GA3C Reinforcement Learning for Surgical Steerable Catheter Path
Planning

Alice Segatol, Luca Sestini!, Antonella Castellano? and Elena De Momi'

Abstract— Path planning algorithms for steerable catheters,
must guarantee anatomical obstacles avoidance, reduce the
insertion length and ensure the compliance with needle kine-
matics. The majority of the solutions in literature focuses
on graph based or sampling based methods, both limited
by the impossibility to directly obtain smooth trajectories.
In this work we formulate the path planning problem as a
reinforcement learning problem and show that the trajectory
planning model, generated from the training, can provide the
user with optimal trajectories in terms of obstacle clearance and
kinematic constraints. We obtain 2D and 3D environments from
MRI images processing and we implement a GA3C algorithm
to create a path planning model, able to generalize on different
patients anatomies. The curvilinear trajectories obtained from
the model in 2D and 3D environments are compared to the ones
obtained by A* and RRT* algorithms. Our method achieves
state-of-the-art performances in terms of obstacle avoidance,
trajectory smoothness and computational time proving this
algorithm as valid planning method for complex environments.

I. INTRODUCTION

Keyhole-neurosurgery (KN) is a minimally-invasive proce-
dure performed to reach targets located deep inside the brain,
through a very small hole in the skull, called “burr hole” or
“keyhole” [1]. Through the keyhole, catheters can be inserted
into the brain for biopsy and therapies, as drug delivery or
electrical stimulation. Modern KN is trying to substitute the
use of a rigid needles with steerable ones, in order to increase
their dexterity [2]. Path planning for steerable devices is a
very challenging task: an automatic path planning algorithm
for such needle has to take into consideration the maximum
degree of curvature admitted by the needle, guaranteeing the
clearance from anatomical obstacles by considering also the
diameter of the needle.

The goal of this work is to develop a learning-based path
planner, able to pre-operatively assist the surgeon, estimating
optimal curvilinear trajectories (CTs). Given an environment,
as the one shown in Figure 1A, the path connects a surgeon-
defined entry point to a target, guaranteeing the clearance
from anatomical obstacles such as blood vessels and cor-
ticospinal tracts, and complying with catheters kinematic
limits. The proposed method, by solving the path planning
problem with a reinforcement learning approach, permits to
save computational time by avoiding subsequent optimization

*This project has received funding from the European Unions EU
Research and Innovation programme Horizon 2020 under grant agreement
no 688279.

Department of Electronics, Information and Bioengineering, Politecnico
di Milano, Milano , Italy alice.segato@polimi.it

2Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University
and IRCCS Ospedale San Raffaele, Milan, Italy

B Segment |
\
Segmentll noyetail

Interlocks

7
Segment Il _
Segment IV
(hidden) Individual

Segment .
Bevel Centeraxis

P /
Leading
segment

Steering
offset

Fig. 1: (A) Representation of the 3D Environment with target structure (yellow) vessels
(red), corticospinal tract (blu) and a curvilinear trajectory (green). (B) Illustration of
the PBN catheter showing the four segments interlocked by means of Dovetail joints;
the IV segments can slide on each other along the centre axis, creating an offset which
allows steering of the catheter (courtesy of Leibinger, 2016).

steps presented in previous approaches and increases planned
trajectory accuracy.

This project is carried on in the context of EUs Horizon
EDEN2020 aiming at advancing the current state of the art
in neurosurgical technology, by a new biomimetic flexible
probe (PBN) [3], shown in Figure 1B.

