors, unmanned aerial vehicles
etc. often take inspiration from natural multi-agent systems
like swarms, schools, flocks, and herds of social animals
or birds. Understanding the behavior of such natural or
engineered multi-agent systems from sensory observations is
a key challenge in robotics from the design and adversarial
perspective. Discovering the hidden dynamics of a multi-
agent interaction from observations will enable machines to
simulate and predict evolution of complex systems.

Research in the field of data-driven dynamics learning
can be divided into two main categories. First, one assumes
well-known equations of the physical system and estimate
their parameters based on observation data [1], [2], [3], [4].
However, many complex systems are difficult to represent
solely by a fixed model. The alternative (and arguably more
compelling) approach is to identify an approximate represen-
tation of the actual model using machine learning techniques
like regression [5] or neural networks [6], [7], [8], [9]. As an
important step in this direction, Battaglia et al. [7] presented
interaction networks (INs) to learn multi-agent interaction by
coupling machine learning with structured models. Watters
et al. [8] improved IN to learn multi-agent interactions from
visual observations. However, IN requires object relation

Authors are with School of Electrical and Computer Engineering,
Georgia Tech , Atlanta, USA. {priyabratasaha, arslanali,
burhan.mudassar, yunlong}@gatech.edu,
saibal.mukhopadhyay@ece.gatech.edu.
This material is based on work sponsored by the Army Research Office
and was accomplished under Grant Number W911NF-19-1-0447. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or the U.S. Government.

Core Wrapper

MagNet

ො𝒔1
⋮
ො𝒔𝑁

(𝑡+1)𝒔1
⋮
𝒔𝑁

(𝑡)

𝒔1
⋮
𝒔𝑁

(𝑡+1)

𝐸𝑟𝑟𝑜𝑟
> 𝐸𝑟𝑟𝑜𝑟𝑡ℎ

(a) (b)

Observed

state codes

Predicted

state codes

𝑎1

𝑎2

𝑎3

𝑎4

Fig. 1. (a): Multi-agent network with four agents. State-dynamics of each
agent is dependent on itself and other agents. (b): Training, online re-tuning
and prediction mode of MagNet. Black arrows belong to all three modes.
Red arrows are activated in training and re-tuning mode, whereas green
arrows operate only in prediction mode.

graph as an explicit input; but the relation graphs are often
unknown in a real scenario. Moreover, input state vector to
IN can include physical properties like agent’s mass which
may not be directly observable. Chang et al. [9] proposed
a similar model to predict bouncing ball dynamics. Their
model does not require object relation graph as input and
can predict mass of the involved agents; however, they did
not demonstrate its ability to predict evolution of dynamics
with pairwise interaction force among agents. Finally, these
models [7], [9] are generalized to any number of agents only
when physical properties of agents and pairwise interaction
parameters remain uniform or explicitly given as input and
do not allow online learning or re-tuning with less data
in similar scenarios with different physical properties and
different interaction parameters.

In this paper, we introduce the MagNet(Multi-agent inter-
action Network) that can discover interaction dynamics and
predict evolution of complex multi-agent system with hetero-
geneous relational attributes and physical properties solely
from observational data. The foundation of MagNet is based
on the formulation of multi-agent system as a coupled non-
linear network where agents are assumed to be connected
to each other using a generic ordinary differential equation
(ODE) based state evolution dynamics. The formulation is
inspired by a wide range of multi-agent systems ranging from
objects interacting by virtue of fundamental laws of physics
to swarm systems, opinion dynamics under social interaction
[10], [11], [12], [13]. MagNet discovers the dynamics of a
multi-agent system by learning the “customization” of the
generic ODE to minimize the error between prediction and
sensory observation. MagNet does not require relational
graph or non-observable parameters as input, rather it is
inherently capable of learning relationship among agents
from observations and due to the preceding formulation,

ar
X

iv
:2

00
1.

