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Weakly Supervised Silhouette-based Semantic Scene Change Detection

Ken Sakurada, Mikiya Shibuya, Weimin Wang

Abstract— This paper presents a novel semantic scene change
detection scheme with only weak supervision. A straightfor-
ward approach for this task is to train a semantic change
detection network directly from a large-scale dataset in an
end-to-end manner. However, a specific dataset for this task,
which is usually labor-intensive and time-consuming, becomes
indispensable. To avoid this problem, we propose to train
this kind of network from existing datasets by dividing this
task into change detection and semantic extraction. On the
other hand, the difference in camera viewpoints, for example,
images of the same scene captured from a vehicle-mounted
camera at different time points, usually brings a challenge
to the change detection task. To address this challenge, we
propose a new siamese network structure with the introduction
of correlation layer. In addition, we collect and annotate a
publicly available dataset for semantic change detection to
evaluate the proposed method. The experimental results verified
both the robustness to viewpoint difference in change detection
task and the effectiveness for semantic change detection of
the proposed networks. Our code and dataset are available
at |https://kensakurada.github.io/pscd,

I. INTRODUCTION

Semantically understanding scene changes, such as se-
mantic scene change detection, is one of the new problems
that have attracted attention in the fields of computer vi-
sion, remote sensing, and natural language processing [1]-
[5]. Change detection methods have been comprehensively
studied and applied to many kinds of tasks, such as de-
tecting anomaly using surveillance and satellite cameras,
inspecting infrastructure [6], managing disaster [7], [8], and
automating agriculture [9]. However, the existing methods
of change detection specify a few detection targets, such
as pedestrians and vehicles, for each application. In cases
where images contain various kinds of scene changes, more
semantic information except for these targets is required for
better discrimination in other advanced applications, such as
updating city model for autonomous driving [10].

Semantic scene change detection is a challenging task to
detect and label scene changes on each input image (Fig.[I).
There are several types of scene changes in terms of stuff
and thing classes [11] (Table [I). Figure [2] shows examples of
each change type. One of the most straightforward methods
is comparing the results of (I) pixel-wise semantic segmen-
tation or (II) object detection between input images. Both
of the methods (I) and (II) perform well for thing-to-thing
changes of different class. However, for example, in the case
of thing-to-thing changes of same class and different instance
such as Fig. ] (a), the straightforward method fails to detect
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Fig. 1. Overview of the proposed method. First, the CSCDNet takes an
image pair as input, which is trained using a change detection dataset, and
outputs one change probability mask. Thereafter, the input image pair and
the estimated change mask are fed into the SSCDNet, which is trained using
a dataset synthesized from a semantic image segmentation dataset [12].
Finally, the SSCDNet estimates the pixel-wise semantic labels of each input
image.

the instance changes. The same thing applies to other change
types (Fig. 2] (b), (c)).

Moreover, viewpoint changes of vehicular imagery are
larger than those of images taken by surveillance and satellite
cameras, which makes it complicated to detect changes
between images with large variances of scene depth due to
the problems of image correspondence, appearance change
and occlusion. Needless to say, although large-scale training
datasets make it possible to estimate semantic changes with
an end-to-end learning approach directly, it is labor-intensive
to create large-scale semantic change detection datasets for
each class definition of applications in terms of collecting
and labeling images.

In order to overcome these difficulties, we propose a
novel semantic change detection scheme with only weak
supervision by dividing this task into change detection and
semantic extraction (Fig[T). The proposed method is com-
posed of the two convolutional neural networks (CNNs),
a correlated siamese change detection network (CSCDNet),
and a silhouette-based semantic change detection network
(SSCDNet). First, the CSCDNet takes an image pair as input
and outputs one change probability mask. Thereafter, the
input image pair and the estimated change mask are fed into
the SSCDNet. Finally, it estimates the pixel-wise semantic
labels of each input image.

