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Abstract— Surgical scene understanding and multi-tasking
learning are crucial for image-guided robotic surgery. Training
a real-time robotic system for the detection and segmentation of
high-resolution images provides a challenging problem with the
limited computational resource. The perception drawn can be
applied in effective real-time feedback, surgical skill assessment,
and human-robot collaborative surgeries to enhance surgical
outcomes. For this purpose, we develop a novel end-to-end
trainable real-time Multi-Task Learning (MTL) model with
weight-shared encoder and task-aware detection and segmen-
tation decoders. Optimization of multiple tasks at the same
convergence point is vital and presents a complex problem.
Thus, we propose an asynchronous task-aware optimization
(ATO) technique to calculate task-oriented gradients and train
the decoders independently. Moreover, MTL models are always
computationally expensive, which hinder real-time applications.
To address this challenge, we introduce a global attention
dynamic pruning (GADP) by removing less significant and
sparse parameters. We further design a skip squeeze and
excitation (SE) module, which suppresses weak features, excites
significant features and performs dynamic spatial and channel-
wise feature re-calibration. Validating on the robotic instrument
segmentation dataset of MICCAI endoscopic vision challenge,
our model significantly outperforms state-of-the-art segmenta-
tion and detection models, including best-performed models in
the challenge.

I. INTRODUCTION

Image-guided robotic surgery is the latest form of de-
velopment in minimally invasive surgical technology, which
increases precision, reliability, and repeatability. A Vision-
enabled surgical system like Da Vinci [1] is eminently
assisting the surgeon in performing complex surgical ma-
nipulations with minimal incisions and recovery time than
conventional surgeries. Despite development in surgical tech-
nology, sometimes surgeons may lose surgical workflow due
to weak tactile feedback or system impairment. Moreover, a
compound, surgical scenario with smoke, body fluid, blood,
adverse lighting condition, and partial occlusion creates
additional challenges in image cognition [2]. Therefore,
concurrent detection and segmentation of instruments could
enhance surgical outcomes and assist novice surgeons with
real-time objective feedback, do skill assessment, and ana-
lyze tool movements in the surgical workflow.

In recent years, deep neural network is showing success
in the tasks of segmentation [3], detection [4] and visual
perception [5] from computer vision to medical imaging.
However, most of these models are designed and optimized
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for the specific task. These restrain the impact of the deep
learning model full exploitation, whereas the human brain is
capable of doing multiple tasks like classification, tracking,
and reasoning in parallel. Therefore, developing a multi-task
learning (MTL) model in surgical scene understanding with
instrument detection and segmentation can play an important
rule to advance the robotic intervention.

A. Related Work

1) Surgical Instrument Segmentation: Recently, CNN
models are deploying to achieve state-of-the-art performance
in surgical tool tracking. Instrument segmentation of binary,
parts and type-wise is done by LinkNet [8] with Jaccard
index based loss function [9]. Subsequently, ToolNet [10]
with holistically-nested architecture, and dilated residual
network with multi-scaled inputs [2] are utilized to segment
the surgical tool. Nonetheless, these works lack focusing
on the real-time application in terms of both speed and
accuracy. A real-time instrument segmentation approach of
using auxiliary supervised adversarial learning is proposed in
[11]. The work demonstrates high-speed inference with satis-
fying accuracy in binary instrument segmentation. However,
it performs poorly for the type-wise segmentation. In our
previous work [6], a novel design of segmentation decoder
with spatial and channel squeeze & excitation (scSE) [12] is
improved the instrument type segmentation by exciting the
significant features.

2) Surgical Instrument Detection: There are few works
with CNN on surgical instrument tracking by detection. R-
CNN with region proposal networks (RPN) [13] is exploited
to detection the instrument in robot-assisted surgery [14].
Subsequently, a residual CNN [15], and RANSAC based
CNN [16] are used to detect bounding box with the tooltip.
A 3D fully connected network (FCN) similar to UNet [3]
is developed to detect articulation joint of the surgical
instrument [17]. Nonetheless, more works are needed for
real-time application using high-resolution images.

