
Hyperproperties for Robotics: Planning via HyperLTL

Yu Wang, Siddhartha Nalluri, and Miroslav Pajic

Abstract— There is a growing interest on formal methods-
based robotic planning for temporal logic objectives. In this
work, we extend the scope of existing synthesis methods to
hyper-temporal logics. We are motivated by the fact that im-
portant planning objectives, such as optimality, robustness, and
privacy, (maybe implicitly) involve the interrelation between
multiple paths. Such objectives are thus hyperproperties, and
cannot be expressed with usual temporal logics like the linear
temporal logic (LTL). We show that such hyperproperties
can be expressed by HyperLTL, an extension of LTL to
multiple paths. To handle the complexity of planning with
HyperLTL specifications, we introduce a symbolic approach for
synthesizing planning strategies on discrete transition systems.
Our planning method is evaluated on several case studies.

I. INTRODUCTION

The past decade has seen an increasing interest on planning
problems from temporal logic objectives (e.g., [1]–[3]).
Using temporal logics, such as the linear temporal logic
(LTL) [4]–[6], a wide class of objectives beyond reachability
can be defined; these include infinite recurrence, complex
dependency of many tasks [7], and time-dependent formations
of multiple robotics [8]–[10].

However, temporal logics commonly used in robotics
(e.g., for planning) can only specify properties for individual
executions (i.e., paths). This effectively prevents them from
capturing important planning objectives, such as optimality,
robustness, and privacy/opacity, which involve inter-relations
between multiple paths. For example, to (directly) specify an
optimal strategy for a temporal logic objective, we should ask
for the existence of a path π such that all other paths π′ are no
better than π. Previous works on optimal or robust planning
with temporal logic objectives rely on converting these
objectives into cost functions [11]–[13], or into games [14].
Such conversions are specific to individual problems.

In this paper, we show that such objectives, which directly
specify the relations of multiple paths (or computation trees)
and are commonly referred to as hyperproperties [15], can
be generally and formally specified by hyper-temporal logics,
such as HyperLTL [16].1 HyperLTL extends LTL with a set
of path variables to denote individual paths, and associates
each atomic proposition with a path variable to indicate on
which path it should hold. HyperLTL also allows for the

This work is sponsored in part by the ONR under agreements N00014-
17-1-2504 and N00014-20-1-2745, AFOSR under award number FA9550-
19-1-0169, as well as the NSF CNS-1652544 award.

Yu Wang and Miroslav Pajic are with the Department of Electrical
and Computer Engineering, Duke University, Durham, NC 27708, USA,
{yu.wang094, miroslav.pajic}@duke.edu. Siddhartha
Nalluri is with the Computer Science Department, Duke University, Durham,
NC 27708, USA, siddhartha.nalluri@duke.edu.

1It is worth noting that non-hyper temporal logics, such as the Computation
Tree Logic (CTL), cannot express such relations between multiple non-nested
computation trees; HyperLTL subsumes CTL [15].

use of “exists” ∃ and “for all” ∀ quantifications of the path
variables; this enables specifying relevant planning objectives
such as the described planning optimality requirement that
employs ∃π∀π′ quantifiers.

We also propose a symbolic method to synthesize planning
strategies with performance (e.g., optimality, robustness, and
privacy) guarantees specified by HyperLTL. Specifically, we
study the planning from HyperLTL objectives on a commonly
used modeling formalism – discrete transition systems (DTSs),
where the states are discrete and the transitions are driven by
actions. This model can be viewed as a high-level discrete
abstraction of the full workspace [8], [9], that is obtained
by the low-level explorations, like RRT or probabilistic
roadmaps [17], or from the abstraction and simulation [1].

For finite-state discrete models like finite-state DTS,
feasible strategies for temporal logic objectives, such as
LTL, can be synthesized using automata-theoretic model
checking (e.g., [1], [18]–[20]). Specifically, the objective
is first converted to an automaton, and then the strategy-
search is performed on the product of the automaton and the
discrete system model. However, this approach is extremely
computationally intensive for HyperLTL objectives, since
the possible quantifier alternation, e.g., ∃π∀π′ for optimality
objectives, dramatically increases the state of corresponding
automata. In addition, to keep track of the n paths involved in
ϕ (e.g., n = 2 for the optimality objectives since they employ
two path variables π and π′, as we introduce in (1)), the
n-fold self-product of the discrete system model is needed.
As a result, in the formal methods community, automata-
theoretic model checking of HyperLTL is mainly confined to
quantifier-alternation-free objectives [21].

Consequently, to mitigate the state explosion for HyperLTL
objectives in robotic planning, we adopt a symbolic approach
for synthesizing strategies via SMT solvers [22], [23]. Specif-
ically, the dynamics of the DTS model is converted into a set
of logic formulas, and feasible strategies should satisfy the
conjunction of the HyperLTL objectives and model dynamics.
This conjunction is a first-order logic formula whose solution
can be obtained by using off-the-shelf SMT solvers such as
Z3 [24], Yices [25] or CVC4 [26]. As with previous work
on symbolic synthesis from regular LTL (e.g., [7], [23], [27],
[28]), we focus on HyperLTL objectives with a bounded time
horizon T , which we referred to as HyperLTLf.

