
DEEPCRASHTEST: Turning Dashcam Videos into Virtual Crash Tests
for Automated Driving Systems

Sai Krishna Bashetty1, Heni Ben Amor1, Georgios Fainekos1

Abstract— The goal of this paper is to generate simulations
with real-world collision scenarios for training and testing
autonomous vehicles. We use numerous dashcam crash videos
uploaded on the internet to extract valuable collision data
and recreate the crash scenarios in a simulator. We tackle
the problem of extracting 3D vehicle trajectories from videos
recorded by an unknown and uncalibrated monocular camera
source using a modular approach. A working architecture and
demonstration videos along with the open-source implementa-
tion are provided with the paper.

I. INTRODUCTION

Within the last decade the field of autonomous driving
has seen tremendous progress, as evidenced by the many
industrial and academic entities moving at a rapid pace to
win the race for full autonomy. A number of companies are
deploying fleets of vehicles on public roads to collect high
quality data and, in turn, train their software to ensure safe
and secure transportation without human intervention. Test
vehicles need to be driven approximately 11 billion miles in
the real-world or a simulated environment to verify with 80%
confidence that they are 90 percent safer than human drivers
[1]. Among the most difficult scenarios to train and verify
are unpredictable human actions (as drivers or pedestrians)
that may lead to dangerous situations or accidents.

Even though statistics [2] show that in most accidents
involving autonomous vehicles (AVs), the human drivers are
at fault, humans are still better at handling unpredictable and
potentially dangerous driving situations. In order to ensure
safety and improve public trust in AV technology, it is critical
to train these systems with data that deviates from nominal
road behavior, e.g., encounters on the road that may lead
to accidents. The current methods for collecting vehicle
data primarily consists of normal driving scenarios (i.e,
without abnormal driving behaviors). Extending the approach
to collecting abnormal driving data, however, would be a
dangerous and unsafe endeavor that would put the well-
being of the test driver and his/her environment at risk. This
contradiction leads to the main dilemma addressed in this
paper: collecting information about hazardous road interac-
tions is of vital importance to train and validate perception
and control architectures for AVs, but is in compliance with
modern ethics and safety regulations.

1Sai Krishna Bashetty, Heni Ben Amor and Georgios Fainekos are
with the School of Computing, Informatics and Decision Systems Engi-
neering, Arizona State University, 660 S. Mill Ave, Tempe, AZ 85281
{sbashett, hbenamor, fainekos} at asu.edu

This research was partially funded by NSF awards 1350420, 1932068
and 1361926, and the NSF I/UCRC Center for Embedded Systems.

Fig. 1: Top: Two frames from a crash video at two different
time instants; Bottom: the same frames in simulation

A common approach to circumvent this problem is by
generating manually engineered simulations of driving sce-
narios [3]. Other approaches attempt to re-generate scenarios
from existing police reports [4]. However, police reports
show substantial variability and often lack information about
critical spatial and temporal details right before the crash.

In this paper, we propose to automatically synthesize a
physics based simulation of a crash by extracting relevant
information from a video stream. In particular, we focus
on replicating hazardous, crash-inducing behaviors found
in real-world crashes. Such information can be found in
abundance on the internet [5], due to the proliferation of
dashboard cameras. We develop a framework which can
extract adversarial trajectories of vehicles from these kinds
of videos and use them to automatically recreate the scene in
a vehicle simulator. The simulations can be used to extract
training and test data, or to study the driving behaviors
leading to an accident. The process of extracting vehicle
trajectories from data recorded with a single low quality
unknown monocular sensor source is a challenging problem
due to ambiguities in resolving perspective and extracting
depths in monocular images.

A modular rather than an end-to-end approach is used
in this paper that utilizes multiple existing deep learning
components to solve individual sub-problems. The extracted
trajectories are processed with custom algorithms to simulate
them in the Webots simulation environment [6] using the
Sim-ATAV framework [7] (see Fig. 1). Our contributions
include: (i) a modular pipeline to extract 3D vehicle trajec-
tories of the vehicles from dashcam videos, (ii) an algorithm
for processing and simulating the trajectories in a vehicle
simulator and (iii) DEEPCRASHTEST which is an add on to
the Sim-ATAV testing framework [8]. We also provide the
simulation videos in Webots along with a demonstration of

ar
X

iv
:2

00
3.