II. RELATED WORK

Path planning problem can be defined as finding a set

of subsequent positions, connecting a starting point and a
target point, avoiding collisions with known obstacles. When
applied to steerable needles, as the PBN, path planning has
to take into consideration also the kinematic constraints of
the needle and its non-holonomicity. In the context of path
planning applied to steerable needles, a variety of approaches
has been proposed in literature.
Duindam et al. proposed a 3D motion planning for a steer-
able needle as a dynamical optimization problem with a
discretization of the control space using inverse kinematics
[4]. This approach, based on the kinematic model of the
needle, is able to provide the region of feasible paths, but
has little capability to take into account other crucial aspects
as the obstacle avoidance. Potential field methods, originally
introduced in [5], are based on the computation of a field
that increases getting closer to the obstacles, which has
the disadvantage of determining local minima. To address
this problem, in the context of brachytherapy procedures, Li
et al. [6] suggested a path-planning method with obstacle
avoidance capability, based on an artificial potential field
where a conjugate gradient algorithm is used. Clearance from
anatomical structures can be achieved, but the method does
not allow to optimize the trajectory in order to minimize its
length or to meet specific kinematic constraints.

" (Environment 1 Worker 1) ™\ / i Global Network ‘\
- Actor \J \“,
= <> Policy 7 Advantage V
NG T_\
Acti —
a :R Environment 2 Worker 2
State 4 <«
st at.
L J
Jz0) = =\ Worker n
Environment n Convolution + Pooling Layers Fully Connected Layers ~ LSTM
o
ol 77 /
© \ Gpu oot | /
\ Input.
& 4

Fig. 2: (A) The actor takes as input the state (s,) and outputs the best action (a, € A). It essentially controls how the agent behaves by learning the optimal policy (7). The critic,
on the other hand, evaluates the action by computing the value function (Q(s,a)). (B) the Network used by GA3C. The pink box contains the global neural network, having the
current frame (f;) as input and the Policy 7 and the Advantage V as outputs, and running on the GPU. The blue box contains the n workers running in parallel, each one with

a copy of the global network, and periodically interacting with it.

A. Graph based method

Dijkstra algorithm [7] and A* [8] are two typical graph-
search methods based on the discrete approximation of
the planning problem. They are “resolution-complete” algo-
rithms, as they can determine in finite time weather a solution
exists, and “resolution-optimal” since they can estimate the
best path, according to length, given the specific resolution
of the approximation. Park et al. presented a diffusion-
based motion planning for a non-holonomic flexible needles
[9]. Although graph-based methods are relatively simple to
implement, they require a considerable computational time
as the environment size increases [10].

B. Sampling based method

Based on the random sampling of the working space,
sampling-based methods avoid the discretization typical of
graph-based solutions, strongly reducing the computational
time required to solve the path-planning problem. Rapidly-
exploring Random Tree (RRT) [11] is an exploration al-
gorithm for quick search in high-dimensional spaces, more
efficient than brute-force exploration of the state space. Its
enhanced versions, RRT* [12] and bidirectional-RRT [13]
are “probabilistically complete” as the the probability to
find an existing solution tends to one, as the number of
samples goes to infinity, and “asymptotically optimal”, as
they can refine an initial raw path by increasing the sampling
density of the volume. In neurosurgical context, Caborni et
al. [14] proposed an RRT-based approach, limited to catheters
moving on 2D space.

C. Learning based method

Graph-based and sampling-based methods, considered the
standard approaches for path planning, are limited in the con-
text of KN with flexible catheters, by the impossibility, unless
using further steps, to directly optimize the trajectory in
terms of obstacle clearance and kinematic constraints. Deep
Reinforcement Learning (DRL) has recently been used in the
path planning domain. [15], [16] demonstrate that DRL is
suitable for solving path planning problems. Several studies

[17], [18], [19] about applying DRL in navigation, focus
on static environments, without motion or change of the
environment. [20] applied the DRL approach to a grid path
planning problem, with promising results on small environ-
ments. Hierarchical approaches are also widely researched in
literature [21], [22], [23]. Aleksandra et al. [22] integrated
sampling-based path planning with reinforcement learning
agents for indoor navigation and aerial cargo delivery.
Learning based methods, and in particular reinforcement
learning, are more flexible approaches with respect to graph-
based and sampling-based methods, as those presented by
[24], [25], [26], allowing one to directly include all the
expected features (obstacle clearance, kinematic constraints
meeting, minimum trajectory length) in the optimization
process, without the need of subsequent refinement steps,
which are time-consuming and may still not provide the
optimal trajectory. The goal of this work is to explore
a reinforcement learning approach in the context of KN,
to overcome the above mentioned limitation of classical
and modified versions of sampling-based and graph-based
methods, when dealing with steerable needles.