The SSCDNet can be trained with the dataset synthe-
sized from commonly available semantic image segmentation
datasets, such as the Mapillary Vistas dataset [12], to avoid
creating a new dataset for semantic change detection. The es-
timation accuracy of the SSCDNet depends on that of change
detection. However, in the case of images captured from
a vehicle-mounted camera at different time points, existing
change detection methods suffer from estimation errors due
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TABLE I
Change types and the applicability of each semantic change detection
method. The straightforward methods (I) and (II) are comparing estimated
labels of (I) pixel-wise semantic segmentations and (II) object detections,

respectively.

method
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Fig. 2. Examples of change types. (a) same class and different instance
(cars to other ones), (b) same class stuff (barrier to other barrier), thing-to-
stuff (vehicle to barrier). It should be noted that the definitions of thing and
stuff (i.e. object instance) depends on the dataset and the application.

to differences in camera viewpoints. Hence, we propose a
new siamese network architecture with the introduction of
correlation layers, named as the CSCDNet, which is trained
using a change detection dataset. The CSCDNet can deal
with differences in camera viewpoints and achieves state
of the art performance on the panoramic change detection
(PCD) dataset [13]. Additionally, we incorporate the data
augmentation for the input change mask in the training step
to improve the robustness of the SSCDNet to change detec-
tion errors. For evaluating the proposed methods, we have
created the panoramic semantic change detection (PSCD)
dataset in the hopes of accelerating researches in the field
of dynamic scene modeling.
Our main contributions are as follows:
e We propose a novel semantic change detection network
that can be trained with only weak supervision from

existing datasets.
e Our siamese change detection network, which uses cor-

relation layers that can deal with differences in camera
viewpoints, achieves state of the art performance on the
PCD dataset.

e We create the first publicly available street-level image

dataset for semantic scene change detection.

This paper is organized as follows. In Sec[l, we summa-
rize the related work. Section [[1I] explains the details of the
proposed network and the training method. Section [LV|shows
the experimental results. Section [V] presents our conclusions.

II. RELATED WORK

Many methods for temporal scene modeling have been
proposed. However, most of them focused on detecting

changes or estimating the length of time that each part
of a scene exists for. Semantic recognition is required for
advanced applications based on dynamic modelings, such
as autonomous driving and augmented reality. This section
explains the reason for the proposal of the semantic change
detection method using commonly available semantic image
segmentation datasets.

Change Detection

Change detection methods are classified into several cate-
gories depending on types of target scene changes and avail-
able information. Change detection in 2D (image) domain is
the most standard approach, especially for surveillance and
satellite cameras [14]-[17], which are accurately aligned. A
typical approach models the appearance of the scene from
a set of images captured at different times, against which a
newly captured query image is compared to detect changes
[18].

Some studies formulate the problem in a 3D domain.
Schindler et al. proposed the probabilistic temporal in-
ferences model based on the visibility of each 3D point
reconstructed from images taken from multiple viewpoints
at different times [19]. The work by Matzen et al. [20] is
classified into the same category. In terms of application,
the works by Taneja et al. [21], [22], and Sakurada et al. [7]
might be the closest to our research.

In recent years, significant efforts have been made to
change detection using machine learning, especially for deep
neural networks (DNNs) [6], [10], [13], [23], [24]. There
are mainly two types of formulations, “patch similarity
estimation” and “pixel-wise segmentation”. Patch similarity
estimation has been studied for not only change detection but
also feature, stereo, and image matchings [25]-[29]. Pixel-
wise change detection has been further studied in the context
of anomaly detection, background subtraction, and moving
object detection [24], [30], [31].

Semantic Change Detection

There are few studies on semantic change detection be-
cause most of change detection studies that specify their
target domain, such as moving object, forest, and do not
explicitly recognize semantic classes of change. The work
by Suzuki et al. [5] proposes a method to classify a change
mask using multi-scale feature maps extracted using a CNN.
It does not consider the problem of detecting changes and
estimating correspondences between input images and the
change mask (e.g., in Fig[2] there are different change
regions between two input images). Daudt et al. [1], [2]
detected land surface changes between satellite images. In
the case of land surface change detection of satellite images,
unlike scene change detection, it is unnecessary to estimate
correspondences between input images and the change mask
because the change regions between the input images are
common. However, for street-level scene change detection,
the estimation is necessary because scene objects can appear,
disappear, and move.



TABLE II
Details of the datasets used in the experiments. *(The CSCDNet is trained

with only image pairs of a scene and their change masks of the PSCD dataset.)