11
76

6v
1 

 [
cs

.R
O

] 
 2

6 
M

ar
 2

02
0



actual vehicle testing to extract safe/unsafe ego trajectories.
The safe trajectories can be further analyzed to design the
metrics and actions for collision avoidance systems.

II. RELATED WORK

For detecting traffic flow from aerial video feed, implicit
or explicit model-based computer vision techniques and
Bayesian filters for tracking can be used [9], [10]. Typically,
such approaches require static sensors which must be initially
calibrated. This assumption is orthogonal to our approach,
since we want to extract detailed vehicle movement from a
camera attached to the front of an (unknown) ego car. Inverse
Perspective Mapping (IPM) [11] can also be used to extract
car positions on the road, since it generates top view images
from an ego perspective. Unfortunately, IPM behaves poorly
on distant objects making it hard to extract 3D trajectories.

A closely related problem in the computer vision and
robotics community is Multi-body Structure From Motion
(SFM) [12]. Multi-body SFM methods can extract vehicle
trajectories from a monocular camera, but they require proper
motion model approximations. Another possibility is to es-
timate the 6-dimensional pose [13], [14] of vehicles in each
frame and then combine it with existing 2D tracking methods
to get 3D vehicle tracks. The drawback is that 6D pose
networks are designed for indoor robotic applications with a
static scene and calibrated sensors.

There are works in the deep neural network literature
which are closely related to the problem posed here. Ren
et al. [15] extract trajectories from static traffic cameras at
an intersection using a pre-calibrated homography matrix
mapping the image coordinates directly to simulator’s top
view. The problem of accurate vehicle trajectory extraction
can be reformulated as an end-to-end 3D object detection and
tracking. Akshay et al. [16] developed a real-time modular
multi-object tracking system for autonomous vehicles which
works with any combination of sensors. Markov Decision
Process (MDP) are used in [17] to model a tracked object
to improve long term tracking performance of agents.

Few methods like [18], a network is designed by lever-
aging the 3D pose estimation and 2D tracking information
for joint detection and tracking of vehicles using monocular
video frames. They resort to synthetic data to overcome the
deficiency in training data. Scheidegger et al. [19] solves a
similar problem by training a neural network to detect and
estimate the distance to objects from a single input image.

We use a straight-forward, yet powerful modular approach
with existing architectures which only needs a monocular
camera source and generalizes well to arbitrary dynamic
scenes. In our approach, the problem of absolute trajectory
extraction is divided into monocular 2D-object tracking
and 3D-bounding box estimation for agent vehicles along
with monocular visual odometry, lane tracking, and camera
calibration for ego views. We believe that our modular
design approach resonates well with the frameworks found
in application (e.g, NVIDIA’s perception pipeline [20]).

III. PROBLEM DESCRIPTION

The main problem addressed in this paper can be formu-
lated as follows: Given a dashcam video captured using a
monocular camera, extract the vehicle trajectories (including
the ego vehicle’s) and reproduce the trajectories in a vehicle
simulator with a parameterization that enables further test
case generation. To solve the problem, we propose a modular
architecture (a pipeline of deep neural network models)
called DEEPCRASHTEST (see Fig. 2 for the main modules)
under the following (technically necessary) assumptions:

1) Videos are short and generally under one minute in
length. This is essential to avoid drift in position esti-
mates over time because of monocular sensor effects.

2) The scene should be a straight or curved road as found
in highways. Scenarios like intersections, have little
information about the agent vehicles due to their short
span of appearance with many occlusions.

3) It is assumed that the camera is attached to the ego
car approximately at the center of the dashboard.
This assumption can be relaxed with manual position
adjustments of the initial simulation frame.

4) When the ego vehicle crashes, we only extract trajec-
tories up to the collision time. After the crash time,
the physics engine of the simulator takes over.

IV. TRAJECTORY EXTRACTION

Figure 2 demonstrates our pipeline to extract 3D vehicle
trajectories and individual components are explained below.