3) Multi-task learning (MTL): Multi-task learning models
in surgical instrument tracking is still an open challenge.
There are very few models that are trying to tackle the
multiple tasks within a single network. A concurrent instru-
ment segmentation and pose estimation multi-task learning
(MTL) method [18] is designed with ResNet-50 [19] as
encoder, FCN decoder and a regression block of fully-
connected layer. However, the model is not suitable for the
real-time application, and parts segmentation performance is
not satisfactory. In computer vision, several MTL models
such as MaskRCNN [20], Blitznet [21], and Sistu et al. [22]
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Fig. 1. Network architecture of the proposed AP-MTL model for real-time detection and segmentation. The architecture consists of VGG16 encoder,
segmentation decoder like [6], and detection branch like SSD [7].

are developed for joint semantic segmentation and object
detection tasks. More recently, UberNet [23] and Islam et al.
[6] are tried to optimize MTL model with the multi-phase
training approach and tuning. Nonetheless, lower inference
speed and optimizing both tasks in a convergence point are
still the open challenges in the MTL model.

B. Contributions

In this work, we address the problems of real-time MTL
model for robotic instrument detection and segmentation
with asynchronous task-aware optimization and attention
pruning. Our contributions are summarized as follows:

– We propose a real-time MTL model with a light weight-
shared encoder and task-aware spatial decoders for
detection and segmentation.

– We introduce a novel way to train proposed MTL model
by using asynchronous task-aware optimization (ATO)
technique.

– To reduce model computation and singularity, we design
an attention-based pruning method known as global
attention dynamic pruning for trained models with dy-
namic learning.

– We develop an innovative design of segmentation de-
coder with fusing bypass connection in scSE to boost
up the model performance.

– We annotate the bounding box for the instruments
types with robotic instrument segmentation challenge
[24] dataset. Our model achieves impressive results
in detection and surpasses the existing state-of-the-art
segmentation models and participant methods of the
challenge.

II. METHODS

In this work, we construct a real-time multi-task learn-
ing model with light-weight encoder of VGG16 [25] and
Skip-scSE decoder, SSD decoder [7] for segmentation and
detection tasks respectively. To optimize our MTL model

at the same convergence point, we introduce asynchronous
task-aware optimization technique (ATO). We also designed
a novel skip spatial-channel squeeze and excitation module
(Skip-scSE), by integrating skip connection to enhance seg-
mentation prediction. Moreover, to boost real-time compu-
tation, reduce singularity, and redundancy in the model, we
propose global attention dynamic pruning (GADP) method.

A. Skip-scSE

Spatial and channel squeeze & excitation (scSE) [12], [26]
is a parameter learning technique which learns by recalibrates
the feature maps to suppress the weak features and signify
the meaningful features. However, in deeper layers, it may
cause sparsity and singularity due to squeezing of irrelevant
features towards zero [27]. In [28], skip connection is used to
eliminates the singularity and sparsity in the CNN learning.
To resolve this issue, we also integrate skip connection which
retains the weak features and enhance the useful features
by exciting them. We propose skip-scSE unit, by adding a
bypass connection with scSE as in Fig. 2. In skip-scSE, the
output of channel excitation x̃cE and spatial excitation x̃sE
are fused with skip input xr. Therefore, the output excited
feature maps xSC can be formulated as given in equation 1,

xS = x̃cE + x̃sE + xr (1)
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Fig. 2. Our proposed Skip spatial-channel squeeze and excitation model.
Skip eliminates the singularity and sparsity in the CNN learning.



B. Network Architecture

Our AP-MTL model forms of a shared-encoder, a segmen-
tation decoder, and a detection block (illustrated in Fig. 1).
The encoder and detection block adopt from SSD [7] where
VGG16 [25] exploit in the encoder section. The segmentation
decoder is designed with proposed skip-scSE by following
our previous work [6], as shown in Fig. 3. Multi-scale feature
maps are extracted from different stages in the encoder net-
work. The score maps the feature network are concatenated
with high-level score maps to increase parameter learning,
and then it gets convoluted and excited. Further excited
score maps are upsampled with a deconvolution layer. The
final semantic score map will be generated after the last
upsampling, which is used to output the prediction results.
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Fig. 3. Our proposed Skip-scSE decoder for segmentation of surgical
iinstruments.

C. Asynchronous Task-aware Optimization (ATO)

The fundamental problem in optimizing an MTL model
is obtaining optimal minima at the same convergence point.
In prior approaches, optimization of multiple tasks uses a
naive weighted sum of losses [20], [21], [29], where the
loss weights are uniform, or manually tuned. This kind
of optimization can be related as optimizing a single task
with added noise, where the noise correlates other task
losses. To overcome these problems, we introduce Asyn-
chronous Task-aware Optimization (ATO). In this technique,
we optimize the task-aware spatial decoder and detection
block by calculating gradient independently. Further, we
simultaneously regularize end-to-end MTL model to attain a
global convergence point for a few epochs with low learning
rate.