I1I. METHOD

A. Problem Statement

The problem can be stated as follows: let us consider an
agent operating on an grid, static environment composed of
free cells and occupied cells, corresponding to obstacles. At
every cell the agent can take an action, corresponding to a
movement toward a free adjacent cell (8 possible actions in
2D, 26 in 3D). Actions moving the agent toward an occupied
cell or outside the environment are considered inadmissible.
Given a starting cell, S(xs,y5,25), placed on the skull, and a
target cell G(xg,y,.2¢), placed inside the brain and defined
by the coordinates of their center, the task is to find a path
(P={Xo, X1, .., Xy—1}, X0 =S, X,—1 = G) as an admissible
sequence of free cells.

B. Environment Creation

High-resolution MR images of seven healthy subjects were
acquired on a 3T Ingenia CX scanner (Philips Healthcare,
Best, The Netherlands). The ethical committee of Vita-Salute
San Raffaele University and IRCCS San Raffaele Scientific
Institute approved the study, and all subjects provided signed
informed consent prior to MR imaging. The MRI protocol
included: a 3D T1-weighted sagittal Fast-Field Echo (acqui-
sition matrix: 320 x 299; voxel size, 0.8 x 0.8 x 0.8 mm;
thickness: 0.8/0 mm gap;) a 3D high-resolution time-of-flight
MR angiography (TOF-MRA) (acquisition matrix: 500x399;
acquired voxel size, 0.4x0.5x0.9 mm; reconstructed voxel
size: 0.3 x 0.3 x 0.45 mm; thickness: 0.45/-0.45 mm gap)
and high angular resolution diffusion MR images (HARDI)
with diffusion gradients applied along 60 non-collinear direc-
tions (acquisition matrix, 128 x126; voxel size, 2x2x2 mm,;
thickness, 2/0 mm gap). Both the ToF and the T1-weighted
images were segmented by thresholding in order to obtain,
blood vessels and brain models, respectively. From HARDI
images, MR Tractography reconstruction of the corticospinal
tracts (CST) based on a g-ball residual bootstrap algorithm
were obtained using Diffusion imaging in Python (Dipy)
software ([27]; [28]). The three datasets: 1) ToF for vessels,
2) DTI for CST and 3) T1 for brain cortex were registered,
allowing to obtain 3D binary label maps (dimension 256 x
256 x 256 mm). The label maps were used to generate the
3D map, with each voxel corresponding to a cell (free=0 or
occupied=1, depending on the label). In addition, from every
3D map, a 2D map was obtained by considering the central
slice, parallel to the frontal plane. The term “map” indicates
the constructed environment. For each of the 7 patients 1 3D
and 1 2D map were generated, for a total of 7 2D and 7
3D maps, and used as the environment in the reinforcement
learning model.

C. GA3C for Keyhole Neurosurgery Trajectory Planning

In reinforcement learning, an agent interacts with an
environment (€). At each time step (¢), the agent receives,
from the environment, its current state (s;) and selects an
action (a;) from a set of possible actions (A), according to
its policy (7), such that:

m(s) = a (1)

In response, the agent receives the next state (s;41) and a
scalar reward (r;), according to a predefined reward function.
The goal of the agent is to determine an optimal policy 7* al-
lowing it to take actions inside the environment, maximizing,
at each ¢, the sum of discounted rewards R, = ZIT,:t y’"’ v,
with 7, in range (0,1], called “discount factor”. The value
function V:

V(s) =E[Ri|s; =] (2)

gives the expectation of R, given the current state s;. The
state-action value function Q:

O(s,a) = E[R/|s; = s,a; = al) (3)

gives the expectation of R, according to the current state s;,
after taking an action a;, according to the current policy (7).