Compared to the automata-theoretic approach, the symbolic
synthesis method yields a more compact representation of the
regular planning models; thus, it reduces the synthesis com-
plexity by avoiding constructing the n-fold self product [7],
[27], and can even handle planning on DTSs with infinite
states [28], [29]. We show in case studies that our symbolic
synthesis approach effectively handles planning problems

ar
X

iv
:1

91
1.

11
87

0v
3

 [
cs

.R
O

]
 2

8
A

pr
 2

02
0

with hyper temporal logic objectives, deriving strategies with
strong robustness, privacy/opacity, and optimality guarantees.

This paper is organized as follows. After preliminaries
(Section II), we show the need for the use of hyperproperties
in path planning (Section III). We formulate our planning
problem on DTSs in Section IV, and show how HyperLTL ob-
jectives should be used to ensure robustness, privacy/opacity,
and optimality of derived plans (Section V). We introduce
a symbolic synthesis method for the HyperLTL objectives
on the DTSs in Section VI, evaluate it on case studies in
Section VII, and finally conclude this work in Section VIII.

II. PRELIMINARIES

Notation: The sets of integers and real numbers are
denoted by N and R. The phrase “if and only if” is abbreviated
as “iff”. For n ∈ N, let N∞ = N∪{∞} and [n] = {1, . . . , n}.
The cardinality and the power set of a set are denoted by | · |
and 2·, and ∅ denotes the empty set.

Linear Temporal Logic (LTL): Let AP be a set of
properties (atomic propositions) related to the planning
objective. Formally, an LTL objective (i.e., specification) is
constructed inductively by (the syntax)

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ© ϕ | ϕ UT ϕ,
where T ∈ N∞ and a ∈ AP; note that using “bounded until”
UT instead of the common “until” U is equivalent in defining
LTL [30]. For a path π : N → 2AP, where π(t) is the set
of properties satisfied at time t by π, satisfaction of an LTL
formula on path π is checked recursively via (the semantics)

π |= a ⇔ a ∈ π(0)
π |= ¬ϕ ⇔ π 6|= ϕ
π |= ϕ1 ∧ ϕ2 ⇔ π |= ϕ1 and π |= ϕ2

π |=©ϕ ⇔ π(1) |= ϕ
π |= ϕ1 UT ϕ2 ⇔ ∃t ≤ T.

(
π(t) |= ϕ2 and

(∀t′ < t. π(t′) |= ϕ1)
)

where π(t)(·) = π(· + t) is the t-time shift. Roughly, ©a
means a holds next, and a1 UT a2 means a1 holds until a2
holds before T . Other common logic operators are derived by

Or: ϕ ∨ ϕ′ ≡ ¬(¬ϕ ∧ ¬ϕ′), Implies: ϕ⇒ ϕ′ ≡ ¬ϕ ∨ ϕ′

Finally: 3Tϕ ≡ T UT ϕ, Always: 2Tϕ ≡ ¬3T¬ϕ.
We also denote U∞, 3∞, 2∞ by U , 3, 2, respectively.

A large class of planning objectives can be expressed with
LTL. For example, “visiting a1 and then a2” can be expressed
by 3(a1∧3a2); and “always returning to the point a1 within
time T after leaving it” can be captured as 2(a1 ⇒ 3T a1).

III. HYPERLOGICS FOR ROBOTICS PLANING

Although non-hyper temporal logics, such as LTL, are
very expressive in temporal relations, they can only do so
for individual paths; for example, whether a path π1 in
Figure 1 reaches the goal before hitting an obstacle. However,
many important planning objectives involve the interrelation
between multiple paths, and thus cannot be expressed by
these non-hyper temporal logics. On the other hand, these
objectives can be expressed in hyper-temporal logics, where
explicit quantifications over different paths are allowed. In
this section, we show the need for the use of hyperproperties
in robotic planning on several motivating examples.

π1

π2

Start

GoalObstacle

Region A

Region B

Region C

Fig. 1. The use of hyperproperties in planning.

Optimality of Synthesized Plans: A well-known short-
coming of LTL-based planning is the lack of support for
optimality. For example, the objectives such as “reaching the
goal with the shortest time” cannot be expressed in LTL,
since formally defining such objectives implicitly involves
comparison of the optimal path and other paths. On the
other hand, with explicit path quantifications, the objective
is achieved by finding a path π such that

∃π.
(

(π reaches goal)∧(
∀π′.

(
(π′ reaches goal)⇒ (π reaches goal)

))
.

(1)

Robustness of Synthesized Plans: A major concern for
open-loop planning is robustness of the derived strategy.
Specifically, (i) the assumed initial position may be inaccurate;
or (ii) an action may not be executed correctly due to
faults or attacks. Yet, in many cases, the knowledge of
the possible forms of inaccuracy, faults or attacks are
available. Hyper-temporal logics (e.g., HyperLTL) allow
for incorporating this knowledge into the design objectives
to preemptively synthesize strategies that are immune to
those adversarial/environmental factors. For example, a robust
strategy under disturbance may be specified by

∃π∀π′.
(
π′ is derived by disturbing π

)
∧
(
π and π′ reach goal

)
.

