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Shared Control Templates for Assistive Robotics

Gabriel Quere, Annette Hagengruber, Maged Iskandar, Samuel Bustamante,
Daniel Leidner, Freek Stulp and J6rn Vogel

Abstract— Light-weight robotic manipulators can be used to
restore the manipulation capability of people with a motor
disability. However, manipulating the environment poses a
complex task, especially when the control interface is of low
bandwidth, as may be the case for users with impairments.
Therefore, we propose a constraint-based shared control scheme
to define skills which provide support during task execution.
This is achieved by representing a skill as a sequence of states,
with specific user command mappings and different sets of
constraints being applied in each state. New skills are defined
by combining different types of constraints and conditions for
state transitions, in a human-readable format. We demonstrate
its versatility in a pilot experiment with three activities of daily
living. Results show that even complex, high-dimensional tasks
can be performed with a low-dimensional interface using our
shared control approach.

I. INTRODUCTION

The aim of assistive robotic arms is to restore manipulation
capabilities of people with disabilities, thereby enabling them
to perform tasks of daily living. An example is EDAN
(EMGe-controlled Daily AssistaNt), which consists of a DLR
Light-Weight Robot III with a DLR-HIT hand, mounted
on a power-wheelchair, see Fig. l.a. Since goal-directed
physical manipulation of the environment is often complex
and intricate, controlling the robotic arm can be difficult, and
may lead to a high cognitive workload. This is especially
the case for mobile manipulation systems such as EDAN, as
they have many degrees of freedom (DoFs) which all need
to be controlled appropriately to achieve a task. For instance,
opening and going through a door poses a real challenge, as
grasping the handle is intricate, and opening the door requires
the coordination of both arm and wheelchair movements [1].

Commercial systems typically make use of manual con-
trol methods, where user commands are mapped either
to wheelchair motion or to subsets of robot motion (e.g.
translational, rotational or gripper aperture), depending on
the selected control mode. While already in use [2], manual
control can vary in usability from bothersome to difficult,
depending on the number of DoFs that have to be controlled
in tandem to achieve the required task. This becomes even
more crucial when controlling assistive devices with inter-
faces based on bio-signals, which often results in noisier
commands and low-throughput.
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gabriel.quere@dlr.de. This work is partly supported by the
Bavarian Ministry of Economic Affairs, Regional Development and En-
ergy, within the project "SMIiLE” (LABAY97) and “SMiLE2gether”
(LABAY102).
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Fig. 1: a) The DLR assistive robotic system EDAN. b) The skill Pour liquid
is divided into multiple phases each with different motion constraints and
input mappings. The user is able to convey commands using a 3D signal
from either a SEMG-based or a joystick-based interface.

On the other end of the spectrum, there has been sub-
stantial work aimed at achieving full robot autonomy. When
given some prior knowledge, robots are able to perceive and
reason, allowing planning and execution of a task desired
by the user. Autonomy can, in principle, enable activities of
daily living to be achieved, but in practice there are several
limitations. First, it is frustrating when the robot fails to
accomplish a task because of modeling errors, e. g. failing at
grasping a door handle due to a decalibrated vision system.
Second, it has been shown that users prefer to be in control
of the robotic arm, even when this implies a higher workload
for them [3].

With this in mind, we propose a shared control method
that allows the user to intuitively control the end-effector
along task-relevant dimensions. This provides empowerment
and the ability to solve complex tasks. Our contributions are
twofold. First, we design a Shared Control Template (SCT)
for action representation. It defines task-specific skills as
Finite State Machines in which each phase specifies task-
relevant input mappings and active constraints (cf Fig. 1.b).
The SCT automatically coordinate all DoFs with the whole-
body controlled robotic system to achieve the task. Second,
we evaluate our concept in a pilot study with three scenarios
involving activities of daily living.

This paper is structured as follows: Section II presents re-
lated work. Section III describes the Shared Control Template
and the definition of skills. Section IV describes the assistive
robot EDAN and the components integration. In Section V,
we present a pilot study with a 3-DoF joystick and a surface
Electromyography (SEMG) interface [4].



II. RELATED WORK

In shared control, both user and assistive system control
the state variables together, while the user decides which task
to perform [5]. Teleoperating a robot requires an external
device to control the robot and has been applied with shared
control in various domains. Examples of interfaces with
force feedback are a second robotic arm [6], [7], specifically
designed controllers [8], [9] or joysticks [10].