In this work, the reinforcement learning problem is ad-

dressed with the Asynchronous Advantage Actor-Critic on
a GPU (GA3C) algorithm [29][30], which combines Deep
Q-Network (DQN) with Actor-Critic (AC) algorithms, and
performs learning using an asynchronous approach.
The GA3C algorithm is actor-critic (AC) because it has a
separate memory structure to explicitly represent the policy
7, independently from the value function V (Figure 2A)
[31]. The critique learns to approximate V, by means of a
“temporal difference (TD) error”, defined as:

TD=r,+yV(sis1)—V(s) (4)

The actor learns to approximate the policy 7(s;).
Advantage Actor-Critic algorithms, iteratively learn the pol-
icy 7 performing update steps proportional to the advantage
function ADV (s;,a;), defined as:

ADV = Q(sr,a;) =V (st) (5)

With respect to normal Actor-Critic, which performs up-
date steps proportional to the value function only, using
ADV (s;,a,) helps reducing the high variance of policy net-
works and stabilizes the model [29].

The method is also asynchronous: it consists of a global
network, whose copies are assigned to independent agents
named “workers”, whose number is equal to the threads
available on the CPU. Every worker interacts with a copy
of the environment, and periodically updates the global
network. Since every worker is independent, the updates hap-
pen asynchronously, guaranteeing a very diverse experience
available for training.

D. Network Structure

In Figure 2B the structure of the global network is
reported. The network starts with convolutional layers to
process spatial dependencies. At each ¢, it takes as input
a “frame” (f;), the binary map with start and target cells
colored in red and green, respectively. The convolutional
layers are followed by a Long Short-Term Memory (LSTM)
network to process temporal dependencies between consec-
utive frames. Finally, the LSTM net is followed by the actor
and the critic layers. The actor is implemented through a
softmax layer, having as many outputs as the number of
actions. The critic is implemented by a fully connected
layer, consisting in one output neuron having linear activation
function. Actor and critic weights on the network are defined
as 6y and 6, respectively. Each worker gets a copy of the
global network. For convenience, actor and critic weights
for a specific worker will be named 6 and 6, respectively.
Each worker interacts with the environment and collects
experience, storing, in a buffer B, a transition for each ¢
(B ={si,ai,ri,sit1}, i =0..,7). Once the worker’s experience
history is large enough (¢ = f,,4x), the buffer B is used to
compute the sum of discounted rewards (R;) and advantage
(ADV (sy,a,)), which, in turn, are used to calculate value loss,
L,:

L,=Y (R —V(s;,6;)) (6)

and policy loss, Lp:

L, = —log(n(s;,) ADV (s,a,6;,6{) — B -H(x(s:, 6]))
()
L, contains an entropy term (H) with 8 in (0,1], in order to
improve exploration by discouraging premature convergence
to suboptimal deterministic policies[29]. The worker then
uses L, and L, to compute the gradients A91' and Agy:

(9)(10)

and use them to update the global network parameters.
Once the global network is updated, the worker resets its
own weights to the ones of the global network, the buffer B
is emptied, ¢ is reinitialized to 0, and exploration is restarted.
The pseudocode for the algorithm is presented in Algorithm
1.

Ae‘/l = Ve\// (Lv) and Ael/ = Vel/(Lp)

Algorithm 1 A3C - pseudocode for each actor-learner thread.

/I Assume global network actor-critic weights 6, and 8y
/I Assume worker specific actor-critic weights 6, and 6]
/I Assume global counter T
Initialize thread step counter ¢ < 1

1: repeat

2: Reset gradients: d6 < 0 and d6y < 0

3 Synchronize thread parameters: 6] = 6 and 6, = 6y
4 Istart =1

5: Get state s,

6: repeat

7 Perform a, according to policy 7(s;;6])

8 Receive reward r; and new state s;41

9: tt+1

10: T+T+1

11: until terminal s; or if ¢ — tyur == tnax

R — 0, for terminal s;
T Vs,

13: foric{r—1,...,t4an} do

for non —terminal s,

14: R« ri+ YR

15: compute gradients Ael/ and Agy

16: accumulate gradients wrt 6y: d6) < d6 —|—A911
17: accumulate gradients wrt Oy: dOy < d6y + Ay