In algorithm 1, we do Xavier initialization and construct
mini-batches for training. At first, the model is trained with
detection loss only by detaching segmentation decoder as
detecting bounding box is more sensitive task than pixel-wise
segmentation. Then, detach the detection block and train only
segmentation decoder on segmentation loss by using encoder
features trained for the detection task. Encoder features of
detection task are also significant for the segmentation as
both tasks are targeted on the same objects. Finally, to
generalize the shared weights of the encoder, we opt end-to-
end regularization by optimizing encoder and both detection
block and segmentation decoder with small learning rate
10−5. This ensures the MTL model to be more generalized
and smooth gradient flow throughout the network.

Algorithm 1 Asynchronous Task-aware Optimization
1: Initialize model weights:

shared (Wsh), detection (Wd), segmentation decoder (Ws)
2: Set gradient accumulators to zero:

shared (dWsh), detection (dWd), segmentation (dWs)
dWsh ← 0, dWd ← 0, dWs ← 0

3: [Optimize Detection]
while detection task not converged do :

[Shared encoder gradients w.r.t detection loss Łd]
dWsh ← dWsh +

∑
i δi∇WshŁd(Wsh,Wd)

[detection block gradients w.r.t detection loss Łd]
dWd ← dWd +

∑
i δi∇WdŁd(Wsh,Wd)

end while
4: [Optimize Segmentation]

while segmentation task not converged do :
[segmentation gradients w.r.t segmentation loss Łs]
dWs ← dWs +

∑
i δi∇WsŁs(Wsh,Ws)

end while
5: [Regularization]

while both tasks improving do :
dWsh ← dWsh +

∑
i δi∇WshŁ(Wsh,Wd,Ws)

dWd ← dWd +
∑

i δi∇WdŁ(Wsh,Wd,Ws)
dWs ← dWs +

∑
i δi∇WsŁ(Wsh,Wd,Ws)

end while

D. Global Attention Dynamic Pruning (GADP)

MTL methods are generally heavy in computation and not
applicable in real-time, especially for high-resolution images.
Every network contains a sub-network, and most networks’
parameter learning is redundant and insignificant. Besides,
redundancy and singularity in the learning parameters are
the huge hindrances for task-specific decoders in MTL
model. Thus, pruning can solve this over-parameterization
and singularity problem. In prior works, network are pruned
using Taylor expansion ranking [30] or attention statistics
[31]. Nonetheless, pruning filters based on local gradient
flow or activation is highly redundant, as it is a function
of all previous filters. Therefore, we propose a dynamic
pruning method based on global understanding of parameters
and channel-wise attention [26], [32]. To avoid initial layer
bottleneck pruning, we follow proportional pruning in each
layer.

A
tt

en
ti

o
n
 M

as
k

 &
 

  
D

y
n
am

ic
 T

ra
in

in
g 

P
ru

n
e 

&
 

fi
n
e-

tu
n
e 

Fig. 4. Overview of our Global Attention Dynamic Pruning (GADP)
method. GADP attaches in-between encoder blocks, calculate the rank of
the each kernel, and remove low ranked kernels gradually by retraining the
model. Attention-based pruning, rank the network parameters accurately
which assists to remove redundant and weak parameters.



Algorithm 2 Global Attention Dynamic Pruning
1: Input: The pre-trained modelM, the training setD, the testing

set T, Accuracy, Drop d, attention iter I, finetune iter N.
2: Ouput: The pruned model M′.
Tm = Accuracy for pre-trained model M with testing set T
Attach SE-Attention modules to the conv layers of M.

3: for attention iteration i = 1, 2, . . . , I do
Forward propagation with D.
Update only attention module in backpropagation.

end for
4: Calculate the attention statistics al,c with D.