Joysticks are also commonly used as interfaces without
feedback. For example, Herlant et al. present in [11] au-
tomatic mode switching under some optimality conditions.
Various interfaces adapted to disabilities investigate how to
best map a low-dimensional, low-throughput signal to control
a robotic arm. Broad et al. use a sip-and-puff interface to
control a hierarchical FSM in [12]. With Body-Machine
Interfaces [13], Jain et al. propose using piecewise virtual
guiding fixtures. Vogel et al. in [14] use virtual fixtures for
grasping known objects. Muelling et al. in [15] implement
intent inference and capture envelopes with Brain Computer
Interfaces. Blending of the user input and the assistive
command can also be adaptive, for example in [16] where it
depends on the robot estimate of its own confidence w.r.t
the user goal and is associated with customizable input
retargeting. In [17] if no commands are given the assistance
progressively takes over and finishes the movement by itself.
In [18] constraints are both learned and applied online.

Finally, full autonomy approaches have also been success-
ful for many tasks, ranging from feeding [19] to cleaning
[20] and pancake flipping [21]. This latter work, as well as
some of the above examples, uses active constraints. Also
called virtual fixtures, they are high-level control algorithms
implementing virtual constraints on the robot - as opposed
to mechanical ones. They are usually used to guide the user
along a task-specific path, adapt the robot stiffness to the task
or restrict the workspace for safety or efficiency reasons [9],
[22]. In particular, an action representation based on active
constraints can be found in the iTaSC framework, which uses
a systematic constraint-based approach to specify complex
skills [23]. Bartels et al. use it to solve pancake flipping
by defining geometric constraints with differentiable feature
functions [21]. We derive a similar description language for
constraints, however while they extract a control law from
closed-loop kinematic constraints, we apply user inputs to
a geometrically constrained target end-effector pose, tracked
with impedance control.

III. METHOD: SHARED CONTROL TEMPLATES

Fig. 2 provides an overview of our approach. A Shared
Control Template (SCT) is a Finite State Machine (FSM)
that models the different phases of a skill, e. g. “Translational
control’, ‘Tilt towards goal’, ‘Pour’ as in Fig. 1.b to solve
the task Pour water. Each phase in the FSM contains input
mappings and active constraints. An Input Mapping (IM)
maps the low-dimensional user inputs to task-relevant dis-
placements of an end-effector target pose. Active Constraints
(ACs) additionally constrain the target end-effector pose, to
assist with successful task execution. In summary, the output

of the Shared Control Template is an end-effector target
pose Hy,,., which depends on user inputs x and respects the
motion constraints during the different phases of the skill.

This target pose is sent to a pose interpolator [24], which
outputs the desired end-effector pose Hj;,, for a whole-
body impedance controller, which coordinates all DoFs of
the mobile system to achieve the task [1].
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Fig. 2: System architecture. User commands are processed by an Input
Mapping (IM) to apply a displacement on the precedent local target end-
effector pose and obtain a new pose H;,,. Active Constraints (AC) then
apply constraints to obtain a new end-effector pose Heq.

A. Input Mapping

An Input Mapping is a set of transformations (IM,,—1.n)
that maps user inputs to end-effector (EE) displacements.
It takes as input the target EE pose from the previous
time step Hiqr,_,, consecutively applies the different IM,,,
and outputs an intermediate target EE pose Hj;,,. A simple
mapping, for instance from a 3-DoF input, is i, T2, T3
mapped to the x, y, z translations of the end-effector. This
is used in ‘Translational Control’ in Fig. 1.b, which allows
the user to move the bottle to a desired position. On the
other hand, a more convenient input mapping for pouring
water (Fig. 1.b, ‘Pour’) is to map the x3 input to a vertical
translation, but the x;, zo inputs to a rotation around a
coordinate frame of interest: the thermos tip. Such phase-
specific mappings facilitate the execution of the task. The
procedure is illustrated in Algorithm 1 and Fig. 3:

