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Abstract— Finding sources of airborne chemicals with mobile
sensing systems finds applications in safety, security, and emer-
gency situation related to medical, domestic, and environmental
domains. Given the often critical nature of all the applications,
it is important to reduce the amount of time necessary to
accomplish this task through intelligent systems and algorithms.
In this paper, we extend a previously presented algorithm based
on source term estimation for odor source localization for
homogeneous multi-robot systems. By gradually increasing the
level of coordination among multiple mobile robots, we study
the benefits of a distributed system on reducing the amount
of time and resources necessary to achieve the task at hand.
The method has been evaluated systematically through high-
fidelity simulations and in a wind tunnel emulating realistic
and repeatable conditions in different coordination scenarios
and with different number of robots.

I. INTRODUCTION

Finding sources of chemical compounds released in the
air using mobile sensing systems finds several applications
in various critical situations. They range from finding explo-
sives in security domains to search and rescue of survivors
in case of natural hazards such as an earthquake.

Although odor source localization has been attracting a
considerable attention from roboticists and environmental
engineers in the past twenty years, it remains a challenging
topic in realistic environments. The complex nature of the
dispersion phenomenon is the main cause of the difficulty.
According to [1], the dispersion is a combination of molecu-
lar diffusion that drives odor patches away from the source,
as well as the advection which is caused by the airflow
that carries the molecules in its direction. As a result of the
dispersion, an odor plume is created that is shaped by the
characteristics of the source as well as the airflow which, in
turn, is affected by the environment.

A large variety of algorithms have already been developed
for odor source localization. They can be classified into
four often overlapping categories [2]: gradient-based, bio-
inspired, formation-based, and probabilistic algorithms.

Gradient-based algorithms simply climb the concentration
gradient to reach the source. This type of algorithms, while
being the most intuitive and computationally light ones, they
perform well only in presence a low-noise odor concentration
signal which in turn requires a relatively long time to find
the source [3].
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Bio-inspired algorithms imitate the search strategies of
living beings such as dogs, fish, moths, etc. [4]. Since
they are very reactive algorithms, they do not need any a
priori information about the environment and its atmospheric
conditions, nor do they need to have a memory of the
previous observations. Nevertheless, due to low performance
of current sensing and locomotion technologies compared
to their biological counterparts, these algorithms are still far
from being reliable in realistic environments [5].

Formation-based algorithms have been recently designed
for multi-robot systems [6]. They allow robots to sample
multiple points at the same time, but since the coordination
between agents is necessary, the method completely relies
on inter-robot communication and relative positioning which
could be challenging to maintain in a realistic environment.

Probabilistic algorithms use the observations made by the
sensing system in the environment to create a belief on
the source position in the form of a probability distribu-
tion function [2]. The belief is updated after every new
observation using Bayesian estimation. The cycle continues
until the probability distribution becomes a Dirac function.
Infotaxis [7], particle-filter-based algorithms [8], and Source
Term Estimation (STE) [9] are the most popular examples
of these algorithms.

Despite being computationally more expensive than the
four other categories, probabilistic algorithms have several
advantages. Firstly, unlike the previously mentioned methods
that provide only the source position, they are able to present
a richer set of information about the environment (e.g.,
[10]) or the source characteristics [9]. Secondly, because
of the probabilistic nature of the methods, the final result
is associated with a measure of uncertainty, which shows
how trustworthy the data are. Finally, compared to the other
categories, probabilistic algorithms are more flexible in terms
of the type of underlying hardware (e.g., static, mobile, single
or multi-agent).

Given the above mentioned advantages, we chose to
leverage a STE algorithm in this work. STE algorithms
rely on a plume model and aim to learn the parameters
of the model while the sensory system gathers data in the
environment. Since the concept is very broad, the algorithm
is not exclusively used for gas sources; depending on the
model, it can be applied to any type of source (e.g., radiation
[11]). Neither is it limited to mobile sensor nodes, as it can
be used with a static sensor network (e.g., [12]).