18: update of 6 using d6 and of 6, using d6y
19: until 7 > T4

E. Reward Function

The reward function associated with each transition is
shaped in order to make the agent learn to optimize its
trajectory, according to three main requirements:

1) path length minimization
2) obstacle clearance maximization
3) needles kinematic constraints

The reward r; is defined as:

k,, target reached
—k1-Dy, -7 —ka-exp(a/m) —k3- ”L/Q — Kobst

(11)
A positive constant reward k,, is given upon reaching the
target.

r(s,,at) =

@ St. a;4 .S 1
a, 2 St
St+1. G at bt B

Sts1

Fig. 3: (A) « is the angle between the current action a,, connecting the current state
s, with the new one s;;; and the vector connecting s; and the target G. (B) B is the
angle between the current action a; and the previous one a,_;.

In case the target is not reached, a negative reward is given
according to:
o path length minimization, with a reward proportional
to the distance Dy, 71 between the new state and the
target, defined as:

DSHI*T = \/(x“'erl 7x8)2 + (ysprl 7yg)2 + (ZSHI - Zg)2
(12)

« needles kinematic constraints, with two rewards given
proportionally to two different angles: the angle o,
between the action g, and the vector connecting the state
sy and the target G; the angle 3, between the action a;
and the previous one a,_;. The two angles are shown
in Figure 3.

« obstacle clearance maximization, with a constant nega-
tive reward k,ps; given if the agent is in a cell with the
minimum distance from obstacles d,, < 1 pixel/voxel .

kv, k1, ko, k3 and ks are constant values used to modulate

the impact of the different terms on the total reward. In
this context, the values assigned to each constant were
determined using a grid-search approach and are shown in
table 1.

TABLE I: Reward weights

kw ky kZ k3 kobst
6 || 132 || 1/5 || 172 |[1)2

F. Exploration Strategy

A critical aspect in reinforcement learning is balancing
agent’s exploration of the environment and exploitation
of the gained knowledge. In this work a combination of
Boltzman and Bayesian exploration was used.

Boltzman exploration [32] exploits the uncertainty con-
tained on the estimated policy, by picking up actions ac-
cording to their softmax value. An additional parameter

-
1
1.0 - -
0.8 - o —T e~
— 0.6 -
S T 4o
= i T fie i
el =l
i
0.2 1
GA3C
A*
0.0 : : .
e, 4, A, 57
) < ”
O¢s Ticy. 2oy e O

Fig. 4: The presented solution (GA3C) is tested against A* algorithm one 2D test map,
not used for training, on 20 computed trajectories.The box-plots resume the obtained
results in terms of path length, maximum curvature, average and minimum distance
from obstacles. Each value in the box-plots is normalized in the range [0,1]. Statistical
significance of Mann-Whitney U test is also reported for each feature (* p < 0.05, **
p <0.01).

7(t) is used to control the probability distribution of the
softmax output, and it is annihilated over time (¢), gradually
turning exploration (uniform probability distribution over
all the possible actions) in exploitation (high probability
associated to actions with high softmax value). The Bayesian
exploration exploits the agents uncertainties about its actions,
as done by Bayesian Neural Networks, by introducing a
dropout layer as Bayesian approximator [33]. The percentage
of dropped nodes is annihilated over time, gradually turning
exploration in exploitation.

G. Training Strategy

Among the 7 maps available, 6 were used during the
training phase of the model. In order to train the model, 12
workers operated in parallel (one for each available thread
in the CPU). At every episode a new starting point was
randomly chosen among the available free cells, and a new
target point was chosen. Additionally, at every episode, each
agent was assigned a different map among the 6 available for
training, in order to encourage its ability to learn the correct
policy, independently from the specific environment, starting
point or target point. The same strategy was followed to train
both the 2D and the 3D models.