Threshold (t) according to proportional pruning strategy
for each layer l = 1, 2, . . . , L do

for each channel c = 1, 2, . . . , Cl do
if al,c < t/Cl then

mask the channel c from M.
end if

end for
end for

5: for finetune iteration i = 1, 2, . . . , N do
Forward propagation with D.
Update only masked model M′ in backpropagation.

end for
6: T

′
m = Accuracy for masked model M′ with testing set T

if Tm−T
′
m < d then

goto Step 3:
else

pruned model M′ = prune masked channel in M′

for prune regularize iteration i = 1, 2, . . . , N do
Forward propagation with D.
Update pruned modelM′ parameters in backpropagation.

end for
return pruned model M′

end if

In algorithm 2, first, we append SE-Attention module
to our pre-trained MTL model’s encoder. Then, for a few
epochs, we train only attention module weights to learn a
better global understanding of network filters correlation.
Further, a pruning plan is generated with trained attention
statistics by setting the mask threshold conditioned upon
proportional pruning strategy. Then, we detach the attention
modules and dynamically fine-tune the MTL model by
masking channel without pruning. Repeat the whole process
until our masked model accuracy drops below the specified
margin with the required number of parameters to be masked.
Finally, prune all masked channels to obtain an efficient
weight shared encoder and regularize it for few epochs for
better gradient flow and generalization. Overview of our
proposed GADP is illustrated in Fig. 4.

III. EXPERIMENTS

A. Dataset

This work is done using robotic instrument segmentation
dataset of MICCAI endoscopic vision challenge 2017 [24].
This dataset contains 10 sequences recorded with the resolu-
tion of 1920 x 1080 using Da Vinci surgical systems [1]. In
each sequence, significant instrument motion and visibility
is observed and sampled at a rate of 1 Hz. The training set
consist of sequence 1, 2, 3, 5, 6, 8, and cross-validation data
consist of sequence 4, 7, and testing data consist of sequence

9, 10. For the training and cross-validation data sequence, we
crop the frames into 1280 x 1024 by removing black padding
and annotate bounding box for the instrument with the aid
of instrument type segmentation as shown in Fig. 5.

Input Annotation Input Annotation 

Fig. 5. Dataset visualization of two random frames. We annotate the
bounding box on MICCAI robotic instrument segmentation dataset [24].

B. Implementation details

The input images are normalized by subtracting the image
mean and dividing standard deviation. While training, we
sequentially implemented algorithm 2 and algorithm 1. For
other hyper-parameters, we use SGD optimizer with an initial
learning rate 0.0001 and ‘poly’ learning rate with the power
of 0.9 to update it. The momentum and weight decay set
constant to 0.99 and 10−4 respectively.

C. Post-processing

In post-processing, we implemented a novel method for
our architecture. Quantitatively we observed that our model
can perform well in binary segmentation but under-perform
in instrument type segmentation. Thus, we inferred that our
model can discriminate instruments and tissues but struggles
to differentiate between each instrument types. Moreover, we
observed that as detection is conditioned upon IOU greater
than 0.5, a major area of predicted bounding box covers
the instrument [7]. However, in the case of the overlapping
bounding box, the area of intersection is not subjected
to post-processing. Therefore for high confidence predicted
box, we assign all pixels inside the bounding box to its
class in predicted instrument type output. By following this
method, instrument type segmentation accuracy improved
around 20-25%. Fig. 6 shows the model prediction before
and after post-processing.

Before After Before After

Fig. 6. Post-processing on predicted segmentation using bounding box. It
boosts the type wise segmentation accuracy.

IV. RESULTS AND EVALUATION

We evaluate segmentation accuracy of our model using
evaluation metrics like dice coefficient, Hausdorff, sensitiv-
ity, specificity and for object detection accuracy by mean av-
erage precision (mAP) and real-time performance by frames
per second (fps). In Table I, we compare our architecture with



TABLE I
EVALUATION SCORE FOR THE CROSS-VALIDATION DATASET. THE EVALUATION METRICS ARE DICE, HAUSDORFF(HAUSD.), MEAN AVERAGE

PRECISION(MAP), FRAME PER SECOND (FPS) AND PARAMETERS(PARAM). FPS IS CALCULATED BY SINGLE RTX 2080 TI GPU WITH BATCH SIZE OF