09
00

1v
2

 [
cs

.L
G

]
 3

 M
ar

 2
02

0

agent-specific parameters of the “customization” can be
learned online. The paper makes following key contributions
in discovering multi-agent dynamics from observations.

• We develop a neural network based realization of
the time-discretized model of the coupled non-linear
network representing multi-agent dynamics that can
be trained using stochastic gradient descent (SGD)
based backpropagation. The model is trained for single
time-step prediction; long term prediction is performed
through iterative single-step prediction.

• The MagNet supports continuous learning to accurately
predict state evolution even if the relational attributes
(e.g. interaction coefficients among agents), physical
properties of agents (e.g. mass), or the number of agents
changes, but the fundamental interaction remains the
same. This is enabled by structuring MagNet as two
back-to-back networks: a core network to model/learn
the fundamental multi-agent dynamics, and a reduced-
complexity wrapper network to learn the agent-specific
parameters. The entire network is first trained as a single
entity. During operation, core network is kept frozen,
but the wrapper network is re-tuned once the prediction
error crosses a threshold (Figure 1(b)).

• We demonstrate application of MagNet for learn-
ing/predicting dynamics from direct, as well as noisy
observations of states.

II. MAGNET: FOUNDATION AND DESIGN

In this section, we describe the design of our multi-agent
interaction network from a generalized formulation of multi-
agent dynamical systems. The foundation of our model is
built upon the following assumptions:

(i) The time evolution of states of the underlying multi-
agent dynamical system is a function of pairwise inter-
actions and self-dependence.

(ii) The core interaction law for all pairs of agents can be
represented by a common form, a linear combination
of several interaction terms of different degrees acting
simultaneously. However, the coefficients of these inter-
action terms can be different (including zeros) for each
pair of agents depending on their relational attributes
(e.g. spring constant in spring systems) or physical
properties (e.g. mass in case of n-body gravitational
system).

A. Mathematical formulation

On the basis of assumption (i), the generalized model
of multi-agent dynamical systems with N agents can be
described by the following system of ODE’s

dsi(t)

dt
= gi

(
si(t)

)
+

N∑
j=1

fij
(
si(t), sj(t)

)
∀i ∈ {1, 2, ..., N} (1)

The vector si(t) ∈ Rd denotes the state of ith agent ai at time
t. Function fij describes the interaction effect from agent j

to agent i and function gi represents the dependence on self-
state.

Considering the assumption (ii), interaction functions fij’s
can be written as

fij
(
si(t), sj(t)

)
= Iijf

(
si(t), sj(t)

)
∀(i, j) (2)

where f delineates the core interaction law and Iij’s are
agent specific kernels to actuate the effect of interaction. Iji
is not necessarily same with Iij . For example, in classical
mechanics even though the interaction forces between a pair
of objects are equal and opposite, the effect of the interaction
on an object i.e. acceleration depends on its own mass.
Analogous to equal and opposite forces, we assume the core
interaction function f is skew-symmetric in nature:

f
(
si(t), sj(t)

)
= −f

(
sj(t), si(t)

)
∀(i, j) (3)

Skew-symmetric interaction function is modeled as an odd
function of inter-agent state difference in a broad set of multi-
agent systems ranging from objects interacting by virtue
of fundamental laws of physics to swarm systems, opinion
dynamics under social interaction [10], [11], [12], [13].
Accordingly, our core interaction function f is represented
by the following equation.

f
(
si(t), sj(t)

)
= f

(
h(si(t))− h(sj(t))

)
(4)

Function h models an encoded state of agents. Definition of
f in equation 4 follows the skew-symmetric property if f is
an odd function. Considering all the aforementioned assump-
tions, our multi-agent interaction model can be delineated by
the following system of ODE’s

dsi(t)

dt
= gi

(
si(t)

)
+

N∑
j=1

Iijf
(
h(si(t))− h(sj(t))

)
∀i ∈ {1, 2, ..., N} (5)

In this work, our goal is to learn to approximate f , h, I
and g from observable states of agents. Observation data
can be contaminated with noise and differentiation of such
data, as required by equation 5, will amplify the noise and
therefore, not suitable as target variable during training. To
avoid differentiation, we convert the model as iterative update
scheme using Eular discretization:

st+1
i = sti + ∆t

(
gi
(
sti
)

+

N∑
j=1

Iijf
(
h(sti)− h(stj)

))
∀i ∈ {1, 2, ..., N} (6)

∆t is the sampling period of observation. Discretized model
enables state to state training without computing derivatives
of state vectors.