A. Vehicle Detection and Tracking

For automated vehicle tracking, we use a combination of
object detector and tracker along with standard association
algorithms since object trackers need annotations of initial
bounding boxes for the vehicles. There are many well known
fast object detection networks such as [21], [22], [23], [24]
but we chose Mask-RCNN [25] which is an instance seg-
mentation method which simultaneously detects objects and
estimates segmented masks. Region proposal based networks
like Mask-RCNN are flexible with input image dimensions
which is an important criterion for our choice. Moreover,
instance segmentation is necessary for an alternate approach
to extract 3D bounding box centers in sec. IV-C.

For object tracking, traditional trackers [26], [27] use
Kalman filters which need proper camera calibrations and
fine-tuning of the motion or sensor model is generally
difficult. We use the deep-learning based Re3-Tracker [28]
which is robust to occlusion and has real-time capabilities.

For data association between object detector and tracker
to add or remove excess trackers in a frame, we use the
Hungarian algorithm [29] with Intersection Over Union
(IOU) of bounding boxes as the matching criteria. As in [30],
we define threshold parameters to determine the minimum
number of consecutive frames with consistent predictions for
removing or adding excess trackers.



Object

Tracker

3D bounding 

box estimator

Depth and point 

cloud estimation

Vehicle 3D center 

estimation

INPUT VIDEO 

FRAMES

Lane Detector Camera parameters 

Estimation

Monocular Visual 

Odometry

Object 

Detector

Agent Vehicle 
centers with 

respect to ego

Ego Motion

Tracked vehicle bounding 

boxes and masks

2D VEHICLE TRACKING
3D VEHICLE TRACKING

Lane Tracking

Lane shift information

Focal Length

Focal Length

Agent Vehicle 
centers with 

respect to ego

Fig. 2: Vehicle Trajectory Extraction Stage

B. 3D bounding box Detector

We can approximate a vehicle’s trajectory (position and
heading) by estimating it’s sequence of 3D bounding box
coordinates at each frame from the video. Using the frame
rate of video, we can approximate the relative velocities
of the agents with respect to ego at all time instants. We
remark that there is a high possibility of variation in the
original frame rate during processing and uploading of video
to internet which does not guarantee the accuracy of absolute
velocity estimates. We can however safely assume that the
relative trend in velocity profiles between vehicles remains
unaffected. This is found to be sufficient to ensure the timing
of vehicle movements and recreate the crash scenario.

Over methods like [31], [32], [33], [34], we chose 3D-
Deepbox network [35] because of its simplicity and good
generalization of the approach to random images. They use a
VGG-Net backend with additional fully connected branches
to extract the bound box dimensions along with the global
orientation of the vehicles. The 3D center of the bounding
box with respect to camera is further optimized by placing
geometric constraints on the images.

Camera calibration is required at this stage to extract real
world distances. We observed that choosing a camera intrin-
sic close to the dataset which the network is initially trained
on (KITTI Dataset [36] in this case) gives a satisfactory
output on quite a number of random images. We review an
existing method to approximate camera parameters from lane
lines in sec. IV-F. The extracted trajectories are sent into the
second stage of framework for simulation.

C. Point Cloud method for 3D vehicle centers

In the previous method for 3D center estimation, we have
directly utilized the monocular 3D object detection networks.
There is an alternative approach using depth maps of a
scene for extracting only the 3D positions or specifically
the distance and lateral position of the vehicle in a calibrated
sensor environment with good quality images. Given a depth
map, the 3D point cloud can be generated by estimating the
real world (x, y, z) coordinates of individual pixels (u, v)
considering the depth D of scene to be in the z direction

using notation and equations as in [37] (see Fig. 3):

z = D(u, v) x =
(u− cu)× z

fu
y =

(v − cv)× z

fv
(1)

where (cu, cv) is the principal point and (fu, fv) is the
horizontal and vertical focal length of the camera in pixel
coordinates. We assume the principal point to be the center
of the image with equal horizontal and vertical focal length.