Algorithm 1 Input Mapping

Input: User input x, precedent EE target pose Higr, ,,
Input Mapping IM
Output: Unconstrained target end-effector pose H;,,
1o Hipy < Htart,l
2: for each input_mapping in IM do
3:  // Compute reference frame from IM
F + input_mapping.reference_frame
// Compute static transform from
// target EE pose to reference frame.
THm « F~'x Hy,,
// Compute displacement of the reference frame
Fy < input_mapping.map(F, x)
10:  // Update target EE pose from reference frame
11: H;n <—Fd*TFI~JML
12: end for
13: return H,;,,

D A

IM, as well as ACs and the overall SCT, are specified in
human-readable YAML files. This makes it easy to develop
and edit skills, without having to modify (or have knowledge
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Fig. 3: The two input mappings for the ‘Pour’ phase. Note that H poses
are poses of the end-effector (not shown), not the bottle.

of) the system or control software. The template is an object-
centric task representation and its main components are
transforms, used for example to encode a pose or a frame
of reference. In the YAML files, any coordinate frame of
interest F' can be specified, e.g. the end-effector position,
the tip frame of a grasped object oriented towards the goal
or the grasp frame of a target. Those frames are computed
from an object database with property inheritance, cf Section
IV-A.

The YAML snippet for the running example is listed in
Listing 1. Coordinate frames are described as [object,
frame]. frame: [wheelchair, origin] indicates
that the frame of interest is static w.r. t. the user sitting in the
wheelchair. We use a 6 DoFs pose, defining orientation as
Euler angles: [x,y, z] for position, [a, 3,~] for orientation,
concatenated as a Euler pose [x,y,z,a,(,v]. This comes
with known problems (non-unique solutions and Gimbal
lock) but is nevertheless the most intuitive way to define local
rotation constraints. mapping: [0, 0,x_3, 0, 0, 0] means
that the user input =3 is mapped to the z axis of the reference
frame. scaling represents an additional scaling factor to
weight the user inputs depending on the tasks most relevant
motion directions. The second input mapping (Lines 5-12)
uses the tip of the bottle as frame of interest. An auxiliary
function bottle_rotation (L7-12) maps the user inputs
x1 and z9 to a rotation of the bottle at its tip (fifth element
in mapping L6, which represents a pitch in the frame of
reference of the bottle tip). Hence, instead of moving in the
xy plane, the x; and x5 commands rotate the target position
of the bottle.

input_mapping:

1
2 - frame: [wheelchair, origin]

3 mapping: [0,0,x_3,0,0,0]

4 scaling: [0,0,1,0,0,0]

5 — frame: [bottle, tip_goall

6 mapping: [0,0,0,0,bottle_rotation, 0]
7 auxiliary_functions:

8 bottle_rotation:

9 function: normalized_scalar

10 target_frame: [bottle, tip, X]

11 mapping: [x_1,x.2,0,0,0,0]

12 scaling: [2,2,0,0,0,0]

Listing 1: Input Mapping for phase ‘Pour’ of the skill Pour liquid.

The IM can be adapted to the desired amount of autonomy
and the expected quality of the user input. It can range
from one-dimensional virtual guide following to fine-grained
multi-DoFs control.

B. Active Constraints

After computing a new target EE pose H,;,, from user
inputs, various constraints defined in the YAML skill file
can be computed. As with IM, ACs can be applied on any
frame of interest F', whether they are related to the EE or
to a grasped object. Additionally, these frames of interest
can themselves be defined w.r.t. a static world frame, the
wheelchair or a task’s target pose: as an example when
opening a drawer, the orientation of the end-effector depends
on the drawer orientation. The Active Constraints procedure
is described in Algorithm 2:

Algorithm 2 Active Constraint

Input: Commanded end-effector target pose H;,,, Active
Constraints ACs
Output: New target end-effector pose Hiqr
1. Higr < Himy
2: for each active_constraint in ACs do
3:  F + active_constraint.reference_frame
THer « F~1 % Hy,,
// Apply constraints on the reference frame
F. « active_constraint.constrain(F')
// Update target EE pose from reference frame
8  Hygy < F.x T
9: end for
10: return H;,,

Nk

Our template provides three types of constraints: fixed
values, function values and manifolds. A fixed value of one
of the end-effector DoFs allows for example to keep the
EE at a specific height. For more flexibility, functions can
be used instead of fixed values: inequalities, polynomials,
additions, scalings, dot products and hand-crafted functions.
Inputs to those functions are distances and transforms, e. g.
Fig. 4, Left, where « is a function of the distance.