IV. EXPERIMENTAL RESULTS
A. Hardware Specification

We performed our experiments on a Linux machine
equipped with a 6-core i7 CPU, 16GB of RAM and 1
NVIDIA Titan XP GPU with 12GB of VRAM.

B. Experimental Protocol

The same experimental protocol was followed for both
the 2D and the 3D models. Experiments were carried out
with “leave-one-out” cross-validation approach. The model
was trained, in turn, on 6 maps, and tested on the remaining
one. A total amount of 20 couples of starting points (located

1.0 4 -
T
0-8_ H
* H
— HE
— 0.6 1 - e
E] {
., H P —
; | %k
0ad Q ——
0.2 4 ﬁ +
- = GA3C
RRT*
0.0 v
Lo A7, 4, A7
) CIs <) N p.
A CU/], QO,S’ O’S(

Fig. 5: The presented solution (GA3C) is tested against RRT* algorithm on the 3D test
map, on 20 computed trajectories.The box-plots resume the obtained results in terms
of path length, maximum curvature, average and minimum distance from obstacles.
Each value in the box-plots is normalized on range [0,1]. Statistical significance of
Mann-Whitney U test is also reported for each feature (* p < 0.05, ** p < 0.01)).

on the skull) and target points (located inside the target
area) were identified, and a trajectory for each couple was
generated using the trained model. In order to assess the
quality of the proposed method, the obtained trajectories
were compared to the ones obtained by means of two
standard algorithms: A*[8] and RRT*[12], for 2D and 3D,
respectively.

The obtained trajectories were evaluated considering their
length, the minimum and average distance from obstacles,
and the maximum curvature. As the number of samples for
each map was small, non-parametric statistics was used [34].
To evaluate differences between each pair of methods, a
pairwise comparison for each feature was run, through Mann-
Whitney U test (U < 127, p < 0.05).

C. Evaluation

1) GA3C vs A* on 2D environments: The obtained 20
trajectories were analyzed; Figure 4 shows the results on the
testing map.

2) GA3C vs RRT* on 3D environments: Analogously to
the 2D case, the obtained trajectories were analyzed; the
obtained results are shown in Figure 5.

Tables III and IV show the computational time required to
compute the trajectories, and a smoothness index, obtained
by normalizing the maximum value of curvature for each
path: lower values correspond to higher smoothness of the
path. Both computational times and smoothness indexes are
reported with the 25% and 75% quantiles, and median value.

TABLE II: Computational times and Smoothness indexes on 2D test map

Comput. Tme Smoothness
Case 25t Median 75t 25t Median 75t
GA3C 0.464s 0.699s 1.016s 0.358 0.358 0.500
Ax 0.009s 0.009s 0.013s 0.358 0.439 0.750

'r_lll. H

i i
i

Fig. 6: Path connecting the same starting cell and target cell obtained through GA3C
model (A) and A* algorithm (B) on a 2D map. Black cells correspond to obstacles,
white cells correspond to free space.

TABLE III: Computational times and Smoothness indexes on 3D test map

Comput. Tme Smooth. Index

Case 25t Median 75h 25t Median 75t
GA3C 0.087s 0.109s 0.118s 0.090 0.095 0.125
RRT* 0.05s 0.053s 0.069s 0.286 0.352 0.352

V. DISCUSSION

In this paper we presented a grid path planning method
using GA3C Deep Reinforcement Learning, and we tested it
in the context of minimally invasive neurosurgery.

When compared to A* and RRT* algorithms, the proposed
method showed a superior behaviour, in terms of smoothness
and safety of the generated trajectories. When applied to 2D
and compared to A* (Figure 4), the proposed method was
able to generate trajectories with an higher minimum distance
from critical structures. The maximum curvature reached was
globally lower, making the paths suitable to meet kinematic
constraints of the PBN, as proved by the smoothing index
in Table II. Finally, the length was in general comparable
(average difference: 0.73, standard deviation: 2.32).