Fig. 3: Top: Front view pseudo point cloud of an image from
the KITTI dataset; Bottom: Arbitrary views of the same point
cloud; The point cloud is generated from the depth images
estimated using a monocular depth extraction technique [38].

From the existing CNN architectures for monocular depth
extraction [38], [39], [40], we use Monodepth [38] because
of its longer range for accurate depth prediction. Initial
instance segmentations from the mask-RCNN network are
used to crop the 3D point cloud corresponding to a specific
vehicle. We simply find the mean of these 3D points to
approximate the vehicle’s position. An important clarification
to be made is that, we do not consider the 3D coordinates
estimated using this approach to be the actual center of the
vehicle, but just an approximate position in the scene. This is
due to the fact that extracted point clouds belong only to the
part of the vehicle which is exposed to the camera. However,
the error in Euclidean distance between actual center and the
estimated position does not exceed the dimensions of vehicle.
Hence, the path formed by this sequence of 3D points at all
frames provides information about the vehicle trajectory.

Other works on similar lines are [37], [41], [42]. Their
methods are much more refined and accurate since they
use additional network architectures for processing. We are
using a simple method which is sufficient for extracting
approximate positions. There are even end-to-end networks
[43], [44] for joint monocular depth extraction and ego-
motion estimation but we prefer the modular approach due
to it’s good generalization capabilities.

D. Ego Motion Estimation

For the simulations, we need the ego vehicle’s motion
or camera motion to find the absolute trajectories of the
agent vehicles with respect to the world frame. In case of
simple highway scenarios with the ego moving in a straight



line, we can assign constant velocity and a linear path for
the ego vehicle. To generalize well to arbitrary scenarios,
we resorted to monocular Simultaneous Localization and
Mapping (SLAM), Visual Odometry (VO), and Optical Flow
based approaches to estimate the ego motion.

There are numerous works on Visual SLAM and VO and
comparisons are provided by [45], [46], [47]. We evaluated
several methods like DSO [48], LSD-SLAM [49], ORB-
SLAM [50] and even Deep learning based approaches like
Deep-VO [51]. We chose the former model based approaches
because of their lightweight real time capabilities.

However, we found them to introduce scale ambiguity
and, also, they cannot provide real-world depth estimates
which further deteriorates velocity estimates. There are a few
elegant approaches built on optical flow methods which can
provide good estimates with lower scale ambiguities. Florian
Raudies et al. [52] present a survey of optical flow based
ego-motion and depth estimation methods. We use the work
by Andrew Jaegle et al.[53] where they introduce Expected
Residual Likelihood (ERL) to remove outliers in optical flow
estimates and a novel formulation of camera motion equation
using lifted kernel optimization framework.

We observe that any of the above methods have stable
values in the longitudinal direction of the motion of the
vehicle, but they suffer from lateral drifts in the ego position.
Currently, we are using lane detection and tracking methods
(see next section) to localize the vehicles within lanes and
prevent too much lateral drift on the road. Lane detection
and tracking helps in camera calibration as well.

E. Lane Detection and Tracking

The Ego-motion estimator returns a qualitatively correct
trajectory which may not be accurate enough to laterally
localize the ego vehicle in the correct lane. The lane change
information can even be used to completely replace the lat-
eral ego-motion estimates in case of high drifting predictions.

Standard algorithms like the CHEVP [54] or the latest ones
like [55] could be used for lane detection, but they fail when
there are too many occlusions on the lane lines in high traffic
scenarios and do not work well with partial lane markings.
We use the deep learning based LaneNet [56] network which
is a segmentation based approach comparatively more robust
to partial or occluded lane markings. We use a density
based spatial clustering algorithm (DBSCAN) along with B-
spline curve fitting with the segmented outputs of LaneNet
to cluster and assign individual lane IDs.

For lane tracking, there are existing methods (e.g, [57],
[58]) involving kalman filters, but we use a simple approach
where we fit straight lines through the clustered lane pixels
and the lane fitting is completely in image pixel domain.
We only need information about the lower part of the lane
lines which is close to the ego vehicle to localize within
the lanes. The Hungarian algorithm with directed Hausdorff
distance [59] as a cost metric is used for association between
detected and tracked lanes at each frame.