AC for 'Tilt towards goal' = AC for 'Stay within cone'

0=ac.function(d)

Fig. 4: Left: Constraint for phase ‘Tilt towards goal’. Right: Constraint for
phase ‘Stay within cone’.

Another option for constraints is to use manifolds. A
complete definition is out of the scope of this paper. The



current manifolds are heuristically defined for the considered
tasks, e.g. a cone pointing towards a target frame (Fig. 4,
Right) or a cylinder for opening a door. Future work will
integrate a more general representations of manifolds.

A simple implementation example is the phase ‘Pour’ in
Fig. 1, where the thermos should not tilt too far to avoid
spillage. A limit on the maximum tilt angle of the thermos
is defined in Listing 2:

1 active_constraints:

2 — frame: [object, tip_goall

3 mapping: [x,x,xX,X,tilt_angle_limit, x]
4 auxiliary_functions:

5 tilt_angle_limit:

6 function: stay_within_range

7 reference: [object, tip_goall]

8 scaling : [0,0,0,0,1,0]

9 [-inf, 0.4]

range:

Listing 2: Constraint for the phase ‘Pour’. It defines an inequality: the
computed angle has to stay below 0.4 rad. We limit the Euler angles pitfalls
by using appropriate frame of interest for each constraint.

C. Finite State Machine

A SCT defines a FSM, which models the different phases
of a skill and the transitions between them, e.g. indicated
in Fig. 1.b. Transitions between the phases can depend on
different metrics that relate two frames in space, typically
distances between the EE and an object frame. Any number
of DoFs can be used to compute the distances, in either posi-
tion or orientation, and if necessary weighted. For example,
consider again Pour water from Fig. 1.b: a transition occurs
when the distance between the grasped object (the thermos)
and a target object (the mug) reaches a certain threshold.
Transitions can also depend on the external forces applied
to the end-effector (estimated via the joint torque sensors) in
directions of interest.

A transition can point to any phase and is often defined
with inequalities or a range of values. It is also possible to
combine transitions with OR / AND operators. The current
phase is estimated recursively, which could be prompt to hys-
teresis and unrequited infinite loops, hence requiring careful
design. The different states and transitions are described in
the same YAML file as the IM and ACs, so that the SCT for
a skill is contained in one YAML file.

D. Controller Parameterization

While the SCT and its modules are robot-agnostic, a
successful realization will also require the definition of robot-
specific parameters. In our approach, these parameters are
also specified within the YAML file of the skill and therefore
can be phase dependent. For the EDAN system, several
options are available. For one, the Cartesian Impedance
Controller allows adjustment of the end-effector stiffness
and a definition of a null-space attractor in terms of a
virtual spring attracting the elbow of the LWR. Secondly,
the joint configuration and stiffness of any single DoF of the
torque controlled hand can be specified. Furthermore, EDAN
has a built-in safety mechanism, which reacts — if needed
with a phase-dependent activation threshold — on unexpected

external forces and puts the system in a maximally compliant
control mode, in which only gravity compensation is active.
As a result, the arm cannot exert force or torque to the
environment, providing safety to the users as well as to the
hardware.

Finally, we use a Whole-Body Controller (WBC) that
expands the workspace of the robot arm, to allow for tasks
necessitating a large range of motion, e.g. opening a door.
The WBC is implemented as a low-level controller (Fig. 2)
which realizes complex tasks requiring continuous coordina-
tion between the robotic arm and the wheelchair. As such,
the wheelchair follows the EE to maintain manipulability
of the arm as soon as the EE crosses geometric boundaries,
which can be defined as skill parameters. For example, when
opening the door, the wheelchair follows when the arm gets
out of reach so that there is no need to switch to wheelchair
control. Similarly, the wheelchair moves back when the arm
gets too close to the user when opening a drawer. With this
approach, the user can focus on controlling the end-effector
with shared control guidance, while the local commands to
the robotic arm and the wheelchair are generated from the
WBC, reducing the users workload. More details about this
feature are provided in [1].