(2)

Planning with Privacy/Opacity: A problem that has
recently attracted significant attentions (e.g., [31]–[33]) is
ensuring location privacy in mobile navigation – i.e., keeping
the individual locations private, even when they are partially
shared to achieve coordinated planning (e.g., coverage).
Opacity ensures location privacy by requiring that for a
planned path, there exists (at least) another different path,
such that the shared partial location information is identical
for the two paths; hence, they are anonymized. An example is
illustrated in Figure 1, where a path is partially observed by
whether the robot is in Region A, B, or C or it reaches the goal.
Synthesizing an opaque planning strategy to reach the goal
implies finding a path π (or equivalently π′) such that

∃π∃π′.
(
π and π′ are different paths

)
∧
(
π and π′ give identical observation

)
∧
(
π and π′ reach goal

)
.

(3)

The paths π and π′ in Figure 1 are examples of privacy-
preserving paths, as they go through different regions, finally
reaching the goal in the same pace; thus are indistinguishable.

IV. PLANNING ON DISCRETE TRANSITION SYSTEMS

We consider the planning on a discrete domain, which can
be either the full model of a complex workspace or its high-
level abstraction derived from either simulation relation [34]
or random exploration [17]. On the domain, the robot motion
is modeled by a DTS whose transitions are labeled by actions.

Definition 1 (DTS). Given a set of atomic propositions AP
a DTS is a tuple M = (SM, AM, TM, LM) where
• SM is a set of states;
• AM is a set of actions;
• TM : SM × AM → SM is a partial transition function;
• LM : SM → 2AP is a labeling function determining the

truth value of the atomic propositions on the states.
The subscript ·M is omitted when it is clear from the context.

A (open-loop) planning strategy str : N → A on a DTS
M is given by an infinite sequence of action; clearly, for a
finite time horizon planning problem, only a finite prefix of
str takes effect. Given an initial state s0 ∈ S of the DTS,
under the strategy str, a path π : N→ S can be generated,
if π(t+ 1) = T(π(t), str(t)) for all t ∈ N. The planning task
is then finding a path π and corresponding strategy str such
that objective ϕ is satisfied.

DTS Augmentation: The DTSM from Definition 1 does
not allow direct reference to the actions AM using the atomic
propositions, which are only associated to the states by LM.
To formalize our discussion, we introduce a mapping fromM
to an augmented DTS A by encoding into states the actions
taken previously.2 The procedure is similar to the conversion
from Moore machines into finite state automata.

Definition 2 (Augmented DTS). DTS A = (SA, AA, TA, LA)
is an augmentation to a DTS M = (SM, AM, TM, LM), if
• AA = AM and {ε} × SM ⊆ SA ⊆ (AM ∪ {ε}) × SM,

where ε is the empty sequence;
• (aM, sM) ∈ SA iff there exists s′M ∈ SM such that
TM(s′M, aM) = sM;

• for any aM ∈ AM,
(
(·, s′M), aM, (aM, sM)

)
∈ TA iff

TM(s′M, aM) = sM;
• for any sA = (aM, sM) ∈ SA, LA(sA) = LM(sM) ∪
{aM, sM};

For example, the DTS M in Figure 2 is augmented to the
DTS A in Figure 4, where the actions L and R represent
moving left and right. Following Definition 2, there is a
correspondence between the paths of a DTS M and its
augmented DTS A, as formalized below.

Lemma 1. Let πM = sM(0)sM(1) . . . be a path of a
DTS M under the strategy str = aM(0)aM(1) Then
πA = (ε, sM(0))(aM(0), sM(1)) . . . ⊆ SA is a path of the
equivalent augmented DTS A of M; and vice versa.

From Definition 2, the states and actions of the initial DTS
M are included in the labels of the augmented DTS A. Thus,
planning on a DTS M with objectives specified over both
its states and actions, can be mapped into planning on the

2Encoding the next action could incur unnecessary nondeterminism.

augmented DTS A with objectives specified only over states,
which can then be formally defined through the labels.

For quantifier-alternation-free hyper temporal objectives, a
strategy can be synthesized by feeding the augmented DTS
and the objective solely over states to an automata-based
model checker (e.g., SPIN [35], PRISM [36]) with only
a moderate modification (see [16] for details). For hyper
objectives with alternating quantifiers, automata-based model
checking is computational challenging. Hence, in this work,
we use a symbolic model checking approach for the synthesis.

V. PLANNING FROM HYPERLTL SPECIFICATIONS

To formally express hyperproperties-based planning ob-
jectives, in this section, we describe HyperLTL [16], which
can be viewed as an extension of LTL to multiple paths. We
then show how HyperLTL can be used for planning with
hyper-objectives, such as optimality, robustness and privacy.