PCD [13] . PSCD
Dataset TSUNAMI] G5V | " U211 g work)
Number of images 100 [ 100 20,000 770
Original size 1024 x 224 various 4096 x 1152
Crop size 224 x 224 - 224 x 224
Size in training 256 x 256 256 x 256 256 x 256
Paired v - v
Change mask v - v
Semantic label - v v
Alignment medium | coarse - coarse
Training target CSCDNet SSCDNet CSSCDNet
*(CSCDNet)

III. WEAKLY SUPERVISED SILHOUETTE-BASED
SEMANTIC SCENE CHANGE DETECTION

There are many types of label definitions for semantic
image segmentation depending on the applications; for ex-
ample, ground-level images of indoor and outdoor scenes
[12], [32], aerial and satellite images [33], [34]. Additionally,
the definition of change (e.g., whether changes of moving
objects, display of digital screens, the light of a lamp,
transparent barriers, growth of plants, a pool of water, and
seasonal changes of vegetation are ignored or not) depends
on the application. Thus, there is a large number of combina-
tions of change and semantic definitions. Clearly, it is time-
consuming to create semantic change detection datasets for
each application. Furthermore, as mentioned above (Sec@,
it is necessary to estimate correspondences between input
images and the change mask because the existing change
detection datasets do not explicitly contain that information.

To solve these problems, the proposed method includes
two CNNs, namely, the CSCDNet and the SSCDNet. This
separated architecture enables the method to train the
semantic change detection system with change detection
datasets and commonly available semantic image segmen-
tation datasets. The rest of this section explains the details
regarding the weakly supervised method.

A. Overview

Figure |I| shows an overview of the proposed semantic
change detection method. First, the CSCDNet takes an image
pair as input, which is trained using a change detection
dataset and outputs the change probability of each pixel as
one change mask image. Subsequently, the input image pair
and the estimated change mask are fed into the SSCDNet,
which is trained using a dataset synthesized from a semantic
image segmentation dataset. Finally, the SSCDNet estimates
the pixel-wise semantic labels of each input image. It should
be noted here that the SSCDNet can estimate semantic
change labels and correspondences between input images and
the change mask simultaneously.

We conjecture that these semantic label estimations and
splitting the change mask into the input images can be trained
using a commonly available semantic image segmentation
dataset, such as the Mapillary Vistas dataset [12], and that
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Fig. 3. Synthesis of training dataset for the SSCDNet from semantic image
segmentation dataset [12].

semantic information can improve the accuracy of the change
mask estimation. Table [[Il shows the details of the datasets
used in this paper. The experimental results show the effec-
tiveness of this strategy (Sec[[V). The details of the training
dataset synthesis and the network architectures are explained
in the following subsections.

B. Dataset Synthesis from Semantic Segmentation Dataset

Here, we consider the problem of estimating pixel-wise
semantic change labels of each input image from an image
pair and the change mask. There are several possible methods
for generating training datasets to solve this problem. A
simulator using a photorealistic rendering, such as Virtual
KITTI [35], SYNTHIA [36] and SceneNet RGB-D [37]
datasets, is one solution. Although photorealistic images
might be effective for pre-training, fine-tuning is necessary to
address the domain gaps between synthetic and real images.
To bridge the gap, Shrivastava et al. proposed the method to
learn a model to improve the realism of a simulator’s output
using unlabeled real data [38]. However, it is difficult to
directly apply this method to natural scene images, which are
more complicated than their target domains. Alternatively,
synthesis using real images can be applied. Dwibedi et al.
proposed the synthetic method to generate large annotated
instance datasets in a cut and paste manner [39]. Their study
might be the closest to our method.

Figure [3| shows an overview of the proposed training
dataset synthesis for the SSCDNet from a semantic image
segmentation dataset. First, two RGB images I, I», and their
semantic label images L, Lo are randomly sampled from the
semantic image segmentation dataset. Thereafter, the change
semantic label images L,’, Ly’ are generated by sampling
n semantic labels randomly and removing the others from
each semantic label image (1 < n < min(nmax, N; — 1)).
N; represents the number of the classes that the semantic
label image L; contains. The maximum number of class
samplings nmax should be decided depending on the number
of classes of the semantic segmentation dataset. Finally, the
change mask is generated by superimposing the randomly
sampled semantic labels as binary silhouettes M.