1. THE BEST VALUES OF EACH METRIC ARE BOLDENED AND THE VALUES BETTER THAN OURS ARE UNDERLINED.

Model Regime Segmentation Obj. Detect. General
Binary Type mAP FPS Param

Dice Hausd. Dice Hausd.
Ours Seg. & Detect. 0.947 9.469 0.704 10.56 0.392 18 22.4M
MaskRCNN [20] Seg.& Detect. 0.452 - 0.283 - 0.376 4 -
SSD [7] Detect. - - - - 0.406 12 22.6M
YoloV3 [4] Detect. - - - - 0.363 12 -
LinkNet [8] Seg. 0.941 10.39 0.578 11.88 - 111 11.5M
ERFNet [33] Seg. 0.923 11.05 0.495 11.55 - 44 2.02M
DeepLabv3+ [34] Seg. 0.947 10.07 0.657 10.47 - 56 59.3M
scSE UNet [12] Seg. 0.931 10.09 0.542 11.88 - 107 42.7M
TernausNet11 [35] Seg. 0.920 11.25 0.446 12.29 - 295 34.5M
BiseNet [36] Seg. 0.942 9.997 0.440 10.80 - 54 90.8M
GCN [37] Seg. 0.940 10.48 0.612 13.98 - 83 23.9M

the existing state-of-the-art architectures for segmentation,
object detection, and multi-tasking. Inference time for all the
models is calculated by using a single NVIDIA RTX 2080
Ti GPU with a batch size of one.

A. Evaluation with Cross-validation

From Table I, our model outperforms state-of-the-art
multi-tasking architecture like MaskRCNN [20] in both seg-
mentation and object detection. Additionally in instrument
type segmentation, our model surpasses single task state-of-
the-art architectures such as LinkNet [8], scSE UNet [12]
and ERFNet [33] with a large margin. In object detection,
our model produces competitive results compared to single-
task state-of-the-art network such as SSD [7]and perform
better than YoloV3 [4]. In comparison with MTL model
like MaskRCNN [20], our model outperforms type-wise
segmentation accuracy. Also, produce a competitive result
in object detection with outperforming real-time computa-
tion. Further, from the above results, multi-task learning is
more generalized and scalable and produce better results
than single-task learning [22]. Fig. 7 demonstrates the type
segmentation prediction with our AP-MTL model.

Ground Truth Ours scSE U-Net DeepLabV3+ Input 

Input 

Input 

Ground Truth 

Ground Truth Ours 

Ours 

SSD YoloV3 

Ours (No Prune) MaskRCNN 

Fig. 7. The comparison of the type-wise segmentation and detection
prediction. Predictions of our model contain lower false positive, false
negative and competitive bounding box with SSD [7].

B. Evaluation with Challenge

TABLE II
COMPARISON OF QUANTITATIVE RESULTS FOR THE BINARY AND TYPE

BASE SEGMENTATION TASKS OF PROPOSED MODEL AND REPORTED

PERFORMANCE IN [24]. THE BEST VALUES OF EACH METRIC ARE

BOLDENED. THE VALUES BETTER THAN OURS ARE UNDERLINED.

Model Binary Seg. Type Seg.
Dataset9 Dataset10 Dataset9 Dataset10

Ours 0.883 0.892 0.350 0.795
MIT 0.865 0.905 0.357 0.609
SIAT 0.839 0.899 0.315 0.791
TUM 0.877 0.909 - -
Delhi 0.626 0.715 - -
UCL 0.808 0.869 0.272 0.583
NCT 0.789 0.899 0.247 0.552
UB 0.855 0.917 0.106 0.709
BIT 0.236 0.403 - -
UA 0.539 0.689 0.040 0.715
UW 0.377 0.603 - -

Table II contains a mean intersection-over-union (IoU)
performance comparison between our method and challenge
methods for binary and type segmentation in MICCAI 2017
robotic instrument segmentation challenge [24]. Our model
prediction of sequences 9 and 10 is evaluated by challenge
portal1. We compare the prediction of our model with the
binary and instrument type segmentation of the participated
models in the challenge [24]. From the table, our model
achieves competitive performance with all other participants’
models for both binary and type segmentation task. From Fig.
8, our segmentation predictions of a less false positive and
false negative than other challenge models.