B. Implementation with neural networks

In order to learn the evolution of the dynamical sys-
tem defined in equation 6, we implement the component
functions using standard neural networks and use stochastic
gradient descent optimization to train those. Figure 2 shows

𝑎𝑎𝑗𝑗 𝒔𝒔𝑗𝑗𝑡𝑡

𝒔𝒔𝑖𝑖𝑡𝑡

−

𝐼𝐼𝑖𝑖𝑗𝑗

Σ

+

���

𝒔𝒔𝑖𝑖𝑡𝑡+1

ℎ

𝑓𝑓

𝑔𝑔𝑖𝑖

: Fully connected layers
with activation

+ ×

∆𝑡𝑡

⊙ : Dot product layers

⊙

⊙

: Wrapper network⊙

𝑎𝑎𝑖𝑖

Fig. 2. Architecture of MagNet . Layers outside the red dotted box
constitute the core network which captures the fundamental laws present in
the system. Wrapper network (layers inside the red-dotted box) learns agent
specific parameters

the neural network implementation of the discretized multi-
agent dynamical system defined in equation 6.

Each of the functions (f, g and h) is implemented with
a two-layer fully connected network. All layers of f and
h, and the first layer of g form the core of the network.
Weights of these core layers are shared across all agents and
are independent of number of agents present in the system.
Core layers are responsible for modeling the fundamental
interaction laws and self-dependence. Number of layers and
number of neurons in each layers should be customized based
on the expected degree of non-linearity in the system.

Weight matrix Iij and second layer of function g are agent-
specific and work as a wrapper network on top of the core
network. Wrapper network is responsible for the physical
properties of the agents (i.e. interaction coefficients, mass
etc.). Wrapper network scales with number of agents so as
the available data for updating corresponding weights online.
To reduce the number of weights per agents, we use dot-
product layers instead of fully-connected layers. Suppose, the
length of the feature vector out of the function f is L and
d is the length of the agent’s state code. We choose L such
that L = ld, where l is an integer. Now, each component
of length l from the feature vector contribute to only one
component of the state code. Hidden feature vector of length
L is reshaped as a matrix of size l × d before feeding it to
the dot-product layer. Operation of the dot-product layer is
defined as follows

[e1 · · · ed]� [ω1 · · · ωd] = [eT1 ω1 · · · eTd ωd],
(7)

where ek ∈ Rl and ωk ∈ Rl.
Any nonlinear activation function can be used for function

h and the first layer of function g. We use rectified linear
units (ReLUs) for these layers. In order to hold the skew-
symmetric property, an odd activation function is required for
the layers of f . We use tanh for this purpose. For the same
reason, the layers of f are implemented as linear transform
without adding any bias.

III. EXPERIMENTAL DETAILS

A. Datasets
We consider three different multi-agent dynamics to

demonstrate the performance of MagNet.

Point-mass system Agents in this dataset are objects with
different mass moving in a two-dimensional space according
to Newton’s laws of motion. We consider two types of forces
are acting simultaneously between each pair of agents. The
first interaction force is due to invisible spring between each
pair of agents. We consider different spring constants for
different pairs. The second kind of force is a repulsive inverse
square law force between each pair. This force is proportional
to the product of mass of the involved agent-pair. Pairwise-
interaction for the considered dynamics is given by the
following equation

Fij = −kij(pi − pj) +K
mimj(pi − pj)

(λ+ ‖(pi − pj)‖)3
, (8)

where pi ∈ R2 is the position of the ith agent and mi is
its mass. Fij ∈ R2 is the force agent j exerts on agent i,
kij > 0 is the spring constant for agent-pair (i, j), K > 0 is
the coefficient for repulsive force and λ > 0 is some constant
to clip the repulsive force to a finite value when two agents
are very close. We use λ = 10.