However, when used on mobile robots, STE algorithms
can be coupled with a navigation strategy which makes
the data collection more time-efficient. Different navigation



methods have already been used with STE in the literature.
Partially Observable Markov Decision Processes (POMDP)
[11] and mutual information maximization [13] are among
the popular methods in this area.

Thanks to the flexibility of STE algorithm, it can also
be used with a distributed sensing system. There could be
several advantages in using a distributed sensing system
for such task, for instance, reducing the necessary time to
achieve the task, making use of diverse resources, or dis-
tributing sub-tasks among assets throughout the procedure.
However, for a distributed sensing system to be advantageous
in comparison to a single sensing asset, it must operate
with an appropriate degree of coordination. Therefore it is
important to understand how much the coordination helps
the performance of the system.

In recent works, such as [14] and [15], STE-related
algorithms are used with a distributed system to achieve
source localization. However, in [15] the algorithm is only
evaluated in simulation using bodiless mobile sensors as
well as an odor field data base. Additionally, the mobile
sensors are supposed to be working in a synchronous fashion,
which could be problematic in a real environment. In [14]
the algorithm is evaluated using real robots using a humid-
air plume, but the motion coordination was fully centralized
and the advantage of the coordination was not sufficiently
investigated and thoroughly benchmarked with single robot
scenario.

Hence, the first contribution of the present work is the
evaluation of an STE algorithm, which was presented and
evaluated in our previous work [16], with three different co-
ordination strategies using up to three robots. The evaluation
was done in a high-fidelity simulator as well as in a wind
tunnel. Additionally, the previously used navigation strategy
is enhanced to reduce the travelled distance even for a single
robot. The new navigation strategy is evaluated separately
along with its key parameters.

In the remaining of this paper, we will present the global
structure of the algorithm in the next section. More detailed
explanation is available in our previously published works
[17] [16]. Then we explain the evaluation process and present
the obtained results. Lastly, in the conclusion, we will discuss
the outcome and present the outlook for this work.

II. METHOD

As mentioned in the introduction, this work is based on
STE which is a probabilistic framework that often regroups
different strategies. The ultimate goal of an STE algorithm,
independently of the strategy, is to estimate the characteris-
tics of the plume which always includes the origin, i.e. the
source position.

When deployed on robotic assets, the general structure
of an STE algorithm consists of two main parts: estimation
and navigation [16]. The estimation part relies on an analyt-
ical plume model whose parameters have to be estimated
throughout the experiment using the data that the robot
acquires. In the navigation part, the algorithm seeks to
maximize the amount of obtained information by sending

the robot to the most informative point in the arena. When a
distributed team of mobile robots is involved, the navigation
part of the algorithm needs to coordinate the moves with
the other robots as well. The cycle between estimation and
navigation continues until the uncertainty in the parameter
estimation becomes negligible for at least one of the robots.

In this work, we have augmented the previous single-robot
algorithm [16] with collaborative strategies for a homoge-
neous multi-robot system. In the remaining of this section,
we first briefly present different components of the single-
robot algorithm and then we explain the scenarios involving
a multi-robot system.

A. Plume Model

For this work, the plume model on which the estimation
relies is chosen to be the pseudo-Gaussian concentration
plume model [18] which describes the time-averaged concen-
tration model for a continuous point source in a laminar flow.
It is presented in Eq. (1), where Q is the source release rate,
ū the average wind speed, (xs, ys) the source position, and
σy the standard deviation of odor dispersion in the crosswind
direction (Y-axis), which is simplified to be a linear function
of the upwind distance from the source (x− xs).

C(Q, xs, ys, σy) =
Q√

2πūσy
e
− (y−ys)2

2σ2y (1)

Assuming the airflow to be aligned with the X-axis, this
equation is applied to all the x downwind of the source
(i.e., ∀x ≥ xs). The concentration is simply 0 for all points
upwind of the source (i.e., ∀x < xs).