Considering the bottom left corner of the image as the
origin, we find the x-intercepts of the lane lines in pixel

Agent Vehicle centers 
with respect to ego

Ego Motion

Post-Processing 
absolute Trajectories

Webots
Simulator with 

SIM-ATAV 
Framework

Fig. 4: Vehicle Trajectory Simulation Module

coordinates. Since the perspective effects or distortions in an
image increase only with depth of the scene, we can safely
consider that the distance between any of the x-intercepts in
image space is proportional to the actual distance between
the corresponding lanes. Since, the average lane width on
a specific road segment remains fairly constant, we can
estimate the lateral position of the vehicle within the lanes.

F. Camera Calibration

Camera calibration is required by the 3D bounding box
detection, depth extraction network and optical flow based
ego-motion estimation. Due to the monocular camera setting,
it is very challenging to form a closed form solution using the
image features. One approach is to use learning methods like
[60][61] trained on existing datasets [62] to estimate the focal
length given an RGB image.Fung et al. [63] demonstrate
a more simple and light-weight approach which is the
reformulation of perspective camera equations and using the
lane line annotations to estimate the camera parameters. We
use this method only when the predicted lane lines are pretty
accurate and in the case of errors, we use the parameters
from the datasets used for training the networks. We decide
this based on the visual correctness of the final 3D bounding
boxes when plotted on the video frames.

V. TRAJECTORY SIMULATION AND TESTING

For all the simulations, the global (or world) origin is
defined at the initial position of the ego. The absolute
positions of all the vehicles throughout the simulation are
calculated with respect to this origin.

A. Trajectory smoothing

We use a Savitzky-Golay filter followed by a spline
smoothing for the raw trajectories. Two levels of spline
smoothing is used, first is local windowed with high smooth-
ness factor and, then, a global fitting with low smoothing
factor. This ensures an overall smooth curve while still
preserving the sudden abnormal vehicle movements that lead
to collisions. Moreover, splines provide the needed trajectory
parameterization to use test generation frameworks such as
sim-ATAV [7]. The extracted lateral localization from lane
predictions is added to the corresponding ego position at each
frame in this stage.

B. Extrapolating Vehicle Trajectories

The agent vehicle trajectories can be categorized based
on their heading direction and the time of appearance or
disappearance from the scene. Agent vehicles can either



move in same or opposite direction of ego i.e, ongoing or
oncoming, respectively.

The ongoing vehicles can be classified into three types:
D0T1: Agent vehicle is in the scene since the first frame.
D0T2: Agent vehicle enters later into the scene from behind
i.e, agent overtaking the ego.
D0T3: Agent vehicle enters later from front in the scene i.e,
a far off vehicle slowing down or pulling over or stopped by
the roadside. This can even be considered as a case where the
ego overtakes an agent vehicle which is initially far ahead
from the ego.

The oncoming vehicles can be classified into four types:
D1T1: Agent vehicle already in scene since the first frame
and the ego vehicle eventually passes it before the completion
of the video sequence.
D1T2: Agent vehicle is in scene since the first frame and the
ego vehicle doesnot pass it through the entire video sequence.
This may happen when the agent vehicle collides with ego
or the video clip ends before the agent reaches the ego.
D1T3: Agent vehicle enters later into the scene and the ego
passes it.
D1T4: Agent vehicle enters later into the scene and the ego
doesnot pass it.

This kind of classification is necessary for appropriate
trajectory processing and is made purely based on our
observations of the dashcam crash videos.
Processing Ongoing vehicle trajectories: D0T1 paths can be
directly used without any processing, but the D0T2 paths
need extrapolation of path and velocity profiles. Delay needs
to be added to D0T3 vehicles such that the frame and position
at which they appear in the scene with respect to ego is
properly synchronized with the original video. For D0T2
vehicles, until the frame where they appear in the scene, their
initial positions and velocity profile are extrapolated such
that the agent mimics the ego motion. Sufficient distance is
maintained such that it does not collide with ego or does not
appear in the scene. D0T3 vehicles are initially far ahead of
ego and appear much later in the video. To recreate this, we
initialize agents at their initial position and then introduce
some delay in the controller calculated based on frame of
appearance and frame rate of video. In all the ongoing
vehicle trajectories, if the ego overtakes other vehicles and
the agent leaves scene before end of video, we extrapolate
these trajectories until the end of the simulation following
the road or lane at a velocity less than the ego.
Processing oncoming vehicle trajectories: The D1T1 and
D1T3 vehicles are passed by the ego in the video and we do
not have information once they move out of the scene. We
extrapolate these trajectories such that they follow the road
with a constant velocity after they pass the ego. D1T3 and
D1T4 enter later into the scene and similar to D0T3 vehicles,
we generate initial start delays.