The Kuramoto model This is a well-known non-linear
dynamical model used to described the synchronization of
a set of coupled oscillators. Behavior of many biological
and chemical oscillators can be described by this model
[14]. Each oscillator tries to run independently at its own
natural frequency, while the coupling tends to synchronize it
to others. Dynamics of ith oscillator is given by

dθi
dt

= ωi +

N∑
j=1

Kij sin(θj − θi), (9)

where θi and ωi are the phase and natural frequency, respec-
tively, of the ith oscillator. N is the number of oscillators
in the system. Kij is the coupling coefficient between
oscillator-pair (i, j).

Predator-swarm interaction dynamics This dynamics is
similar to the one used to describe the behavior of prey
swarm in presence of predators [15]. Dynamics of the system
with N prey and one predator is given by the following set
of equations:

dxi

dt
=

1

N

N∑
j=1

(
xi − xj

|xi − xj |2
− a(xi − xj)

)
+ b

xi − z

|xi − z|2

dz

dt
=

c

N

N∑
j=1

xi − z

|xi − z|2
, (10)

where xi denotes the position of ith prey and z denotes the
position of the predator.

Data for all systems is generated using finite difference
method with small timestep. Sequences for training, val-
idation and testing are created by choosing initial states
randomly.

B. Implementation details

For our point-mass dataset, state code of agents is the
concatenated position and velocity components along both
dimensions (si ∈ R4). We predict the acceleration vector

of length 2 for each agent. Velocity vector for next state is
not predicted by the network directly, rather we compute it
from acceleration and current velocity. Finally, next position
is computed from the current position and predicted velocity.
Number of neurons in both layers of function h is 64. The
first layer of function f consists of 64 neurons while second
layer has 8 neurons. Therefore, the output of function f is
length 8 vector which is reshaped in to a matrix of size
4× 2 for the following dot product layer. Iij’s are matrices
of size 4× 2. First layer of functions gi’s are of size 4 and
are shared among all agents. Outputs from the first layers of
gi’s are reshaped in to matrices of size 2×2 for the following
dot product layers (one for each agent). We also add agent-
wise bias in these dot product layers. Table I shows the total
number of parameters and FLOP count of the used network
for N agents.

Same implementation is used for predator-swarm interac-
tion dynamics and the Kuramoto model except the changes
required for state code dimension. For Kuramoto model,
phase of the oscillating agents are used as the state code
(si ∈ R).

TABLE I
PARAMETER COUNT AND FLOP COUNT OF MAGNET USED IN OUR

EXPERIMENTS FOR N AGENTS

Parameter count FLOP count

Core network 9108 17880N
Wrapper network 8N2 − 2N 14N2 - 6N

C. Baseline models

We consider the following baseline models to compare
accuracy of MagNet.

Linear motion Linear motion model assumes the velocity
of the state is constant. We compute the velocity of state from
previous two timesteps and predict the next state using first
order approximation.

MLP We use a baseline MLP that takes the concatenated
state codes from all agents as input and predict the same for
next timestep. This configuration does not share any weights
among agents and therefore, is not scalable with number of
agents. For four-agent system, we use three hidden layers,
each of size 64, followed by two layers of size N×dim(si),
where dim(si) denotes the dimension of vector si. Size of
the network is chosen to have similar parameter count with
MagNet.

LSTM We use a baseline LSTM that uses state codes from
previous four timesteps to predict the next state. Similar to
baseline MLP, the LSTM model does not share any weights
among agents and therefore, is not scalable with number of
agents. For four-agent system, we use a two-layer LSTM
(each layer is of size 64). The LSTM core is preceded by
a linear layer of size 64 and is followed by a output linear
layer of size N × dim(si).