Moreover, since we are leveraging a STE method, the goal
of the algorithm is to estimate the parameters of the model.
Therefore, the set of parameters to be estimated for this
model is m = {Q, xs, ys, σy}. As the standard deviation σy
varies along the X-axis, it can be modeled with the following
affine function: σy(x − xs) = a(x − xs) + b. Thus, five
parameters remain to be estimated, making the problem five-
dimensional. The range and resolution of all the parameters
are empirically chosen.

B. Parameter Estimation

The estimation is performed probabilistically using the
Bayesian formulation presented in Eq. (2), where m rep-
resents the set of model’s parameters and D the obtained
data through sampling. The posterior P (m|D) represents the
probability distribution on the parameters values.

P (m|D) =
P (m)P (D|m)

P (D)
(2)

The evidence P (D) being a normalization factor, it can be
neglected. Also, we consider the prior P (m) a uniform dis-
tribution in between the limits of each parameter. Therefore,
the posterior P (m|D) will be proportional to the likelihood
P (D|m) in the parameters limit, and equal to 0 outside.

The likelihood P (D|m) defines the probability of obtain-
ing a set of data, given a set of parameters. In other words,
it returns the likelihood of a set of parameters given the data



that the robot collected up to the present time. It is defined
in [12] as follows:

P (D|m) ∝ exp

(
− 1

2

∑
i

(
(Di − Ci(m))2)

σ2
M + σ2

D

))
(3)

where σM and σD represent the standard deviations of model
and measurement error, respectively. Both errors are assumed
to be normally distributed, with mean on 0.

The sum in Eq. (3) is applied on all samples Di that the
robot gathers during the experiment. Ci(m) is the concen-
tration determined by the plume model for a set of source
parameters m for sample i.

Since there are five parameters to estimate, the posterior
probability density function has to be a five-dimensional
matrix, which is very time consuming to be entirely cal-
culated. The solution to this problem would be to use an
approximation algorithm such as the Markov Chain Monte
Carlo (MCMC) [19] that allows evaluating the posterior
probability function through efficient sampling.

In this work, we use the Metropolis–Hasting method [20].
The important factors in this method are the number of
iterations and the proposal distribution which is chosen as
a 5-D Gaussian function, since the posterior probability
function is also 5-D.

C. Navigation

The main goal of the navigation method is to feed the
estimation part with worthwhile information that lead to a as
precise and as quick as possible localization of the source.
Therefore, it needs to predict which neighboring point is
rich in terms of information to send the robot to. For this
purpose, in our previous work [16] we defined the movement
vector as a weighted sum of two vectors: the one leading
towards the target point that provides more information,
given by Kullback–Leibler divergence calculation, ~VKLD
and the vector that leads to the maximum a posteriori value
of the source position ~Vsource.

~V = α~VKLD + (1− α)~Vsource (4)

The optimal value for the coefficient α ∈ [0, 1] was
deduced to be 0.5 according to experimental results.

In this work however, with the intention of reducing the
travelled distance by the robot, we also take into account
the distance of candidate points from the current robot’s
location. In fact, when the amount of uncertainty is still high
because of lack of information, due to the stochastic nature
of the MCMC algorithm, the maximum a posteriori value of
the source position could change very quickly. This, indeed,
promotes exploration, but makes the robot travel very far
while a closer point could have a similar value.

Therefore, instead of leading the robot towards the max-
imum a posteriori value of the source position, we create a
combined map of two density functions defined on every grid
cell of the environment map: PM (xs, ys), defined in Eq. (5),
is the marginal probability density function for the source
position, and DI(x, y) represents the inverse of the distance

TABLE I
SUMMARY OF COORDINATION STRATEGIES

Strategy Nb of robots Coordination
Individualist 1, 2, 3 Source Declaration
Cooperative 2, 3 Source Declaration

Sample Sharing
Collaborative 2, 3 Source Declaration

Sample Sharing
Movement Coordination

of every point to the current position of the robot, as defined
in Eq (6).

PM (xs, ys) =
∑
Q

∑
σa

∑
σb

P (Q, xs, ys, σa, σb) (5)

where P (Q, xs, ys, σa, σb) is the posterior density function
for all the source parameters.