C. Generating Road Waypoints

Generating proper road structure is important for recreat-
ing plausible simulation. In most of the cases, since the crash
happens on an highway, we can simply generate a straight

road structure. However, it is also important to reproduce
curved roads as observed in one of our video demonstrations
which involves an oncoming collision on a sharp turning. We
use the ego vehicle’s qualitative trajectory as reference to
generate the road structure and perform spline smoothing
with a high smoothness factor. For oncoming collisions,
the ego trajectory does not have any information about the
road structure beyond the point of collision. However, it
is necessary to extend the road beyond the collision point.
One such example can be observed in the head on collision
simulation in our video submission. Similar to the road
structure generated using ego vehicle paths, we use the
oncoming agent paths to extend the road by using spline
interpolation to generate a continuous road structure. The
entire process is automated in the framework. This approach
does not guarantee accurate road estimation but is found to
generate qualitatively correct simulations.

D. Generating Trajectories in Webots

Typically, in the available video clips, the vehicles move
with non zero velocity from the initial frame. Since starting
vehicles with non-zero velocities in Webots simulations does
not result in convincing natural movements, we need the
vehicles from zero initial velocity until all the vehicles reach
the intended velocities and relative positions at the right time.

The time taken or distance traveled in a straight path to
reach that target velocity under constant acceleration can be
directly calculated from kinematic equations. We will refer
to this as step-back time and step-back distance, respectively.
Since the target velocities of all the vehicles where they
first appear in the scene are different, each vehicle needs
varying step-back times and distances. Additionally, we need
to synchronize the relative positions of all the vehicles with
those estimated in the initial frame of the video by the time
they reach their respective target velocities.

To ensure this, we first determine the maximum of all step-
back times tsmax = max (ts1, t

s
2, ..., t

s
n), compute the total

step-back distance Ds
i for each vehicle i with step-back time

tsi as Ds
i = dsi + (tsmax − tsi ) ∗ vti , where dsi is the step-back

distance for vehicle i to reach its target velocity vti , estimated
for its initial frame of appearance and n is the number of
vehicles of interest to be simulated. We use the calculated
distances as the length for extending the initial segment of
the paths. The vehicles follow a straight path until they merge
with their actual velocity and path profiles in the video. The
part of the simulation which represents or recreates the actual
video starts after time tsmax.

Additionally, we provide visualization and editing tools
for minor modifications to the lateral or longitudinal dis-
placements of individual trajectory waypoints either to easily
change the initial conditions or to ensure that vehicles do
not overlap during initialization. We reiterate that since
our target application is testing in a virtual environment
which is going to be further modified, we do not need
a quantitatively accurate reproduction of the real driving
scenario. In other words, a visual inspection for qualitative
correctness is sufficient for our application.



TABLE I: The table provides the modified (refer Sec. VI-
B) KITTI tracking benchmark results on three KITTI [36]
tracking sequences 3, 8, 10

Sequences MOTA MOTP MODA MODP recall
SEQ 3 58.08 % 80.35 % 59.28 % 83.33 % 78.17 %
SEQ 8 67.36 % 79.55 % 67.36 % 84.54 % 72.08 %

SEQ 10 77.75 % 85.04 % 78.44 % 86.96 % 83.01 %
Sequences precision F1 TP FP FN FAR