D. Training and online re-tuning

MagNet is trained or re-tuned as a single-step predictor
from current state to next state with M × L number of

observations. M denotes the number of random initial con-
ditions and L denotes the length of each sequence generated
from those initial conditions. SmoothL1-loss is used as the
objective function. State variables are standardized to have
zero mean and unit variance. We use Adam optimizer [16]
to optimize the parameters.

We consider two training scenarios for point-mass dy-
namics. In the first case, we assume perfect observation
data (no noise). The second case considers observation
data contaminated with Gaussian noise. Core network and
wrapper network are trained together with M = 50 and
L = 500. We train the model for 100 epochs starting with
an initial learning rate of 10−3 and scaled it by a factor of
0.95 after each epoch until it reaches 10−4. Differentiating
noisy position vectors of agents to compute their velocities
amplifies the noise in velocity vectors. We use total vari-
ation regularization [17] to denoise the derivatives [18] as
suggested in [5].

In online re-tuning, we cannot have multiple random initial
condition. Therefore, value of M must be equal to 1 while
value of L should be much larger (we use L = 10000) to
avoid overfitting. We start with an initial learning rate of
5× 10−4 and scaled it by a factor of 0.95 after each epoch.

For Kuramoto model, we use 8 oscillators with different
intrinsic frequencies and different pairwise coupling coeffi-
cients. We use the same training setting and same amount of
data (i.e. M = 50, L = 500) as used in point-mass dynamics.
In predator-swarm interaction, we use 20 prey in presence
of one predator and the model is trained using M = 100
and L = 300 for 100 epochs with constant learning rate of
10−4.

We considered tuning few hyperparameters like changing
the number of neurons in hidden layers in powers of 2,
learning rates in range from 5× 10−5 to 5× 10−3. Number
of neurons in hidden layers are selected such that parameter
count is not too high and accuracy is reasonable as well. We
found the chosen learning rate schedule works well towards
reaching convergence.

IV. RESULTS

All results are generated as solution to an initial value
problem i.e. evolution of the system is predicted only from
an initial observation, no intermediate observation is used.
We use mean-squared-error (MSE) between ground truth and
prediction through timesteps as metric for evaluation. Fifty
(50) test sequences are used to generate the MSE plots with
errorbars showing 95% confidence intervals. Visual evolution
of ground truth and prediction are shown in Figure 3 and
Figure 4.

A. Learning and prediction from direct and clean observa-
tions

We consider four (4) interacting objects with different
mass and different pairwise spring constants for point-mass
system. MagNet can predict the evolution of state codes

Code and demo videos are available at https://github.com/sahapriyabrata/MagNet

https://github.com/sahapriyabrata/MagNet

G
ro

u
n

d
 T

ru
th

P
re

d
ic

ti
o

n

(a) (b) (c)

Fig. 3. Visualization of evolution up to 200 timesteps. (a) Trajectory plot of point-mass system with four (4) agents. Widths of the trajectories are
proportional to the masses of corresponding agents. Predictions are from network trained from scratch. (b): Trajectory plot of point-mass system with eight
(8) agents. Predictions are from re-tuned wrapper network preceded by frozen core network trained with 4 agents. (c): Trajectory plot of predator-swarm
system with twenty (20) prey and one (1) predator. Red wider trajectory correspond to the predator. Predictions are from network trained from scratch.

Timesteps

P
h
as

e

P
h
as

e

6

5

4

3

2

1

0
0 50 100 150 200

Timesteps
0 50 100 150 200

6

5

4

3

2

1

0

Ground Truth Prediction

Fig. 4. Visualization of evolution up to 200 timesteps. Phases (0 to 2π)
over timesteps for eight (8) oscillating agents abide by the Kuramoto model.
Predictions are from network trained from scratch.

for a long period of time with negligible error if it is trained
with perfect observations (no noise). Figure 5 shows the
MSE between ground truth and prediction over timesteps
for MagNet along with all baselines for point-mass system
and Kuramoto model. As shown in Figure 5(a), even if
the baseline MLP is trained with more data (we use 10X
more data and 10X more number of steps than MagNet),
the MSE is higher than MagNet. Note, the baseline MLP
is not scalable with number of agents; hence, data require-
ment would increase exponentially with number of agents.
Accordingly, training MLP or LSTM baseline for predator-
swarm dynamics with twenty-one (21) agents is intractable
and hence, is not considered for comparison.