IV. SYSTEM INTEGRATION

Our concept is integrated into the EDAN system, which
consists of a commercially available wheelchair on which a
DLR Light-Weight Robot III is mounted, equipped with a
dexterous torque controlled five-fingered DLR-HIT hand for
grasping and manipulating. It is being used as a research
platform for rehabilitation robotics on topics such as human
robot control interfaces [4], assistive control [14] and whole-
body control [1].

A. World Representation and Object Database

For the concept of object-centric action representation,
we use the implementation described in [25]. Skills are
defined for object classes in a database while a centralized
world representation handles instances of objects. The world
representation describes the robot belief of the current state
of the world. Object classes are subject to inheritance: a
thermos derives from the virtual class bottle, which derives
from container, and skills can be defined for any of them.

For each experiment, the available instances (i.e. the
objects that the robot can interact with) are localized with
EDAN’s vision system, using a online bounding box object
detector and depth localization, cf [1] for details.

B. User Interface

EDAN’s high-level user interface is displayed on a tablet
mounted on the wheelchair. Users have two options to
convey their intention: the first is a head-switch, used to
switch between controllable devices: the robotic arm, the
wheelchair or the tablet. The second — used by the Shared
Control Templates — is a continuous 3D velocity interface.
We provide a spacemouse or SEMG-based interfaces as input
modalities [4]. An additional trigger signal (button click



Fig. 5: Photo series of the different phases of the skill Open door and go through with one of our subject: approach and alignment to the door (A), open
the door (B-F) and drive through (G-H), executed by means of shared control and whole-body impedance control on the EDAN system.

on the spacemouse or grasp signal with the SEMG-based
interface) automatically finishes a grasp or releases an object.
In tablet mode, it serves to select an action. The tablet
displays measured control signals, the current task status and
perception module feedback, as well as a list of available
tasks, inferred from the world state.

V. PILOT STUDY

To test our method, users were asked to perform activities
of daily living. We use those tests to illustrate the effect of
our approach on the end-effector trajectories.

A. Study Design

Three common daily life tasks were considered for this
pilot study: Open drawer, Pour water and Open and go
through door. Three users tested those tasks, with two
continuous 3 DoFs interfaces: spacemouse and SEMG-based.
Users are able-bodied and have various levels of system
experience: User A belongs to the author list, User B has
sEMG-based interface experience but no system nor method
knowledge and user C has neither. Users tried to accomplish
each task four times, first with the spacemouse, then with the
sEMG-based interface. For each task, we used three trials for
training and the last one — with no live advice given — for
testing. To conclude the experiment, users tried Open drawer
and Pour liquid with manual control.

B. Results

To begin with, test trials with the spacemouse interface
were successful for the three users. Using the SEMG-based
interface, user A successfully completed all testing tasks,
user B opened the drawer and went through the door multiple
times, while user C did not succeed any trial. This hints that
in this case the interface experience may be more relevant
than the control method itself.

Time completion for the task Pour water for users test
trials as well as expert user results, with both shared control
and manual control, using a spacemouse, are shown in Table
I. For both users and expert, shared control is faster than
manual control. Users additionally reported preference for
the shared control. We note that manual control is time-
consuming for non-experienced users, partly because of the
non-intuitive rotational control. Additionally, the practical

Task: Users Expert user: Author

Pour water (Test average) | (average of 10 trials)
Shared Control 37s 30s
Manual Control 95s 67s

TABLE I: Task Pour water results.
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Fig. 6: Skill Open drawer. Side view of the trajectories resulting from the
end-effector commanded and measured poses during a user test trial with an
sEMG-based interface. The measured end-effector pose follows a parallel
trajectory to the commanded pose due to the impedance control and the
force applied on the drawer handle.

difference during execution of the skill is the need to switch
control mode (translational, rotational and fingers), which
happened on average 6.7 times for the expert trials. As the
rotation happens around the Tool Center Point of the end-
effector and not around the tip of the grasped object, there
is often a need to switch the mode to correct the position of
the tip to be able to pour properly, even when one has task
experience.

Users failed at the task Open drawer in manual mode
by crossing the torque safety threshold. Open door and go
through is too complex to solve in a reasonable time with
manual mode, especially with sSEMG, as it demands precise
commands and synchronization of the wheelchair and arm
movements. An adapted manipulator would make the task
easier, but decrease manipulation capabilities.