C. Network Architecture

Correlated Siamese Change Detection Network (CSCD-
Net) : We propose the CSCDNet to overcome the limitation
of the camera viewpoints of the previous methods. Figure [
shows an overview of the network architecture of the pro-
posed method. As mentioned in Sec@ Sakurada et al. [13]
found that the comparison between feature maps extracted
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Fig. 4. Network architectures of the CSCDNet, the SSCDNet, and the
CSSCDNet. The architecture of the CSSCDNet is based on the CSCDNet
and its output layer is replaced with that of the SSCDNet. (The images I,
I>, M, L1 and Lo in the SSCDNet are parts of the Vistas dataset [12].)

from input images using a CNN trained with large-scale
image recognition datasets [40] is effective for scene change
detection task. To incorporate this advantage, we chose the
siamese network architecture based on the ResNet-18 [41]
which was pretrained on the ImageNet [42] dataset as the
encoder of the CSCDNet. Each feature map extracted from
two input images in the encoder is concatenated with each
decoder’s output and fed into the next layer of the decoder
whose architecture is based on the network by [43].

Furthermore, for the situation of an image pair with a large
viewpoint difference, this difference has to be considered in
the design of the network structure to improve the detection
accuracy. Exploiting the dense optical flow estimated by the
other methods [40] is not efficient in terms of optimization.
Therefore, we inserted correlation layers [44], which are uti-
lized for the estimation of optical flow and stereo matching,
into the siamese network.

The CSCDNet takes images I; and I captured at times ¢
and ¢ as an input. Each pixel value is normalized in [—1, 1].
The change mask, as the ground-truth, M, is provided to
the output of the network as training data. After the final
convolution layer, the feature maps are evaluated by the
following pixel-wise binary cross-entropy loss:

Lo==Y t(0)In(pe(x)) + (1 - t(x)) In(1 = pe(x)), (1)
where x, t(x) and p.(x) represent the pixel coordinates of
the output change mask, the ground-truth, and predictions
computed using each output feature maps by a pixel-wise
softmax, respectively.

Silhouette-based Semantic Change Detection Network
(SSCDNet) : The architecture of the SSCDNet is based on
the combination of U-Net based on ResNet-18 [41], [43].
Their main differences are the input and output parts. The
SSCDNet takes images I;, I» and M, which are concate-
nated in the channel dimension as a seven-channel image,
for the input. Moreover, after the final convolution layer, the
output feature maps are split in half (the bottom of FigH),

TABLE III
F1score and mloU of change detection for TSUNAMI and GSV datasets.
Siamese-CDResNet represents the CSCDNet without correlation layers.
The CSCDNet consistently outperforms the other methods.

Fiscore (mloU)
TSUNAMI GSV Average
DenseSIFT [13] 0.649 (-) 0.528 (-) 0.589 (-)
CNN-feat [13] 0.723 (-) 0.639 (-) 0.681 (-)
DeconvNet [10] 0.774 (-) 0.614 (-) 0.694 (-)
WS-Net [24] -(-) -(-) -(0.477)
FS-Net [24] -(-) - (= —(0.588)
CDNet [40] 0.848 (0.811) 0.695 (0.672) 0.772 (0.741)
CosimNet-
3layer-12 [45] 0.806 (-) 0.692 (-) 0.749 (-)
Siamese-
CDResNet (Ours) 0.850 (0.815) 0.718 (0.691) 0.784 (0.753)
CSCDNet (Ours) | 0.859 (0.824) 0.738 (0.706) 0.799 (0.765)

and each of the feature maps is evaluated by the following
pixel-wise cross-entropy loss:

Es = - Z Z tl(xv k) hl(pl (X7 k)) + tQ(xa k) ln(pZ(Xv k))v

x k
2
where k is an index of classes (1 < k < K, K: the number
of classes), t(x, k) represents the ground-truth with 1-of-
K coding scheme, p(x, k) represents predictions computed
from each output feature maps by a pixel-wise softmax.

Correlated Siamese Semantic Change Detection Network
(CSSCDNet) : For a comparative study, we proposed the
CSSCDNet as a naive method in the case that the semantic
change detection dataset is available. The architecture is
based on the CSCDNet. After the final convolution layer,
the output feature maps are split in half, and each of the
feature maps is evaluated by the pixel-wise cross-entropy
loss in the same manner as the SSCDNet (in the dash line
box of FigH).

IV. EXPERIMENTS

To evaluate the effectiveness of our approach, we per-
formed three experiments. The first experiment is the accu-
racy evaluation of the change detection with the CSCDNet on
the PCD dataset [13]. The proposed siamese change detec-
tion networks with and without correlation layers and other
existing methods are compared. The second experiment is an
accuracy evaluation of the semantic change detection with
the SSCDNet using datasets synthesized from the Mapillary
Vistas dataset [12]. The data augmentation of the change
mask is also evaluated, which improves the robustness of the
SSCDNet against change detection errors of the CSCDNet.
In the final experiment, we applied our semantic change
detection method to the PSCD dataset, which is different
from the training dataset of the SSCDNet, and show the
effectiveness of our approach.