B. Comparison with interaction network [7]

IN [7] requires physical and relational attributes of the
agents as input along with their observable states. Therefore,
IN is trained and evaluated assuming the physical and rela-
tional attributes of agents are known. In contrast, our model

is trained and evaluated using only the observable states. Size
of the implemented IN is chosen to have similar parameter
count with our model. Figure 6 shows the performance
comparison between our model an IN. Our model shows
comparable performance (better for point-mass system) with
IN, which has access to physical and relational attributes of
agents.

C. Learning and prediction from noisy observations

While evaluating the model on test sequences, we use
initial 16 observations to denoise the derivatives (velocities)
using total-variation regularization [17], [18]. Figure 7(a)
shows the MSE over timesteps for the model trained with
noisy observation. As expected, when dynamics is learned
from noisy observations, accurate prediction window be-
comes shorter than that of with perfect observation. However,
we observe that MSE of the network trained with noisy
observation remains within 10X margin of the network
trained with clean observation up to 100 timesteps.

D. Performance of re-tuning

In this experiment, we increase the number of agents
for the point-mass system to eight (8) and change spring
constants between agent-pairs and masses of the agents.
We seek to predict evolution of this eight-agent system
using the MagNet trained with four (4) agents. Agent-wise
wrapper-weights are initialized with the average values of
pre-trained wrapper-weights across all agents. Figure 7(b)
shows that the prediction error increases with time and once
crosses a threshold, re-tuning of the wrapper (core is kept
frozen) starts. We observe that after re-tuning with 10000
observations, prediction error for the eight-agent system

(a)

M
S

E
 (

lo
g

 s
ca

le
)

Timesteps

(b)

M
S

E
 (

lo
g

 s
ca

le
)

Timesteps

Fig. 5. (a): MSE between ground truth positions and predicted positions of agents of considered point-mass system. ‘MLP’ denotes MLP trained with
same amount of data as MagNet, whereas ‘MLP 10X data’ denotes MLP trained with 10X more data and 10X more steps. (b): MSE between ground truth
phases and predicted phases of oscillating agents in Kuramoto model.

M
S

E
 (

lo
g

 s
ca

le
)

Timesteps

M
S

E
 (

lo
g

 s
ca

le
)

M
S

E
 (

lo
g

 s
ca

le
)

Timesteps Timesteps

M
S

E
 (

lo
g

 s
ca

le
)

(a) (b) (c)

Fig. 6. Comparison with IN, which takes physical and relational attributes as input. (a): MSE between ground truth positions and predicted positions of
agents of considered point-mass system. (b): MSE between ground truth phases and predicted phases of oscillating agents in Kuramoto model. (c): MSE
between ground truth positions and predicted positions of agents of considered predator-swarm system.

M
SE

 (l
og

 sc
al

e)

Timesteps
0 10 20 30 40 50 60 70 80 90 100

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Prediction with model trained with clean data

Prediction with model trained with noisy data

Noisy observation

(a)

M
SE

 (l
og

 sc
al

e)

Timesteps
(b)

0 20 40 60 80 100 120 140 160 180 200
10 -8

10 -6

10 -4

10 -2

10 0

10 2

before re-tuning

after-retuning

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 > 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡

Re-tuning

Epochs

Sm
oo

th
L1

-lo
ss

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
10 -3

re-tuning loss

0 40 ⋯ ≈ ⋯ 10000 10100

Fig. 7. (a): MSE with ground truth positions for MagNet trained with noisy observation of point-mass system. (b): MSE before and after re-tuning in a
scenario with different number of agents from training scenarios. Re-tuning loss is shown in the inset.

reduces (Figure 7(b)). This experiment demonstrates the gen-
eralization capability of the core network within MagNet .