A. HyperLTL Syntax
HyperLTL enables reasoning about the interrelation of mul-

tiple paths by introducing a set of path variables Π =
{π1, π2, . . .}, where each path variable represents an individ-
ual path. The atomic propositions are of the form aπ , where
the meaning of a ∈ AP is similar to LTL, and the superscript
π indicates that a should be checked on the path π. These
atomic propositions aπ are concatenated by logic operators
(e.g., ¬, ∧, © and UT) as in LTL. Finally, all the path
variables in the objectives are quantified by ∃ or ∀. Formally,
HyperLTL objectives are defined inductively by the syntax:

ψ ::= ∀π. ψ | ∃π. ψ | ϕ (4)
ϕ ::= aπ | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕ UT ϕ (5)

where T ∈ N∞, a ∈ AP, and π ∈ Π. Other common logic
operators are derived in the same way as in Section II.

B. HyperLTL Semantics
As a HyperLTL objective may contain multiple path vari-

ables, its satisfaction involves assigning concrete (infinite)
paths to all these path variables. Therefore, we define
V : Π → (2AP)ω as an assignment for all possible path
variables. The satisfaction relation for the HyperLTL path
formulas is then defined for V by:

V |= aπ ⇔ a ∈ V (π)(0)
V |= ¬ϕ ⇔ V 6|= ϕ
V |= ϕ1 ∧ ϕ2 ⇔ V |= ϕ1 and V |= ϕ2

V |=©ϕ ⇔ V (1) |= ϕ
V |= ϕ1 UT ϕ2 ⇔ ∃t ≤ T.

(
V (t) |= ϕ2 and

(∀t′ < t. V (t′) |= ϕ1)
)

V |= ∃π. ψ ⇔ there exists σ ∈ (2AP)ω,
such that V [π 7→ σ] |= ψ

V |= ∀π. ψ ⇔ for all σ ∈ (2AP)ω,
V [π 7→ σ] |= ψ holds

where T ∈ N∞ is a time horizon, and V (t) is the t-shift of
the assignment V , defined by

(
V (t)(π)

)
= (V (π))(t) for all

path variables π ∈ Π. Other logic operators, like ∨, ⇒, 2T ,
3T , U , 3 and 2 are defined as for the LTL in Section II.

s1 s2 s3
R R

L L

Fig. 2. Example DTS

π1
a1 ...

a1 ...

π2 ...
a2 ...

Fig. 3. Illustration for
semantics of aπ1

1 U aπ2
2 .

(ε, s1)

(ε, s2)

(ε, s3)

(L, s1)

(R, s2)

(L, s2)

(R, s3)

R

R

L

L

R

R

R

L

L

L

Fig. 4. Augmented DTS

HyperLTL subsumes LTL: Any LTL objective can be
expressed in HyperLTL. For example, (A, s0) |= ϕ for an LTL
objective ϕ on a augmented DTS A with the initial state s0,
is expressed in HyperLTL by V |= ϕπ , where V (π) gives the
path starting from s0 of A, and ϕπ means adding superscript
π to all atomic propositions in π.

HyperLTL is strictly more expressive than LTL: Al-
though the meaning of the logic operators in HyperLTL are
similar to those in LTL, the “until” U (and the “bounded
until” UT) in HyperLTL can be used between different paths.
For example, HyperLTL allows aπ1

1 U a
π2
2 , meaning a1 should

hold on π1 until a2 should hold on π2. The satisfaction of
aπ1
1 U a

π2
2 for the two paths π1 and π2 is illustrated in Figure 3.

Also, HyperLTL allows alternating path quantifiers, like
∃π1∀π2. aπ1

1 U aπ2
2 , which means that we look for a path

π1 such that for any path π2 (possibly different from π1),
the objective aπ1

1 U aπ2
2 should be satisfied. These “until

among multiple paths” and “exists such that for all” cannot
be expressed by LTL; thus, HyperLTL strictly subsumes LTL.
C. HyperLTLf

Most planning problems focus on finding a finite path,
while the semantics of HyperLTL is defined for infinite paths.
We note that the semantics of HyperLTL can be adapted to
finite paths to derive HyperLTLf in the same way as adapting
LTL to LTLf [7]. Generally, HyperLTLf can be viewed as the
finite-time fragment of HyperLTL. Specifically, each finite
path π can be converted into an infinite path π′ by repeating
the last entry. We note that the semantics of HyperLTLf on
the finite paths π agrees with the semantics of HyperLTL on
the infinite paths π′. In Section VI, we introduce a symbolic
synthesis method for handling the HyperLTLf objectives.

D. Applications of HyperLTL for Planning
We now show how HyperLTL (and HyperLTLf) can be used

to formally express planning objectives with various types
of robustness, optimality and privacy properties discussed
in Section III. As a running example, consider the inner
navigation on a map of 3 × 2 rooms (Figure 5) where any
two adjacent rooms are connected, s0 is the start, and the
goal is to reach either s4 or s5; a feasible path is shown with
a thick solid line. The problem can be modeled by the DTS in
Figure 6, where each state represents a room and the actions
L, R, U and D denote moving left, right, up and down.

