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Human Driver Behavior Prediction based on UrbanFlow*
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Abstract— How autonomous vehicles and human drivers
share public transportation systems is an important problem, as
fully automatic transportation environments are still a long way
off. Understanding human drivers’ behavior can be beneficial
for autonomous vehicle decision making and planning, espe-
cially when the autonomous vehicle is surrounded by human
drivers who have various driving behaviors and patterns of
interaction with other vehicles. In this paper, we propose an
LSTM-based trajectory prediction method for human drivers
which can help the autonomous vehicle make better decisions,
especially in urban intersection scenarios. Meanwhile, in order
to collect human drivers’ driving behavior data in the urban
scenario, we describe a system called UrbanFlow which includes
the whole procedure from raw bird’s-eye view data collection
via drone to the final processed trajectories. The system is
mainly intended for urban scenarios but can be extended to
be used for any traffic scenarios.

I. INTRODUCTION

A major challenge in recent work on autonomous vehicles
is making proper decisions about how to deal with inter-
actions with human-driven vehicles. However, interactions
among human drivers are hard to model via equations
directly. To address this problem, learning-based methods for
characterizing human-driver behavior become good choices
and make it easier to simulate a human driver’s behavior
in simulations such as CARLA [1], VTD [2], etc. However,
such methods require a large amount of driving data in order
to learn human drivers’ diverse behavior. For a long time,
NGSIM [3] was the only public trajectory-based dataset from
which human driver behavior could be extracted. In 2018,
highD [4] became available, but it only includes highway
scenarios. Moreover, how to extract and classify the human
driver behavior without manually labeling a large amount of
data for ground-truth is another time-consuming challenge
when dealing with raw human driver data.

The current state of the art in acquiring and using such data
faces several problems. First, some published work relies
on privately collected datasets, the inaccessibility of which
makes them impossible to use as benchmarks for compar-
isons between various algorithms. Second, some datasets are
collected by autonomous vehicles from the perspective of
the ego vehicle. Although this perspective is ultimately the
one available to an autonomous vehicle, it is difficult for
it to provide full sequences showing the social behavior of
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Fig. 1: The UrbanFlow dataset processing pipeline. The
pipeline includes the drone data collection and process flow
from raw video data to the final trajectory data.

surrounding vehicles. To derive models for such behavior,
bird’s-eye view datasets are useful. In response to these
problems, this paper constructs a method for benchmarking
human driver behavior based on a bird’s-eye-view data
collection system via drone. Figure 1 shows the pipeline of
the data processing procedure.

On the other side, based on the dataset, predicting the other
vehicles’ intentions or trajectories is an essential procedure
for behavior planning of autonomous vehicles during the
decision making or trajectory planning procedures. Dur-
ing the application of motion planning practice, accurately
predicting human drivers’ behavior can help the ego car
to have better decision making. In Pittsburgh, most traffic
lights control Going Straight (GS), Turning Left (TL) and
Turning Right (TR) with one light with the result that at the
urban intersection, many interactions occur between vehicles
approaching from opposite directions with intention pair of
GS and TL or TL and TR. Under these situations, 'who
will go first’ between the two interacting vehicles is a key
problem even for human drivers.

The main contributions of this work are:

o A drone-based data collection and processing system
to analyze bird’s-eye view trajectory data of human
drivers.

¢ An algorithm which can predict the interacting human
drivers’ intentions as well as trajectories based on the
historical trajectories occupying a given period of time
when approaching an an urban intersection.

II. RELATED WORK

This section introduces previous work related to this
paper, which can be categorized as follows: 1) papers that
address algorithm which is part of the traffic data collection
procedures; 2) papers that propose intention and trajectories
predictions of human drivers.