DI(x, y) = 1/
√

(x− xr)2 + (y − yr)2 (6)

where (xr, yr) is the current position of the robot. DI is
normalized in such a way that the sum of all the values will
be equal to 1. DI is set to 0 for the cell that the robot is
currently positioned on, in order to avoid division by 0.

In order to combine the two density functions we use a
weighted sum defined in Eq.7 where β ∈ [0, 1].

Pcombined(x, y) = βPM (x, y) + (1− β)DI(x, y) (7)

The combined density function contains higher values for
points that have a high potential of containing the source and
that are closer to the robot. Therefore, if two points have
the same probability of containing the source according to
the posterior, Pcombined attributes a higher value to the one
that is close to the current position of the robot. Once the
maximum point of Pcombined is found, ~Vsource of eq. (4)
will point to it.

The value of coefficient β is determined experimentally
and will be discussed in Section III.

D. Coordination Strategies

There are multiple stages on which the robots can join
forces in this framework: sharing samples, coordinating
navigation, and source declaration. For a better understanding
of the benefit of each collaboration technique, we suggest
different strategies with different levels of collaboration.
Then each strategy is evaluated with up to three robots. The
characteristics of the strategies are explained in the following
and a short summary is given in Table I.

1) Individualist Strategy: In this scenario, every robot
performs the algorithm independently, i.e. they do not share
any information with the other teammates. However, the
source declaration of one robot is enough for the entire team
to end the search. Indeed, although this strategy involves a
minimalistic level of coordination, the robots still form a
team, and if one of the teammates reaches the required level
of certainty to declare the source, the other ones do not need
to continue the search.



2) Cooperative Strategy: Cooperation means sharing in-
formation between teammates in support of each other’s
goals. Therefore, in this scenario, the robots share their
acquired samples with the other robots. Since we suppose
a reliable communication among the robots, they are all
supposed to have the same data to calculate the posterior.
However, since the estimation is done stochastically using the
MCMC algortihm, the outcomes could be slightly different
from one robot to another. In this scenario, no coordination is
considered for navigation but the source declaration is done
as a team like in the individualist scenario.

3) Collaborative Strategy: Collaboration is working to-
gether in support of a shared goal. In the collaborative
scenario, the robots not only share their samples with each
other as in the cooperative strategy, but also coordinate their
movements together.

The movement coordination can be defined in different
ways. Here, with the intention of saving time and resources
for the robots, we chose to make use of a task allocation
technique: considering that the current goal of each robot
is a task, it can be achieved by any other robot, since any
collected sample is shared with all the robots. Therefore,
every time a robot decides a new goal position, it verifies
if another way of distributing tasks between the robots
would decrease the total travelled distance by the team. If
so, it makes the necessary swaps and informs the involved
teammates to change their goals. To achieve this, the robots
need to share their current position, as well as their current
goal position with each other at all times. The swap can only
happen for a robot if it is moving towards its goal.

Additionally, in this scenario, since the robots have the
information about their teammates’ current goal positions,
they will take them into account before deciding their next
move. In the estimation part, they temporarily include a
prediction for the outcome of the samples that the other
robots are going to collect in their goal positions and in this
way they reduce the risk of going to the same point.

Similarly to the cooperative scenario, the communication
is assumed fully reliable and fast. In any case, the algorithm
success does not depend on inter-robot communication.
However, the advantages brought by coordination cannot be
leveraged until the communication failure is resolved.

E. End of Algorithm

As mentioned above, the algorithm stops when the un-
certainty on the source parameter estimation becomes very
low. More concretely, the uncertainty indicator is the entropy
of the posterior probability function. When it goes below
a certain threshold the algorithm supposes to have all the
information it needs to declare the source position.

When the source is declared by one robot, all the other
robots stop the process as well. The entropy could be slightly
different for different robots even when all the acquired data
are shared because of the stochasticity of estimation caused
by the MCMC algorithm. However, as previously explained,
when one of the teammates is certain of its estimation, it is
assumed to be enough for the entire team.