1) Optimality: LTL objectives cannot specify optimal
strategies, such as shortest or longest paths, as these implicitly
involve comparison between multiple paths. For example, a
path π2 reaches a goal set g with the shortest time, if it

s0 s1 s2

s3 s4 s5

start

goal

Fig. 5. Example workspace

s0 s1 s2

s3 s4 s5

R R

R R

L L

L L
U U UD D D

Fig. 6. DTS model

reaches g before any other path π1 HyperLTL can specify
this property by 3(gπ2 ⇒ 3gπ1). Thus, the objective of
synthesizing a strategy for reaching g from an initial state s0
the shortest path is given by

∃π2∀π1.
(
s0
π1 ∧ s0π2

)
∧ (3gπ2)∧

(
3(gπ2 ⇒ 3gπ1)

)
; (6)

and the objective for the longest path is captured by

∃π2∀π1.
(
s0
π1 ∧ s0π2

)
∧
(
3(gπ1 ⇒ 3gπ2)

)
. (7)

Note that assuming the paths are no longer than some T ∈
N∞, specifications (6) and (7) can be equivalently expressed
by replacing the “unbounded” 3 with the “bounded” 3T . In
Figure 5, the path π2 in solid line satisfies the HyperLTL
objective (6) hence, is the shortest path.

2) Robustness: HyperLTL enables capturing requirements
for synthesizing a planning strategy that, with its initial objec-
tives achieved, is also robust to various types of uncertainties,
and even faults and adversarial factors. Generally, let ϕ be
an LTL objective to be robustly satisfied, and clss0(π1, π2)
and clsA(π1, π2) be notions of “closeness” of the initial states
and actions. Robust planning is defined by an objective that
there exists a path π1 such that, for any other path π2 close
to π1, the objective ϕ should still be satisfied:

∃π1∀π2. (clss0(π1, π2) ∧ clsA(π1, π2))⇒
(
ϕπ1∧ϕπ2

)
, (8)

where ϕπ is derived by replacing all the atomic propositions a
in ϕ by aπ . Depending on the different sources of uncertainty,
we highlight the following notions of robustness.
• Initial-state robustness when the uncertainty comes not
fully knowing the initial state – i.e, from replacing a
predefined initial state s0 to an arbitrary state from a set
S0. In this case, we capture the objective of synthesizing an
initial-state robust strategy for a time horizon T ∈ N∞ for
an LTL objective ϕ, as the HyperLTL formula

∃π1∀π2.
(
s0
π1∧Sπ2

0

)
∧(ϕπ1∧ϕπ2) ∧

(
2T (aπ1 = aπ2)

)
(9)

Note that in (9) and the formulas below, “=” is not an
arithmetic relation, but a notation simplification: aπ1 = aπ2

stands for
∧

a∈A(a
π1 ∧ aπ2).

• Action robustness when the uncertainty comes from con-
trol faults – e.g., from replacing at most one action with
another arbitrary action. Then, in HyperLTL, we capture the
objective of synthesizing an action robust strategy for a time
horizon T ∈ N∞ for an LTL objective ϕ as the objective

∃π1∀π2.
(
s0
π1 ∧ s0π2

)
∧ (ϕπ1 ∧ ϕπ2)

∧2T
(
(aπ1 6= aπ2)⇒

(
©2T (aπ1 = aπ2)

)) (10)

Robustness to other types of action uncertainties (distur-
bances), such as at most N or no N successive replacements,
can be similarly expressed in HyperLTL.

In Figure 5, the strategy (first up then right) shown by the
solid line is initial-state robust if the initial state is uncertain
between s0 and s1, because the same strategy generates
another feasible path shown in the dashed line. However, the
strategy is not action robust as the robot will not reach the
goal, if either the first or second action is replaced.

3) Privacy/Opacity: Let sec(·) be a secret and obs(·) be
a (partial) observation on a path. A opaque strategy satisfies
that there exist at least two paths with the same observation
but bearing different secrets, such that the secret of each path
cannot be identified exactly only from the observation – i.e.,

∃π1∃π2.
(
sec(π1) 6= sec(π2)

)
∧
(
obs(π1) = obs(π2)

)
. (11)

Depending on the specific forms of the secrets and observa-
tions, we consider the following notions of privacy/opacity.
• Initial-state opacity for fixed strategy [37]: Let the secret
be the initial state of the path and observe whether the robot
finally reaches a goal set g. Then, the objective of synthesizing
an initial-state opaque strategy from the initial state s0 for a
time horizon T ∈ N∞ can be captured by

∃π1∃π2.
(
s0
π1 ∧ (¬s0π2)

)
∧
(
2T (aπ1 = aπ2)

)
∧
(
(3T g

π1) ∧ (3T g
π2)
)
.

(12)

• Current-state opacity [38]: Let the secret be the synthe-
sized strategy, and the observation be the initial state and
whether the path is currently in a set o. Then, the HyperLTL
objective of synthesizing a current-state opaque strategy from
the initial state s0 for a time horizon T ∈ N∞ is captured as

∃π1∃π2.
(
s0
π1 ∧ s0π2

)
∧

∧
(
¬2T (aπ1 = aπ2)

)
∧
(
2T (oπ1 = oπ2)

)
.

(13)

The above formula requires that there are two different paths
π1 and π2, generated by two different strategies, such that
they give the same observations; and any one of these two is
a current-state opaque strategy.

In Figure 5, it is easy to check that the strategy shown by
the solid line is not initial-state opaque. However, the strategy
is current state private because of the existence of the strategy
shown by the dotted line.