A. Data Extraction

With the current popularity of autonomous driving, various
datasets are available for researchers to develop and test
their algorithms. These datasets can be categorized into two
classes. The first one is traffic-flow-based datasets, which
focus on a particular scene and simultaneously capture all
the vehicles within it. This type of dataset uses a bird’s-
eye view to observe vehicle trajectories within the scene.
The NGSIM dataset [3] is the best-known such dataset and
includes highway and urban scenarios. Last year, RWTH
Aachen University released the highD dataset [4], which used
advanced computer vision technology to improve the data
collection mechanism based on the NGSIM dataset. Another
kind of dataset is based on the sensors mounted on the ego-
vehicle and data collected while driving the ego car over a
given route. Most such datasets create various vision-based
benchmarks for further study. The KITTI dataset [5] offers
a vision benchmark for different autonomous vehicle-related
tasks. The Oxford RobotCar dataset [6] collected 20 million
images from 6 cameras mounted on the vehicle, along with
LIDAR, GPS, and INS ground truth. Recently, UC Berkeley
released the BDD100k [7] which includes diverse driving
videos collected from a camera mounted on the vehicle with
scalable annotation tooling.

In the current work, in order to gain a comprehensive view
of the traffic situation, we use a bird’s-eye-view method to
collect traffic-flow-based datasets via drone. The portable
end-to-end system allows researchers to collect their own
data from any site of interest, unlike the NGSIM system,
which depended on the installation of a fixed camera. While
our data collection method is similar to that used for the
highD dataset, our method focuses primarily on urban in-
tersections, which are more challenging than the highway
scenarios that the highD dataset focuses on. Compared with
highD, this work extends to urban scenario.

B. Prediction

Liebner [8] proposed an explicit model to extract char-
acteristic desired velocity profiles from real-world data that
allow the Intelligent Drive Model (IDM) to account for turn-
related deceleration to represent both car-following and turn-
ing behavior. Derek et al. [9] used LSTMs to classify vehicle
maneuvers at intersections. They predicted whether a driver
will turn left, turn right, or continue straight up to 150m with
consistent accuracy before reaching the intersection using
LSTM, with the mean cross-validated prediction accuracy av-
eraging over 85% for both three- and four-way intersections.
There are other works on predicting complete trajectories
using Hidden Markov Models, Gaussian Processes, Dynamic
Bayesian Networks, Support Vector Machines, and inverse
reinforcement learning.

Compared with [8], besides velocity profile, multiple fac-
tors are added in our models, such as yaw variation, target
motion features, etc., which contain information on environ-
mental changes for the ego vehicle. The work concentrates
on the interaction of ego and target car pairs by studying the
related interaction with each other. Meanwhile, we introduce

the idea of direction intention prediction and use the result
to determine a more detailed trajectory prediction. The main
difficulties we tackled in the work is that the human driver’s
intentions and trajectories of the vehicle are much more
variable when approaching an urban intersection with heavy
traffic flow than in highway situations.

III. PRELIMINARIES

In this section, the preliminary background of the problem
is described. The fundamental algorithms which are used for
video stabilization, object detection and tracking are included
here.

A. Enhanced Correlation Coefficient

The two main challenges for video stabilization are the
robustness and the speed of the alignment. Feature-based
alignment is fast and is able to align images with large
displacement. However, its robustness is susceptible to the
quality and distribution of the feature points detected. On
the other hand, the image alignment algorithm like Enhanced
Correlation Coefficient (ECC) [10] can be used to process
every pair of two consecutive frames in the video. But each
alignment iteration needs all the pixels to be searched, which
is computationally expensive. Moreover, ECC also fails to
align frames without a good initial guess at the homography
matrix when the two frames have a low similarity. As a result,
a combination of feature-matching-based and homography-
based methods is used to reap the advantages of both.

Feature-based alignment involves detecting key-points,
finding key-point correspondences, and computing im-
age transformation using the Random sample consensus
(RANSAC) [11] algorithm. The standard ECC alignment
uses normalized intensity with zero mean so that the sim-
ilarity measurement is invariant to contrast and brightness
change [10]. Each frame was warped first using the homog-
raphy calculated from the feature-based method for a rough
alignment, then warped with homography calculated from
ECC alignment.

B. Retinanet

In the proposed pipeline, RetinaNet [12] is used for
detecting vehicles in the images. RetinaNet has a backbone
network which is responsible for computing the convolution
feature map over an entire input image. A class sub-net is
responsible for predicting the class of object. In our case,
there is only one class, which is ’car’. A box regression sub-
net predicts the location and size of each vehicle. ResNet-50
was used as the backbone for the forward pass of the FPN
architecture since the residual learning framework promotes
easier convergence.