Figure 6 shows a comparison between trajectories gen-
erated by GA3C and A* on a 2D map, highlighting the
higher smoothness and obstacle clearance of the trajectory
obtained with the proposed method. When applied to 3D
and compared to RRT* (Figure 5), the proposed method was
able to generate trajectories with significantly lower length
and significantly higher smoothness (Table III). Regarding
the minimum distance value, we can observe that the paths
are always at a feasible secure distance from the obstacles.
However, the 3D environment introduces far more obstacles
than a 2D environment and forces the path minimum dis-
tance to be lower. Figure 6 shows a comparison between
trajectories generated by GA3C and RRT* on a 3D map,
highlighting the higher smoothness and lower length of the
GA3C generated trajectory, with respect to RRT*.

The computational times, higher with respect to A*
and RRT* (Tables III and IV), are motivated by the more
complex optimization of the trajectories required to the
proposed model, not performed by A* and RRT*. However,
when compared to methods involving subsequent refinement
steps, our method performs significantly faster [26] [28].

In addition to this, the learning-based nature of the
proposed approach, offers several advantages with respect
to graph-based and sampling-based methods: the proposed
model can be continuously improved, by retraining it with

Fig. 7: Path connecting a starting cell (S) and an target cell (G) obtained through
GA3C model in green and RRT* algorithm in yellow, on a Slicer model of a 3D
map. Corticospinal tracts (CST) and vessels are shown in blue and red, respectively.
(A) shows a sagittal view of the whole brain; (B) shows a close-up, highlighting the
higher smoothness of the GA3C generated trajectory, with respect to RRT*.

new maps, making it learn from new unseen data; it is
flexible with respect to optimization strategies, allowing to
menage the trade-off between different requested features
(e.g. accepting to increase the insertion length, to maximize
the clearance from safety regions, or vice versa), depending
on the specific need; it could be trained to adapt to dynamic
environments, as a real brain, where the interaction of the
needle with the tissues, and the resulting deformations, may
require the ability to continuously recompute the optimal
trajectory.

Despite the good results on the considered maps, the models
occasionally fail to generate optimal trajectories when deal-
ing with new maps with severe differences from the ones
they were trained on. This limitation is due to the reduced
number of maps used for training, and could be tackled by
increasing it, allowing the agent to learn how to deal with
higher variability of the environment.

VI. CONCLUSIONS

The present work proposes a novel automatic planner for
steerable needles in keyhole-neurosurgery. Given a model
of brain, a surgeon-defined starting point, and a target, the
proposed method can provide an optimal trajectory, accord-
ing to predefined features as insertion length, clearance from
safety regions, as blood vessels and corticospinal tracts, and
compliance to needle’s kinematics limits. The model is based
on a GA3C algorithm [29] [30], trained exploiting multiple
workers running in parallel on continuously changing maps
and targets, in order to guarantee high generalization in
learning. The optimization of the trajectories, is obtained by
properly shaping the reward function and tuning the weight
coefficients present in it, thus determining the trade-off
between different features. When tested against the standard
A* and RRT* algorithms, the proposed method performed
better in terms of trajectories smoothness and clearance
from safety regions, with significantly increasing length. By
simultaneously optimizing trajectories according to all the
requested features, and not by subsequent refinements, the
proposed method permits to obtain an higher accuracy, with
a sensibly lower computational time.

(1]

(2]

(3]

(4]

[5]
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

L. Joskowicz, “Advances in image-guided targeting for keyhole neu-
rosurgery: a survey paper,” Touch Briefings reports, Future directions
in surgery, vol. 2, 2006.

L. Frasson, S. Ko, A. Turner, T. Parittotokkaporn, J. F. Vincent,
and F. Rodriguez y Baena, “Sting: a soft-tissue intervention and
neurosurgical guide to access deep brain lesions through curved
trajectories,” Proceedings of the Institution of Mechanical Engineers,
Part H: Journal of Engineering in Medicine, vol. 224, no. 6, pp. 775—
788, 2010.