VI. STRATEGY SYNTHESIS

In this section, we introduce a symbolic approach for
synthesizing strategies for HyperLTL objectives. Similarly to
existing work on symbolic planning, such as [7], [23], [27]
and references therein, we consider HyperLTL objectives
with bounded time horizons (effectively, HyperLTLf from
Section V-C) via the following three steps. First, we identify
a required time horizon for synthesizing a strategy for a
considered objective, as introduced in Section VI-A. Then,
as presented in Section VI-B, by replacing the ∃ and ∀
quantifications over paths to that over a finite sequence
of states and actions within the required horizon time, we
convert the HyperLTL objective and the constraint of the DTS
model on its path, into first-order logic formulas. Finally, the
conjunction of the two formulas representing the system
model and the synthesis objective, is solved using an off-the-
shelf SMT solver.

A. Computing Required Time Horizon

A HyperLTL objective contains multiple paths. Therefore,
unlike with LTL formulas, the required time horizon may be
different among the utilized path variables. Specifically, let
H(ϕ, π) be the required time horizon for a path variable π
in a HyperLTL objective ϕ. For an atomic proposition aπ,
the required time horizon is 0, if the path variable π appears
in it, and −∞ otherwise – i.e., formally we define

H(aπ, π′) =

{
0 if π′ = π

−∞ otherwise.
.

Furthermore, every “next” and “until” temporal operator
employed in formula ϕ changes the required time horizon as
captured by the following recursive rules

H(©ϕ, π) = H(ϕ, π) + 1,

H(ϕ1 UT ϕ2, π) = max{H(ϕ1, π), H(ϕ2, π)}+ T.

Finally, the negation and quantification for path variables do
not change the required time horizon – i.e., for any π,

H(¬ϕ, π) = H(ϕ, π),

H(ϕ1 ∧ ϕ2, π) = max{H(ϕ1, π), H(ϕ2, π)},
H(∃π′. ψ, π) = H(ψ, π), H(∀π′. ψ, π) = H(ψ, π).

In the above rules, we follow the convention that x+(−∞) =
−∞ and max{x,−∞} = x for any x ∈ N. Also, for
HyperLTLf objective ϕ, if a path variable π appears in ϕ,
then its time horizon H(ϕ, π) is finite; otherwise, H(ϕ, π) =
−∞. Finally, as an example, H(∃π2∀π1.

(
s0
π1 ∧ s0

π2
)
∧(

3T (gπ2 ⇒ 3T g
π1)
)
, π1) = H(3T (gπ2 ⇒ 3T g

π1), π1) =
H(3T g

π1 , π1) + T = 2T .

B. Model Conversion for SMT-based Synthesis

Consider a HyperLTLf objective of the general form
Q1π1 . . .Qnπn. ϕ, where Qi ∈ {∃,∀} for i ∈ [n]. For
each path variable πi, let its required time horizon in the
objective be Hi = H(ϕ, πi), where H(·, ·) is computed as
described in Section VI-A. Then, the path quantifications
over πi is equivalently represented by its initial state si(0)
and its actions ai(0) . . . ai(Hi− 1). Since the path should be
generated from a DTS M as introduced in Definition 1, it
should satisfy that

Pi =
∧

t∈[Hi]

(
si(t) = TM(si(t− 1), ai(t− 1))

)
, i ∈ [n],

(14)
where si(0) ∈ SM and ai(0), . . . , ai(Hi − 1) ∈ AM are
viewed as variables. Equivalently, this constraint (14) can be
generated from the augmented DTS A. Finally, for each i ∈
[n], the path quantification Qiπi is equivalently represented by

[Qiπi] = Qisi(0)Qiai(0) . . .Qiai(H1 − 1). (15)

Consequently, the planning strategy should satisfy the follow-
ing first-order logic formula

[Q1π1] . . . [Qnπn].
(∧

i∈[n]
Pi
)
∧ ϕ, (16)

where Pi is introduced in (14) and [Qiπi] for i ∈ [n] is
defined in (15). This formula (16) can be directly solved
by SMT solvers, such as Z3, Yices [25] or CVC4 [26].

VII. IMPLEMENTATION AND CASE STUDIES

We implemented the described symbolic synthesis method.
Specifically, the conversion from the DTS and HyperLTL
objectives to first-order logic expressions is implemented in
Python. Then, the expressions of the form (16) are solved by
Z3 SMT solver [24]. The source code is available at [39].

The implemented method is evaluated on several planning
problems of a mobile robot on grid worlds with obstacles, as
illustrated in Figures 7-11, where the black, white, red, and
green colors stand for obstacles, allowable states, start states
and goal states, respectively. At each step, the robot can move
up, down, left or right; upon hitting an obstacle, the objective
immediately fails. We focused on the HyperLTL objectives
discussed in Section V-D for a finite horizon T ∈ N.

The feasible paths on 10× 10 grids for several objectives
are illustrated in Figures 7 to 11. For the privacy/opacity
objectives from (12) and (13), let the partial observation be
the row number of the current state of the robot, depicted
by the color gradient from bottom to top. In Figure 7, the
synthesized blue path is initial-state opaque, as there exists
the red path that follows the same strategy, yields the same
observation along the path, and reaches the goal, but starts
from a different state. In Figure 8, the synthesized blue
path is current-state opaque, as there exists the red path that
starts from the same state, yields the same observation along
the path, and reaches the goal, but follows a different path.
It is worth noting that to achieve current-state opacity, the
synthesized blue path actually waits at the bottom row for two
steps to ensure another indistinguishable path can catch up.