C. Kalman Filter

A Kalman filter [13] is used for tracking and trajectory
smoothing. Based on the car’s dynamic model, characteristics
of the system noise and measurement noise, the measurement
variables are used as the input signal, and the estimation
variables that we need to know are the output of the filter. The
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Fig. 2: Optimized stabilization method flow.

whole filtering process is composed of a prediction equation
and an update equation as follows:

X(n)=FX(n—1)+V,(n—1) n
Y(n) = HX(n)+Vp(n)

where X (n) and Y (n) are the estimated state variable and

measurement variable at frame n, respectively.

IV. METHODOLOGY

In this section we propose UrbanFlow as a procedure to
deal with the collected bird’s-eye view data. Then, based on
UrbanFlow, we propose a method for predicting the human
driver’s intention as well as trajectories.

A. UrbanFlow

1) Video Stabilization: In this paper, we propose several
steps for the video stabilization in order to deal with the
displacement of the drone during the data collection process.
Figure 2 visualizes the flow of the stabilization method.
For each frame f, at time step n, the algorithm chooses a
reference frame f,.r according to the alignment evaluation
score gotten from the result of the last time step and cor-
responding homograph matrix in order to get the stabilized
frame. Firstly, a re-alignment is performed when the result
of the ECC alignment score is lower than a threshold. ECC
takes a lot of time to converge and is not adaptive to align the
current frame with a reference frame when their similarity
is lower than a threshold. Secondly, since the alignment is
time-consuming, it is only performed when a reference frame
needs to be re-chosen. The homography matrix is re-used for
the following frames until a new reference frame is chosen
when the evaluation score drops to the threshold. Then, the
homography matrix calculated from ECC alignment during
the previous step is used for initializing the guess for ECC
in the next step to speed up the convergence. Lastly, images
are down-sampled [14] so that ECC uses fewer pixels during
the calculation.

Fig. 3: Transition from original image-based coordinate to
road-based Coordinate

2) Object Detection: The training dataset contains all
the bounding boxes and their corresponding labels for each
image. The input images are re-sized to ensure that the size
of detection objects is greater than 32-by-32 pixels as well
as not too large to fit for the GPU computational capability.
Images are masked to crop out the roads in order to make
detection easier. RetinaNet was fine-tuned using pre-trained
weights from the COCO dataset [15].

3) Map Construction and Coordinate Transition: The
first step in the creation of the map is to crop the area
of interest, which in this case is the roads. To attack this
problem, we took advantage of the image segmentation
network “U-net”, described in Ronneberger et al. [16], with
just a few adjustments based on the work of Iglovikov et
al. [17]. We preserve the decoder section of the network
because by adding a large number of feature channels,
it allows the network to propagate context information to
the higher-resolution layers. The important change was in
the encoder section, where it was replaced by the down-
sampling elements of the VGGI16 architecture in order to
take advantage of the pre-trained weights in ImageNet [18],
due to the limitation of the quantity of the collected data.

After detecting the road and applying a color filter to
detect the lane markings on the road, the work transforms all
the detected vehicle positions from the original image-based
coordinates to the road-based coordinates. Figure 3 shows
the method to generate the road-based coordinate based on
a random road geometry which may occur in the real world.
The method firstly chooses an origin and then proceeds to
obtain the x axis and y axis along the lane markings which
separate the opposite directions of moving vehicles. For the
given vehicles v! and 1v?, the figure lists two examples of
how to extract the road-based positions. Finally, it is able
to represent the vehicles’ information, which contains the
following items:



Softmax Sigmoid Softmax Sigmoid
o _ v ) S - v
FC x n, FC x n,
1 1
> ILSTMxn;, > LSTMxn; > .-

Fig. 4: Intention Prediction Network Structure

chn4, chn4
1 1
. » LSTMxns; > LSTMxn, » -

Fig. 5: Trajectories Prediction Network Structure

e Local x and y based on the road-based coordinates
« Vehicle length and width

o Section ID i

e Lane ID /

4) Vehicle Tracking and Trajectory Smoothing: After the
positions of vehicles have been transformed into the local
(road) coordinates, we apply the tracking algorithm to track
each car. Meanwhile, we smooth each vehicle’s trajectory.