A. Panoramic Semantic Change Detection (PSCD) dataset

For the quantitative evaluation of the proposed approach,
we have created a new dataset named the PSCD dataset,
which opens up new vistas for semantic change detection.



The PSCD dataset comprises 770 panoramic image pairs.
Each pair consists of images I, > taken at two different
time points ¢1, and 5.

The PSCD dataset contains the change binary masks
C1,C5, the intersection change mask Cg2, the semantic
labels Sy, S, the instance labels D, D5, the attributes
Aj, As (3D object, 2D texture), the privacy masks P;, Ps, the
intersection privacy mask Pjgo. We defined the 67 semantic
classes based on those of the Mapillary Vistas dataset [12],
and integrated the original classes into the NV = 8 classes
based on the map updating applications as shown in Fig

B. Experimental Settings

1) Training dataset generation: We generated training
datasets for the CSCDNet, the SSCDNet, and the CSSCDNet
from the PCD, the Mapillary Vistas, and the PSCD datasets,
respectively. Table [II] shows the details of the dataset. The
PCD dataset is composed of panoramic image pairs I,
I, taken at two different time points 1, and ¢, and the
change mask M,. From the image set [Iy, 2, M,], patch
images are cropped by sliding and resized. Furthermore, data
augmentation is performed by rotating the patches. Thus,
12,000 sets of image patches were generated. The PSCD
dataset is resized and cropped, and data augmentation is
performed in the same way as the PCD dataset.

We also generated training datasets for the SSCDNet
from the Mapillary Vistas dataset [12]. The Mapillary Vistas
dataset for research use contains 20,000 scene images and
the pixel-wise semantic labels with 66 semantic classes
(including an unlabeled class). We integrate them into the
following 8 classes: no change, vehicles, barrier, structure,
lane marking, object (traffic), object (others), human. We
selected the value of ny,x as N — 1 = 7 based on the
ablation study. Figure [3] shows an example of the dataset
synthesized by the proposed method.

2) Data augmentation for robustness to change detection
error: If the change masks that are synthesized from seman-
tic segmentation datasets are directly used in the training
of the SSCDNet, the trained SSCDNet can be vulnerable
to errors in change detection. To improve the robustness
of the SSCDNet to change detection error, we perform the
data augmentation for change mask in training. Specifically,
the change mask is randomly applied to one of the four
morphological transformations (erosion, dilation, opening,
closing) with a random kernel size k£ (1 < k < 20). We
expect that the semantic label information can reduce the
error of semantic change detection due to the error of change
detection by simulating the change mask.

3) Training details: The CSCDNet, the SSCDNet and
the CSSCDNet are trained using four Nvidia V100 GPUs
(CSCDNet in the change detection experiment with the
PCD dataset is trained using eight Nvidia Tesla P100). The
networks are implemented using the PyTorch framework. We
used the batch size of 32. The numbers of iteration for the
CSCDNet, the SSCDNet, and the CSSCDNet are 3 x 104,
1% 10%, and 1 x 10%, respectively. The Adam algorithm, with

ISee the details on the project page [https.://kensakurada.github.io/pscd,

Input images and change mask Estimation Ground-truth

Fig. 5. Example of results estimated by the SSCDNet. (The input and the
ground-truth images are parts of the Vistas dataset [12].)

TABLE IV
mloU of SSCDNet for synthetic data from Mapillary Vistas dataset.

DA for test - v
DA for training - v - v
mloU [ 0.580 0509 [ 0.364 0.432

Ll L2

=}

Change mask M

Change mask with noise M’ Trained with DA

Input images  Predictions by SSCDNet Ground-truth

Fig. 6. Example of results estimated by the SSCDNet trained with data
augmentation of change mask. The left images I1, I2 and M’ show inputs
of the SSCDNet. The top and bottom images in the middle column show
the prediction results by the SSCDNet trained without and with the data
augmentation of change mask. The right images L1, L2 and M show the
ground-truth of the semantic labels and the change mask. (The images I1,
I2, M, L; and Lo are parts of the Vistas dataset [12].)

a learning rate of 2 x 10~%, is used. The evaluations of the
estimation accuracies of the CSCDNet using the PCD dataset
and the CSSCDNet using the PSCD dataset are performed
using the five-fold cross-validation.