Additionally, there is also a timeout that forces the al-
gorithm to stop when the estimation takes more time than
expected which is represented by a pre-established total
number of iterations. This timeout, while being the same for
all the robots, does not necessarily happen for all of them
at the same time because of the assynchronicity of the team.
When one robot reaches its timeout, it does not force the
others to stop as well, they can carry on hoping that one of
them reaches the certainty threshold before the timeout.

III. PERFORMANCE EVALUATION

In order to validate the performance of the algorithm, we
first implemented and evaluated the method in a high-fidelity
simulation, and then in the physical reality with mobile
robots.

The metrics used for the evaluations are as follows:

1) Number of iterations: it is the sum of the number of
iterations of all the robots, which measures the total
computational cost.

2) Experiment duration: it is the time measured from the
start of the experiments until the first robot declares
success and ends the experiment. This metric measures
the response time of the method.

3) Travelled distance: it is the sum of the travelled
distances by all the robots, which measures the total
energy cost.

4) Estimation error: it is the Euclidean distance between
the real source position and the estimated one. This
metric measures the accuracy of the method.

In all four metrics, lower values are better. For single-
robot experiments, the experiment duration is not shown
because it is proportional to the travelled distance. In strategy
comparisons, estimation error is not shown because they
were all similarly very low.

In the remaining of this section, we explain the experi-
mental procedure as well as the outcome.

A. Simulation Experiments

For the simulation experiments, we used Webots [21],
which is an open-source high-fidelity robotics simulation
software. Our simulation environment was extended with an
odor dispersion plugin [22] which allows for a reasonably
realistic simulation of wind and odor plume, based on the
filament-based atmospheric dispersion model proposed in
[23]. The simulated wind flow is quasi-laminar and stationary
in its intensity and direction (i.e., no meandering and wind
gusts). We also used a simulated Khepera IV robot, equipped
with an olfaction and anemometer sensor. A view of the
simulated environment can be seen in Fig. 1.

To make the performance evaluation as fair as possible,
we randomly set the initial position of the robot within the
entire arena. The position of the source remains on extreme
upwind direction, with 1 m distance from the wall on the
X-axis, but is completely randomized on Y-axis. This choice
ensures that the setup is as challenging as possible.



Fig. 1. Simulation environment in Webots, with the source upwind, the
robot downwind, and the odor patches represented with blue hexagons.

Fig. 2. Performance evaluation in simulation with different values for β
in eq. (7).

1) Algorithmic Parameter: Before evaluating the algo-
rithm in different scenarios, we studied the influence of the
ratio β from Eq. (7). Using a single robot, we run ten
experiments for different values of the parameter β. The
results presented in Fig. 2 show that the best compromise
value is 0.75, since it reduces the travelled distance, but lets
the robot travel far enough to find the source with a low
error.

Fig. 3 shows a sample trajectory of one robot on simula-
tion. In this example, the robot started far from the source
and outside the plume. At the beginning of the experiment,
large steps were taken to explore the environment to find
the plume. Once the uncertainty gradually decreased, the
steps became smaller. Finally, for the uncertainty to become
negligible, the robot sampled several points around the
source position area before stopping the algorithm.

2) Coordination Strategy Evaluation: Once the best value
for the algorithmic parameter is found, we studied the
performance of the algorithm using the different strategies
that we defined in Section II-D. Each coordination strategy
is evaluated with up to three robots, and each experiment is
repeated ten times. Fig. 4 shows the results of this evaluation.

Fig. 3. An example of trajectory performed in simulation. The start point,
the trajectory, the measurement points as well as the source position are
shown on this figure. The search ended very close to the source.

Fig. 4. Evaluation results of the algorithm in simulation with the strategies
defined in Table I.

In the individualist strategy, the total number of iterations
and the total travelled distance increase with the number of
robots. The reason is that in the absence of coordination,
more active robots travel more distance together compared
to a single robot. The experiment duration, however, does
not follow this trend. Its median value stays similar, while
the variation drops with higher numbers of robots. This is
due to the source declaration that is done as a team. With
higher number of robots, and due to the stochasticity of
the estimation process, there is a higher chance that a robot
arrives at the required certainty level and declares the source
position. Therefore, even with no coordination among the
robots throughout the experiment, having more robots may
reduce the necessary time to locate the source.