In the system, we use vehicle position as the state variable.
F is the state transition matrix and H is the measurement
matrix. V,(n) and V,(n) represent the system noise and
measurement noise, respectively.

B. Driving Behavior Prediction

1) Intention Prediction: For the driving behavior task,
we construct the network with an LSTM layer which gets
the Direction Intention d and Yield Intention y (see Figure
4). The direction intentions include Going Straight (GS),
Turing Left (TL) and Turning Right (TR). The yield intention
indicates the prediction of which car will go through the
potential crash point first. For the interacting driver pairs
with intentions of GS and 7L or TL and TR, the input
states include the positions, velocities, heading angles and
relative distance to the intersection center of both cars of
each pair. During the interaction procedure, the yield motion
also changes based on the counterpart’s behavior. This will
contribute as a key factor to the next-step motion planning
module and help to generate a safer and feasible trajectory.

2) Trajectories Prediction: Based on the results of di-
rection and yield predictions, a more detailed trajectory
prediction procedure includes more information on the future
trajectories. In Figure 5, F; includes information on velocities
and positions of the target car. A reference trajectory is
first selected according to the intention prediction results.

Fig. 6: Reference trajectories according to the direction
intention. Follow the center of the lanes.

TABLE I: Comparison between different stabilization meth-
ods. DS means down sampled.

Method Processing Time (s/frame) SSIM

ORB + ECC w/o DS 1.7609 0.8032
ORB + ECC, ! DS 0.6724 0.7759
ORB + ECC, i DS 0.4779 0.7324
ORB + ECC, % DS 0.4071 0.7160
SURF + ECC w/o DS 0.6599 0.81896
SURF + ECC, ! Ds 0.6627 0.7758
SURF + ECC, 1 DS 0.4960 0.7336
SURF + ECC, g DS 0.3750 0.7166
ECC, % DS 0.9.3450 0.9404
ORB 3.4665 0.8278

SIFT 13.575 0.8370

SURF 2.1060 0.8390

According to the reference trajectories (see Figure 6) with
intersection geometry information, the velocities, heading
angles and relative distance to the intersection center of both
cars, the network can predict the future trajectories.

V. EXPERIMENT

In this section, we show the results for methods corre-
sponding to different data processing procedures.

A. UrbanFlow

1) Video Stabilization: In the previous section, we have
introduced the combination of the feature-matching-based
and homography-based alignment methods. The result com-
pares different combinations of feature-matching-based and
homography-based video stabilization algorithms with var-
ious down-sampling ratios. Table I shows the results of
different choices of algorithms and the corresponding struc-
tural similarity (SSIM) score which is used to calculate the
similarity between any two images. The higher SSIM score
indicates a better stabilization result.

We finally chose the Speeded Up Robust Features (SURF)
detector combined with ECC and % down-sampling to get a
relatively good tradeoff between stabilization and compu-
tational efficiency. We visualize images with and without
stabilization in Figure 7 with four sub-figures. The Reference
Frame shows the anchor frame for the stabilization. Ideally,
the roads can be perfectly aligned in the Reference Frame and
Target Frame. Before stabilization, the Reference Frame and
the Target Frame are blended, which is shown as the Target
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Fig. 7: Two blended frames before stabilization and after
stabilization

Fig. 8: Vehicle detection results of Retinanet algorithm for a
selected frame.

TABLE II: Detection Result

P/T Car (Train / Test) | No Car (Train / Test)
Car 387 72369 170

No Car 3/72 070

Grtn 0.95 / 0.994
fLIR 0.97 / 0.995

GITIER 0.97 / 0.996

Blended Frame. It is obvious that the two frames have a big
misalignment. After the stabilization of the frame, the result
is shown as the Stabilized Frame and then the new blended
result is shown as the Stabilized Blended Frame.