V. ABLATION STUDY

A. Module and Methods

To evaluate our method and integration of the modules, we
calculate the performance and complexity of the model, as
shown in Table III. Proposed optimization approach, ATO

1https://endovissub2017-roboticinstrumentsegmentation.grand-
challenge.org/



Frame 59 Ours Ground Truth U Bern SIAT 

Frame 247 Ours U Bern Delhi U Alberta 

Fig. 8. Qualitative results comparison of frames from different dataset for
binary and type segmentation with corresponding results from the methods
of robotic instrument segmentation challenge [24] and proposed AP-MTL.

produces a considerable impact on our MTL model for
both segmentation and detection tasks. It fixes the common
challenge of MTL model to attain optimal minima at a con-
vergence point (at same epoch). We monitor that MTL model
without ATO converges the two tasks into different epochs.
Without ATO, the convergence epoch of segmentation con-
sists of poor detection accuracy in Table III. Moreover, ATO
achieves the convergence of both tasks into the same epoch
with the best accuracy for both tasks of segmentation and de-
tection. Skip-scSE and GADP enhance the segmentation and
detection accuracy with a significant margin, respectively.
High-resolution images require high computational resource
with larger learning parameters and remarkably reduce the
prediction FPS (frame per second). Thus, GADP removes
redundant parameters and boost fps. Moreover, MTL regular-
ization smoothes gradient flow throughout the model, which
increase generalization and optimized prediction. From Table
IV, we can infer that our proposed attention model requires
same learnable parameters but outperforms scSE [12].

TABLE III
OUR MODEL PERFORMANCE AND COMPLEXITY WHILE INTEGRATING

DIFFERENT PROPOSED METHODS AND MODULES. REGU. DENOTES

REGULARIZATION.

Modules and Methods Seg. Det. FPS
ATO Skip-scSE GADP Regu. Dice mAP

3 3 3 3 0.704 0.392 18
3 3 3 5 0.685 0.392 18
3 3 5 5 0.714 0.406 10
3 5 5 5 0.695 0.406 11
5 5 5 5 0.610 0.379 11

TABLE IV
EXPERIMENTAL COMPARISON BETWEEN NO ATTENTION, SCSE [12]
AND OUR ATTENTION PROPOSED MODEL. FROM RESULTS, WE CAN

INFER THAT OUR ATTENTION MODULE ENHANCES SEGMENTATION

PREDICTION BY A SIGNIFICANT MARGIN.

Modules Seg. Det. FPS
Dice mAP

No Attention 0.658 0.406 11
scSE 0.695 0.406 11
Skip-scSE 0.714 0.406 10

B. Single-task and Multi-task
From the comparison Table V between single-task and

multi-task, the MTL model improves the performance of both

tasks comparing to single-task models for segmentation and
detection. Our proposed MTL optimization technique, ATO,
is playing crucial rule behind the performance improvement.
Moreover, MTL regularization refines the learning parame-
ters for both tasks and attains optimal convergence point.

TABLE V
PERFORMANCE COMPARISON BETWEEN SINGLE-TASK, MULTI-TASK

MODEL AND REGULARIZATION. OUR MULTI-TASK MODEL ACHIEVES

HIGHER PERFORMANCE THAN THE MODELS OF THE INDIVIDUAL TASKS.

Task Segmentation Detection FPS
Seg. Det. Regu. Binary Type mAP

Dice Dice
3 5 5 0.939 0.680 56
5 3 5 - - 0.406 12
3 3 5 0.941 0.685 0.392 18
3 3 3 0.947 0.704 0.392 18

C. Prune ration

A) Fps vs Percent of Weights remaining  B) mAP vs Percent of Weights remaining  
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Fig. 9. Graphical visualization of A) fps vs Percent of weights remaining
B) mAP vs Percent of weights remaining. Total network parameters with
100 % weights remaining is 22.6 M.

Variation of model performance with pruning is studied
and illustrated in Fig. 9. As we increase prune ration, mAP
reduces by a small margin with significant improvement
in fps. Attention-based pruning aids removal of redundant
filters with global receptive field perception. Therefore, noise
variants in the model can be reduced by pruning, and
detection can be reinforced.

VI. CONCLUSION

In this paper, we present attention pruned multi-task learn-
ing model (AP-MTL) for real-time instrument localization
and tracking in endoscopic surgery. We introduce attention
based dynamic pruning technique to eliminate sparsity and
singularity in MTL model’s shared weight encoder. We
present a novel method to optimize the task-aware MTL
model to obtain the same optimal convergence point for
multi-tasks. To enhance segmentation, we design a novel
decoder using skip-scSE to reduce sparsity and redundancy
in the decoder. Also, we introduced a novel post-processing
method which exploits the benefit of multi-tasking for in-
creasing segmentation accuracy. Further, our model outper-
forms most of the state-of-the-art architecture by a significant
margin. In future work, we extend our research to segment
defected tissues along with instruments and learning to
exploit the surgical scene representation, compositionality,
and reasoning.
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