C. Framework Effect

We present user A test trials results with the SEMG-based
interface to illustrate the effects of our method.

1) Open drawer: The easiest task — according to users
evaluation — was the drawer opening, shown in Fig. 6. The
commands are mapped to a translational displacement for
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all phases, with phase dependent scaling. During the phase
‘Horizontal motion’, no downward motion is possible and
lateral motion are scaled down, making a clean trajectory
possible, even with noisy commands.

2) Pour water: A time-line of the task ‘Pour water’ is
shown in Fig. 7. Starting with an automatic upward motion
after grasping, the phase ‘Tilt towards target’ constrains the
tilt angle of the grasped object w.r. t. the distance to the goal.
The end-effector is additionally constrained to be oriented
perpendicular to the target, to make the ‘Pour’ motion mostly
depend on the wrist joint, increasing the workspace of this
specific task. Once above the bottle, phase ‘Pour’ maps the
user input to allow rotation around the tip of the thermos. All
this creates a smooth bottle orientation trajectory, conveying
the shared control intent to the user (by pointing towards the
estimated target) while lowering requirements on the user
commands.

3) Open door and go through: Shown as a photo series
in Fig. 5, the skill execution is detailed in Fig. 8, which
shows the smooth constraints applied on the end-effector.
Phase ‘Within cone’ keeps the EE within a cone pointing
towards the door handle grasp frame (cf Fig. 4, Right) as
well as sets an adapted EE orientation for the task. Phase
‘Push door’ constrains the EE in a cylindric motion, with
a minimum height. The input mapping and the whole-body
control allow the user to perform this complex task efficiently
using mostly forward arm commands. When passing the door
with only 11cm of margin, an absolute orientation controller
is acting to keep the wheelchair orientation fixed, normal
to the door [1]. Starting from the phase ‘Push door’, the
user can give at any moment backwards inputs instead and
close the door, with the wheelchair following backwards
accordingly.

D. Discussion

These applications show the benefits of using shared
control with whole-body control for tasks requiring a wide
range of motions and whole-body coordination. Implement-
ing and testing our method in a realistic setting revealed
some challenges. For example some of the trials failed when
crossing the safety torque threshold.

The IM in tasks Open drawer and Open door allows
experienced users to correct for target pose estimation er-
rors, while the Pour water skill implementation is more
constrained. For the latter, the more complex input mapping
creates a workspace manifold (the poses available to the EE
according to the IM and ACs) not overlapping well with
the space of model errors (such as the bottle position in the
horizontal plane). One option is using a different IM, with
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Fig. 8: Skill Open door and go through. Top-down and side view of the
trajectories resulting from the end-effector commanded pose and measured
position during a user test trial with an SEMG-based interface.

1 and x5 mapped to horizontal motion while x3 is mapped
to rotation around the tip of the grasped object. This doesn’t
rely on the object pose estimation as much, but as a result
requires a more precise user input. Alternatively we plan to
investigate correcting modes where we could learn from user
corrections using appropriately mapped commands to reduce
model errors.

From a scalability standpoint, constraints generalize by
using an object description hierarchy, but their descriptions
tend to become long for complex skills (200 lines for
Open door and go through). This could be alleviated with
a modular hierarchical constraints description. Task time
completion can only provide a partial evaluation, as full
autonomy could in principle execute the task faster, but the
user may prefer control authority over speed. Those results
motivate a larger user study in the near future, to evaluate
user preferences, method acceptance and input mapping
personalization. Visualization and legibility of the FSM that
represents the skills are important points for transparency
and acceptability, and will also be investigated.

VI. CONCLUSION

In this paper, we have presented a new human-in-the-loop
action representation called Shared Control Templates, and
have successfully tested it with multiple users on activities
of daily living. Describing shared control skills using human
readable YAML files, SCTs define input mappings and high-
level geometric constraints within phases of a finite state
machine, and their output is combined with low-level whole-
body impedance control to enable robotic systems with many
DoFs to be intuitively controlled. As a result, this provides
a safe, intuitive way of reducing the workload of the user
and can be used with low-throughput interfaces. A future
wheelchair-mounted robotic arm system should not only
provide a shared control method, but a range of options with
different degrees of user control, from manual mode to full
autonomy. Task-dependent control based on user preferences
should increase system utility.
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