2) Vehicle Detection: By using Retinanet to do vehicle
detection, we trained a good model to detect vehicles from
a bird’s-eye view. For testing, only 97 out of 2322 vehicles
are not detected, giving an accuracy of 96%, and the average
intersection over union is 92%. This accuracy is high since
the vehicles in the test cases are similar to the ones during
training. False positives were removed using non-maximum
suppression and thresholding the confidence score for a
prediction. If vehicles such as a bus appear in testing but
had never appeared in training, these vehicles will not be
detected, since they are too different from what the network
has learned both in size and color. The images with incorrect
detection were relabeled to fine-tune the network.

For each frame, RetinaNet is applied to detect vehicles.
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Fig. 9: Comparison between vehicle trajectories with and
without smoothing.

Fig. 10: Scenario of interacting vehicles pair.

Figure 8 visualizes one of the testing images after applying
the vehicle detection method. The original image-based
positions of all the red bounding boxes detected as vehicles
are saved. Table II shows the quantitative results of training
and testing. GT is the abbreviation for the area of Ground
Truth and PR is the abbreviation for the area of Predicted
Results.

3) Trajectory Smoothing: Most existing vehicle trajectory
datasets, such as NGSIM [3], only provide raw trajectories,
which are noisy and therefore hard to use directly due
to the jerky trajectories. Figure 9 visualizes the results of
the trajectories for one of the vehicles with and without
smoothing. The Figure 9(a) shows the result with equal
scaling of the x and y axes. It is hard to find the difference
between the trajectories with (RED) and without (GREEN)
smoothing. However, when the x axis is enlarged in figure
9(b), the trajectory without smoothing (GREEN) is much
jerkier than the one with smoothing (RED).

Finally, the video! includes all the dynamic results pro-
posed in the pipeline.

B. Prediction

1) Scenario: We tested the algorithm based on the Ur-
banFlow dataset. We selected pairs of interacting vehicles
with the driving directions of GS and TL or TL and TR
from the dataset. Figure 10 shows a pair of two interacting
vehicles. The blue rectangle with E is the ego car and the
green rectangle with 7 is the target vehicle. The input state

Ihttps://youtu.be/oTPgLUAN_cU
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Fig. 11: The direction and yield prediction result of selected interacting pairs. GT means that the corresponding intention is
the ground truth of the selected pair. Direction intention of ego cars is noted in parentheses in the ego car legend.
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Fig. 12: Direction and yield intention as well as MSE of
trajectories prediction for the target vehicle.

includes velocities, heading angles and relative distances to
the intersection center of both ego and target cars.

2) Intention Prediction: According to the described state,
the intention network predicts the direction intention as well
as the yield intention. Figure 11 visualizes the results of
direction and yield intentions. According to the coordinate
transitions, all the ego cars approach the intersection (inter-
section center is coordinate (0,0)) from the bottom. Different
colors with marker e show the results of direction predictions
when the target vehicle reaching that position and the other
colors with marker X present the yield intention prediction
results. Figure 12 shows the prediction accuracy with respect
to the distance to the start of intersection for the target

TABLE III: MSE of trajectory predictions.

Method Average MSE (m)
LST™M 3.71
LSTM w/ intention 0.89
LSTM w/ intention and reference trajectory 0.18

vehicle.

3) Trajectory Prediction: We compared the mean squared
error (MSE) results between the trajectory prediction with
and without intention results and reference trajectories. Table
IIT presents the average MSE for different methods and
Figure 12 shows the MSE with respect to the distance to
the start of intersection for the target vehicle. When pass
the start position of the intersection, the trajectories become
diverse due to various direction intentions, as a result, the
MSE of trajectories prediction increase.

VI. CONCLUSIONS

In this paper, we propose a pipeline called UrbanFlow
which is used to deal with traffic data collected by drones
in urban environments. The raw data are processed through
video stabilization, vehicle detection, map construction and
coordinate transformation, vehicle tracking, and trajectory
smoothing. Moreover, the paper proposes a method for
driving behavior clustering and tests it on the UrbanFlow
dataset. The following work for improving the dataset will
focus on increasing the quantity of the dataset. More types of
urban scenarios like T-intersections, stop-sign intersections
and yield intersections will be included in the dataset.
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