C. Evaluation

1) Change detection for the PCD dataset: Table[III] shows
F scores and mean intersection-over-union (mloU) of each
method for TSUNAMI and GSV datasets. The CSCDNet
outperforms the other methods in terms of both F} scores
and mloU. Furthermore, the improvements in the scores for
GSV are more significant than those of TSUNAMI. The
main reason is that GSV contains more precise changes
and the camera viewpoint differences are relatively larger
than TSUNAMI because of the differences in their scene
depths. The CSCDNet can accurately detect the precise scene
changes dealing with the differences in camera viewpoints.

2) Accuracy of the SSCDNet for synthetic data: Figure
[ shows an example of the results estimated using the
SSCDNet. The SSCDNet can accurately estimate semantic
changes on each input image even if there are overlapping
areas of change between input images. Table [[V] shows the
mloU of the SSCDNet for the synthetic validation data from
the Mapillary Vistas dataset. There are four combinations
of training and test datasets with or without the data aug-
mentation of the aforementioned change mask. In the case
of test data without data augmentation, namely, the input
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Fig. 7.

Examples of semantic scene change detection for the PSCD dataset. One failure case is shown in the lower part.

TABLE V
IoU of the semantic change detection for the PSCD dataset.

CSCDNet + SSCDNet GT mask + SSCDNet CSSCDNet
Training data (CD / SCD) PCD / Vistas PSCD (mask) / Vistas - / Vistas PSCD (full)
DA for training - v - v - v n/a
mloU 0.192 0.196 0.215 0.223 0.303 0.283 0.322

change mask is quite accurate, the SSCDNet trained using
the dataset without the data augmentation performs better
than one trained with the augmentation. However, in the
case of test data with the augmentation, namely, the input
change mask has some errors, the SSCDNet trained using
the augmentation outperforms the other. Figure [6] shows an
example of results estimated by the SSCDNet trained with
the data augmentation of the change mask. The estimation
results obtained using the SSCDNet trained without the data
augmentation of the change mask have errors due to the
errors from the input change mask. However, the SSCDNet
trained with the augmentation can accurately predict the
semantic change labels while being more robust to the effects
of errors of the input change mask.

3) Semantic change detection for the PSCD dataset:
Figure [/| shows examples of the semantic change detection
results for the entire process of our proposed method. Table
[V] shows the mloU of each method for the PSCD dataset.
In Figl7l the CSCDNet trained with the PCD dataset can
accurately detect scene changes, although some detection
errors are owing to occlusion of vegetation and small ad-
vertisement boards on the buildings because of the lack of
training data. (The CSCDNet trained with the PSCD dataset
can also detect them.) Certainly, if the semantic change
detection dataset, of which the creation is labor-intensive, is
available, the strategy of the end-to-end learning for semantic
change detection can be applied, and the performance is
almost the best (CSSCDNet). However, even if the dedicated
dataset is unavailable, the SSCDNet can estimate semantic
scene changes for each input image successfully depending

on the change detection accuracy. The lower part of Fig[7]
shows failure cases due to a lack of training data.

Better performance was achieved when the CSCDNet was
trained using the PSCD dataset rather than being trained
on the PCD dataset, which indicates that only the change
detection dataset of the same domain as the target data
should be used if it is available. Furthermore, the SSCDNet
using the ground-truth change mask performs close to the
CSSCDNet, which is trained using the full set of the semantic
change detection dataset. Hence, the SSCDNet will exhibit
high performance when accurate change mask information
is available by other methods [7], [21], [22] and sensors.

V. CONCLUSIONS

We proposed a novel semantic change detection scheme
with only weak supervision. The proposed method is com-
posed of the two CNNs, the CSCDNet and the SSCDNet.
The CSCDNet can deal with the difference of camera view-
points and achieves state of the art change detection perfor-
mance for the PCD dataset. The SSCDNet can be trained
with dataset synthesized from semantic image segmentation
datasets to avoid creating a new dataset for semantic change
detection. To evaluate the effectiveness of the proposed
method, we created the first publicly available street-level
image dataset for semantic scene change detection, named
as the PSCD dataset. Experimental results with this dataset
verified the effectiveness of the proposed scheme in the
semantic change detection task.
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