V. CONCLUSION

We introduced the MagNet to discover multi-agent dy-
namics from sensory observations. We showed that the

proposed model can identify the inherent dynamics and
predict its evolution. We observe that a major advantage
of MagNet over state-of-the-art is that it can be re-tuned
online if the relation parameters or physical properties of
agents get altered or the number of agents is changed,
but the fundamental laws remain same. This capability

makes MagNet employable in real scenarios where these
relation parameters and physical properties often change and
may not be directly observable.

One limitation of the current model is that it weights
different interaction terms in a linear way with relational
attributes or physical parameters. This assumption may not
be true in many cases. In future, we would to like to
address this shortcoming. Moreover, we plan to extend Mag-
Net such that on-line tuning can be performed to reduce
error even when the core dynamics is changed over time.
Exploring MagNet to learn dynamics of agents controlled
by external input to achieve some goals will be an important
extension as well.

REFERENCES

[1] M. Salzmann and R. Urtasun, “Physically-based motion models for
3d tracking: A convex formulation,” in 2011 International Conference
on Computer Vision. IEEE, 2011, pp. 2064–2071.

[2] M. A. Brubaker, L. Sigal, and D. J. Fleet, “Estimating contact
dynamics,” in 2009 IEEE 12th International Conference on Computer
Vision. IEEE, 2009, pp. 2389–2396.

[3] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:
Perceiving physical object properties by integrating a physics engine
with deep learning,” in Advances in neural information processing
systems, 2015, pp. 127–135.

[4] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman,
“Physics 101: Learning physical object properties from unlabeled
videos.” in BMVC, vol. 2, no. 6, 2016, p. 7.

[5] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[6] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi, “Newto-
nian scene understanding: Unfolding the dynamics of objects in static
images,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 3521–3529.

[7] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and
physics,” in Advances in neural information processing systems, 2016,
pp. 4502–4510.

[8] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tac-
chetti, “Visual interaction networks: Learning a physics simulator from
video,” in Advances in neural information processing systems, 2017,
pp. 4539–4547.

[9] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum, “A
compositional object-based approach to learning physical dynamics,”
in ICLR, 2017.

[10] I. Couzin, J. Krause, N. Franks, and S. A Levin, “Effective leadership
and decision-making in animal groups on the move,” Nature, vol. 433,
pp. 513–6, 03 2005.

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, Jan 2007.

[12] M. H. Degroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[13] W. Yu, G. Chen, M. Cao, J. Lü, and H. Zhang, “Swarming behaviors
in multi-agent systems with nonlinear dynamics,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science, vol. 23, no. 4, p. 043118,
2013.

[14] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler,
“The kuramoto model: A simple paradigm for synchronization phe-
nomena,” Reviews of modern physics, vol. 77, no. 1, p. 137, 2005.

[15] Y. Chen and T. Kolokolnikov, “A minimal model of predator–swarm
interactions,” Journal of The Royal Society Interface, vol. 11, no. 94,
p. 20131208, 2014.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[17] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phenomena,
vol. 60, no. 1, pp. 259 – 268, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016727899290242F

[18] R. Chartrand, “Numerical differentiation of noisy, nonsmooth data,”
ISRN Applied Mathematics, 2011.

http://www.sciencedirect.com/science/article/pii/016727899290242F

	I Introduction
	II MagNet: Foundation and Design
	II-A Mathematical formulation
	II-B Implementation with neural networks

	III Experimental Details
	III-A Datasets
	III-B Implementation details
	III-C Baseline models
	III-D Training and online re-tuning

	IV Results
	IV-A Learning and prediction from direct and clean observations
	IV-B Comparison with interaction network battaglia2016interaction
	IV-C Learning and prediction from noisy observations
	IV-D Performance of re-tuning

	V Conclusion
	References