In the cooperative strategy, since the robots share the
acquired data, they tend to reach the same conclusion about
the estimated source position. The median of the number of
iterations does not change much compared to the case of a
single robot. This is due to the fact that the total number
of iterations is equal to the number of acquired samples,
and since all the collected samples are accessible for all
robots, their number should be in the same range as the
one of a single robot. For the same reason, the sum of all
travelled distances follows the same trend. The experiment
duration, however, decreases with higher number of robots
since different points of the environment can be sampled
simultaneously.

The collaborative strategy follows the same trends as the
cooperative strategy in all metrics, in comparison with the
individualist strategy. A slight reduction in travelled distance
and experiment duration can be seen when compared to
the cooperative strategy which is due to the task allocation
technique. Based on intuition, we believe that if the distance
component was not introduced in the navigation, the steps
would be longer (see our previous work [16]) and therefore,
we could see a higher influence of the collaborative strategy
when compared to the cooperative one.



Fig. 5. A view of the wind tunnel environment, along with a Khepera IV
robot, the odor source as well as the overhead cameras

B. Wind Tunnel Experiments

To evaluate the performance of the algorithm in a repeat-
able fashion, our experiments were carried out in a wind
tunnel of volume 18 × 4 × 1.9 m3. The odor source was
represented by an electric pump vaporizing ethanol. A team
of Khepera IV robots, equipped with an olfaction sensor
MiCS-5521 CO/VOC [24] as well as a wind sensor board
[2], ran the algorithm autonomously in a fully distributed
fashion. Overhead cameras in combination with the Swis-
Track software [25] were used for tracking the robot pose
in the wind tunnel, which is sent back to the robot to
be used in the algorithm. The communication between the
robots was done via WiFi, using a UDP protocol. In order
to avoid packet losses, we developed an acknowledgement-
based reliable protocol on top of UDP. Fig. 5 shows a view
of the wind tunnel with the deployed equipment.

Fig. 6 shows one sample trajectory for each strategy with
two robots in the wind tunnel. Similarly to the simulation
experiments, in all the strategies, first, the robots starts
to explore the environment by taking large steps. Once
they find the plume and have less uncertainty about the
source parameters, the steps become smaller and the overall
movement is oriented towards the source. The final expected
source position is usually very close to the real one. It is
worth noting that the more coordination is involved in the
experiment, the smoother the trajectories become. In the
individualist scenario, both robots are alone in performing
the algorithm, therefore each of them needs to collect enough
samples individually. In the cooperative scenario, the data are
shared, therefore each robot needs to collect less samples
and as a result, they progress faster toward the source. In
the collaborative scenario, the trajectories rarely cross each
other, which makes the robots to have less collision risk and
less travelled distance.

Fig. 7 shows the performance of the algorithm in different
strategies with different number of robots. Each set of
experiment was repeated 5 times. Similarly to the simulation
results, the experiment duration decreases with higher levels
of coordination and higher number of robots. Travelled
distance and number of iterations substantially increase in
the individualist scenario, but by very little in the cooperative
and collaborative scenarios.

Fig. 6. An example of trajectory performed in the physical experiments.
The start point, the trajectory, the measurement points as well as the source
position are visible in this figure. The search ended very close to the source.

Fig. 7. Evaluation results of the algorithm in the physical experiments
with the scenarios defined in Table I.

IV. CONCLUSION

We successfully evaluated a distributed implementation of
a STE algorithm using a multi-robot system. The system was
evaluated both in simulation and physical reality. The en-
hanced navigation strategy allowed for a smoother trajectory
compared to our previous work [16]. Different coordination
strategies were proposed in order to verify the advantage and
constraints of using a distributed sensing system and different
coordination strategies.

In the future, we plan to evaluate and adapt this algorithm
to other airflow profiles, for instance when no wind flow is
present or when it is turbulent, and the coordination of a
larger number of possibly heterogeneous sensing assets.
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