For the robustness objectives from (9) and (10), the
synthesized blue path in Figure 9 is initial-state robust,
meaning the corresponding strategy is feasible for any initial
state in the red region. The synthesized blue path in Figure 10
is action robust, as defined in (10) – i.e., the corresponding
strategy is feasible for any single action replacement. In both
cases, the blue path avoids getting close to the obstacles, in
case for initial state inaccuracy or action errors. Finally, for
the optimality objective from (6), the synthesized blue path
in Figure 11 shows the shortest path from a red state to the
green state (another shortest path is the dotted green path).

Table I presents the times for synthesizing strategies for the
above cases, as well as problems on larger grids; all compu-
tations were done on an Intel i7-7820X CPU @3.60GHz and
RAM 32GB (only one core was used). The time horizon T
was chosen such that the goal is reachable to prevent easy fails.
As shown in the table, the strategy synthesis of the HyperLTL
objectives can be performed in a reasonable amount of time
even on nontrivial problems. As expected, there is an increase
in synthesis times as the grid size and time horizon increase,
since in the worst case, the size of the first-order logic
formula (16) to be evaluated (i.e., solved) by Z3, can grow
exponentially with the time horizon and the number of states.

VIII. CONCLUSION

In this work, we proposed the use of HyperLTL in planning
for specifying objectives involving the interrelation of multiple
paths, such as optimality, robustness and privacy/opacity,

Fig. 7. Strategy for initial-state
opacity (12) for time horizon T =
20; the synthesis time is < 0.14s.

Fig. 8. Strategy for current-state
opacity (13) for time horizon T =
20; the synthesis time is < 0.12s.

Fig. 9. Strategy for initial-state ro-
bustness (9) for time horizon T =
20; the synthesis time is < 0.24s.

Fig. 10. Strategy for action robust-
ness (10) for time horizon T = 20;
the synthesis time is < 0.15s.

Fig. 11. Synthesized strategy (in blue) for shortest path (6) for time horizon
T = 20; the synthesis time is < 0.15s.

which cannot be expressed by the widely used temporal
logics, such as linear temporal logic (LTL). We showed
how those hyperproperties can be expressed by HyperLTL,
which is an extension of LTL to multiple paths. Then, we

TABLE I
SYMBOLIC SYNTHESIS TIMES FOR HYPERLTL OBJECTIVES ON GRID

WORLDS WITH OBSTACLES. ISO, CSO, ISR, AR AND S STANDS FOR

INITIAL-STATE OPACITY, CURRENT-STATE OPACITY, INITIAL-STATE

ROBUSTNESS, ACTION ROBUSTNESS AND SHORTEST PATH, RESPECTIVELY.

Grid Obj. T Time (s) Grid Obj. T Time (s)
102 ISO 20 0.14 202 ISO 40 5.2
102 CSO 20 0.12 202 CSO 40 2.9
102 ISR 20 0.24 202 ISR 40 4.7
102 AR 20 0.15 202 AR 40 5.5
102 SP 20 0.15 202 SP 40 5.0
402 ISO 80 30 602 ISO 120 382
402 CSO 80 24 602 CSO 120 191
402 ISR 80 49 602 ISR 120 320
402 AR 80 38 602 AR 120 306
402 SP 80 172 602 SP 120 244

introduced a method for symbolic synthesis of high-level
planning strategies from such HyperLTL objectives, using
off-the-shelf tools. Finally, we evaluated the proposed method
on several planning case studies.

REFERENCES

[1] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal Logic Motion
Planning for Mobile Robots,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation. IEEE, 2005,
pp. 2020–2025.

[2] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI Communications, vol. 29,
no. 1, pp. 151–162, 2016.

[3] M. Elfar, Y. Wang, and M. Pajic, “Security-aware synthesis using
delayed-action games,” in Computer Aided Verification (CAV). Springer
International Publishing, 2019, pp. 180–199.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-Logic-
Based Reactive Mission and Motion Planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[5] S. Moarref and H. Kress-Gazit, “Reactive Synthesis for Robotic
Swarms,” in Formal Modeling and Analysis of Timed Systems. Springer
International Publishing, 2018, vol. 11022, pp. 71–87.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-Based Temporal Logic Motion Planning,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007, pp.
3116–3121.

[7] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive
synthesis for finite tasks under resource constraints,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 5326–5332.

[8] Y. Kantaros and M. M. Zavlanos, “Global Planning for Multi-
Robot Communication Networks in Complex Environments,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1045–1061, 2016.

[9] Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal Logic Task
Planning and Intermittent Connectivity Control of Mobile Robot
Networks,” IEEE Transactions on Automatic Control, pp. 1–1, 2019.

[10] Y. Kantaros and M. M. Zavlanos, “STyLuS: A Temporal Logic Optimal
Control Synthesis Algorithm for Large-Scale Multi-Robot Systems,”
arXiv:1809.08345 [cs], 2018.