C. Burrows, R. Secoli, and F. R. y Baena, “Experimental character-
isation of a biologically inspired 3d steering needle,” in 2013 13th
International Conference on Control, Automation and Systems (ICCAS
2013). IEEE, 2013, pp. 1252-1257.

V. Duindam, R. Alterovitz, S. Sastry, and K. Goldberg, “Screw-based
motion planning for bevel-tip flexible needles in 3d environments with
obstacles,” in 2008 IEEE international conference on robotics and
automation. 1EEE, 2008, pp. 2483-2488.

0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396-404.
P. Li, S. Jiang, J. Yang, and Z. Yang, “A combination method of
artificial potential field and improved conjugate gradient for trajectory
planning for needle insertion into soft tissue,” J Med Biol Eng, vol. 34,
no. 6, pp. 568-573, 2014.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and G. S.
Chirikjian, “Diffusion-based motion planning for a nonholonomic
flexible needle model,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. 1EEE, 2005, pp. 4600-4605.
R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34-37, 1966.

S. M. LaValle and J. J. Kuffner Jr, “Rapidly-exploring random trees:
Progress and prospects,” 2000.

M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring
random trees,” 2013.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846-894, 2011.

C. Caborni, S. Y. Ko, E. De Momi, G. Ferrigno, and F. R. y Baena,
“Risk-based path planning for a steerable flexible probe for neuro-
surgical intervention,” in 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob).
IEEE, 2012, pp. 866-871.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, ef al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. Ander-
son, D. Teplyashin, K. Simonyan, A. Zisserman, R. Hadsell, et al.,
“Learning to navigate in cities without a map,” in Advances in Neural
Information Processing Systems, 2018, pp. 2419-2430.

L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2017, pp. 31-36.

A. 1. Panov, K. S. Yakovlev, and R. Suvorov, “Grid path planning with
deep reinforcement learning: Preliminary results,” Procedia computer
science, vol. 123, pp. 347-353, 2018.

Y. Kato, K. Kamiyama, and K. Morioka, “Autonomous robot naviga-
tion system with learning based on deep g-network and topological
maps,” in 2017 IEEE/SICE International Symposium on System Inte-
gration (SII). 1EEE, 2017, pp. 1040-1046.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, “Prm-rl: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2018, pp. 5113-5120.

L. Zuo, Q. Guo, X. Xu, and H. Fu, “A hierarchical path planning
approach based on a and least-squares policy iteration for mobile
robots,” Neurocomputing, vol. 170, pp. 257-266, 2015.

J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg, “Motion planning
for steerable needles in 3d environments with obstacles using rapidly-
exploring random trees and backchaining,” in 2008 IEEE international
conference on automation science and engineering. IEEE, 2008, pp.
41-46.

A. Kuntz, L. G. Torres, R. H. Feins, R. J. Webster, and R. Alterovitz,
“Motion planning for a three-stage multilumen transoral lung access
system,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2015, pp. 3255-3261.

A. Favaro, L. Cerri, S. Galvan, F. R. Y. Baena, and E. De Momi,
“Automatic optimized 3d path planner for steerable catheters with
heuristic search and uncertainty tolerance,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2018, pp.
9-16.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt,
M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis
of diffusion mri data,” Frontiers in neuroinformatics, vol. 8, p. 8, 2014.
A. Segato, P. Valentina, A. Favaro, R. Marco, F. Andrea, E. De Momi,
C. Antonella, et al., “Automated steerable path planning for deep brain
stimulation safeguarding fiber tracts and deep grey matter nuclei,”
2019.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928-1937.

M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“Ga3c: Gpu-based a3c for deep reinforcement learning,” CoRR
abs/1611.06256, 2016.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008-1014.

L. Pan, Q. Cai, Q. Meng, L. Huang, and T.-Y. Liu, “Reinforcement
learning with dynamic boltzmann softmax updates,” arXiv preprint
arXiv:1903.05926, 2019.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050-1059.

L. VAJANI, “Probability and statistical-inference-hogg, rv, tanis, ea,”
1978.