[11] S. S. Farahani, V. Raman, and R. M. Murray, “Robust Model Predictive
Control for Signal Temporal Logic Synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, Jan. 2015.

[12] L. Lindemann and D. V. Dimarogonas, “Robust motion planning em-
ploying signal temporal logic,” in 2017 American Control Conference
(ACC), May 2017, pp. 2950–2955.

[13] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control of
non-deterministic systems for a computationally efficient fragment
of temporal logic,” in 52nd IEEE Conference on Decision and Control.
Firenze: IEEE, Dec. 2013, pp. 3197–3204.

[14] G. Jing, R. Ehlers, and H. Kress-Gazit, “Shortcut through an evil door:
Optimality of correct-by-construction controllers in adversarial envi-
ronments,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nov. 2013, pp. 4796–4802.

[15] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in 2008 21st
IEEE Computer Security Foundations Symposium. IEEE, 2008, pp.
51–65.

[16] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal Logics for Hyperproperties,” in Principles
of Security and Trust. Springer Berlin Heidelberg, 2014, vol. 8414,
pp. 265–284.

[17] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[18] Y. Lu, Y. Guan, X. Li, R. Wang, and J. Zhang, “A framework of model
checking guided test vector generation for the 6DOF manipulator,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 4262–4267.

[19] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Multi-objective
search for optimal multi-robot planning with finite LTL specifications
and resource constraints,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 768–774.

[20] O. Kupferman, “Automata Theory and Model Checking,” in Handbook
of Model Checking. Springer International Publishing, 2018, pp.
107–151.

[21] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for Model
Checking HyperLTL and HyperCTL*,” in Computer Aided Verification.
Springer International Publishing, 2015, pp. 30–48.

[22] A. Biere and D. Kröning, “SAT-Based Model Checking,” in Handbook
of Model Checking. Springer International Publishing, 2018, pp.
277–303.

[23] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
Model Checking,” in Advances in Computers. Elsevier, 2003, vol. 58,
pp. 117–148.

[24] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008, pp. 337–340.

[25] B. Dutertre and L. M. de Moura, “The YICES SMT Solver,” 2006.
[26] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,

T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided
Verification. Springer Berlin Heidelberg, 2011, pp. 171–177.

[27] K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient Symbolic
Reactive Synthesis for Finite-Horizon Tasks,” p. 7, 2019.

[28] Z. Huang, Y. Wang, S. Mitra, and G. E. Dullerud, “Controller
Synthesis for Linear Dynamical Systems with Adversaries,” in 3rd
ACM Symposium and Bootcamp on the Science of Security (HoTSoS).
ACM, 2016, pp. 53–62.

[29] Z. Huang, Y. Wang, S. Mitra, G. E. Dullerud, and S. Chaudhuri,
“Controller Synthesis with Inductive Proofs for Piecewise Linear
Systems: An SMT-Based Algorithm,” in 54th IEEE Conference on
Decision and Control (CDC), 2015, pp. 7434–7439.

[30] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 1977, pp.
46–57.

[31] B. Gedik and Ling Liu, “Location Privacy in Mobile Systems: A
Personalized Anonymization Model,” in 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05), 2005,
pp. 620–629.

[32] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen,
and F. Dellaert, “Distributed trajectory estimation with privacy and
communication constraints: A two-stage distributed Gauss-Seidel
approach,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 5261–5268.

[33] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coordinated
multi-robot planning while preserving individual privacy,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 2188–2194.

[34] D. Dams and O. Grumberg, “Abstraction and Abstraction Refinement,”
in Handbook of Model Checking. Springer International Publishing,
2018, pp. 385–419.

[35] G. J. Holzmann, The Spin Model Checker: Primer and Reference
Manual, 4th ed. Addison-Wesley, 2008.

[36] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of Probabilistic Real-Time Systems,” in Computer Aided Verification.
Springer Berlin Heidelberg, 2011, vol. 6806, pp. 585–591.

[37] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity in
security applications of discrete event systems,” Information Sciences,
vol. 246, pp. 115–132, 2013.

[38] X. Yin and S. Lafortune, “A new approach for synthesizing opacity-

enforcing supervisors for partially-observed discrete-event systems.”
IEEE, 2015, pp. 377–383.

[39] CPSL@Duke, “Motion Planning using HyperProperties,” 2019.
[Online]. Available: https://gitlab.oit.duke.edu/cpsl/mp hyper

https://gitlab.oit.duke.edu/cpsl/mp_hyper

	I Introduction
	II Preliminaries
	III HyperLogics for Robotics Planing
	IV Planning on Discrete Transition Systems
	V Planning from HyperLTL Specifications
	V-A HyperLTL Syntax
	V-B HyperLTL Semantics
	V-C HyperLTLf
	V-D Applications of HyperLTL for Planning
	V-D.1 Optimality
	V-D.2 Robustness
	V-D.3 Privacy/Opacity

	VI Strategy Synthesis
	VI-A Computing Required Time Horizon
	VI-B Model Conversion for SMT-based Synthesis

	VII Implementation and Case Studies
	VIII Conclusion
	References