SEQ 3 81.03 % 79.75 % 265 62 74 42.75 %
SEQ 8 94.35 % 81.73 % 736 44 285 11.25 %

SEQ 10 94.90 % 88.56 % 484 26 99 8.81 %
Sequences objects trajectories MT PT ML

SEQ 3 355 10 37.5 % 62.5 % 0.00 %
SEQ 8 796 21 47.61 % 38.09 % 14.28 %

SEQ 10 510 14 23.07 % 76.92 % 0.00 %

VI. EXPERIMENTS

A. Qualitative Evaluation

In this section, we describe our procedure for a qualitative
assessment of our framework through a typical usage of the
extracted adversarial trajectories in a test environment for a
collision avoidance system. We use a naive Automatic Emer-
gency Braking (AEB) controller from the Sim-ATAV [7]
framework. The AEB in sim-ATAV uses a sensor fusion
module to perceive the environment by utilizing the sensors
attached to the ego vehicle. In our tests, we activate the
GPS/IMU, monocular dashcam and a single Radar sensor
attached to the front of the ego vehicle to localize the agents
in the scene.

Figure 5a shows three time ordered images of an original
crash video. Fig. 5b includes the corresponding frames in
a simulation generated from the trajectories extracted using
DEEPCRASHTEST on the original video. The second and
third images in Fig. 5b show that though the AEB activates
before the collision, it collides with the agent. This is
because, the velocity of ego vehicle is very high (around 90
Kmph) and the distance to obstacle is very low compared
to the required braking distance at such high velocities. At
these velocities only way to completely avoid a collision is
to steer away from the obstacle. To extract safe maneuvers of
the ego vehicle which avoids a collision, we generated 128
simulations. For these simulations, we first manually sampled
32 initial positions within a box of 4x8(m) around the
original position of ego. For each of these initial positions,
we added small 2D guassian noise to the spline control points
of the original ego vehicle trajectory to 4 random trajectories.
Eight of the 128 simulations did not have a collision. We
picked four meaningful ego motions and Fig. 5c includes
frames sampled from one of the safe simulation. As can be
seen from the third image of 5c, before collision, the ego
steers away from the agent thus avoiding collision.

B. Quantitative Evaluation

Even though, our application focuses on qualitative perfor-
mance, we provide quantitative evaluations for the trajectory
extraction module (see fig. 2). This is not straightforward
since, DEEPCRASHTEST deals with an unknown dashcam
video without ground truth, however, we provide evaluations

(a)

(b)

(c)

Fig. 5: (a): Three frames from a crash video at different
time instants; (b): The corresponding frames in simulation
with original trajectories; (c): The same frames in simulation
with safe ego behavior without collision which is generated
by randomly searching various initial conditions.

by testing the framework with the KITTI tracking dataset
[36]. The KITTI benchmark provides tracking evaluation
where the object positions are all relative to the ego vehicle
but we want to evaluate the absolute trajectory positions by
including the ego motion. For this, we added the ground
truth odometry information to the ground truth tracking data
to evaluate our framework. Table I provides the tracking
evaluation results on vehicles using such a modified version
for three tracking sequences from the dataset (sequences 3,
8, 10). The actual performance can be slightly lower because
of errors in camera calibrations.

VII. CONCLUSIONS

We developed a framework called DEEPCRASHTEST for
extracting 3D vehicle trajectories from dashcam videos up-
loaded to the internet. Currently, DEEPCRASHTEST is an
add-on to the test generation framework Sim-ATAV [7]
within which we recreate the extracted scenarios. DEEP-
CRASHTEST can be used for testing collision avoidance
systems, or more generally autonomous vehicles. We demon-
strated a specific use-case for extracting safe/unsafe vehicle
trajectories within Sim-ATAV, but DEEPCRASHTEST could
also be used as an add-on to a range of simulation-based
automated test generation tools for AV, e.g., [3], [64], [65].



ACKNOWLEDGMENT

We thank Dr. Pavan Turaga (ASU) and Toyota Research
Institute of North America for valuable technical discussions.

REFERENCES

[1] K. Nidhi and S. M. Paddock, “Driving to Safety: How Many Miles
of Driving Would It Take to Demonstrate Autonomous Vehicle Reli-
ability?” Santa Monica, CA: RAND Corporation, Tech. Rep., 2016.

[2] “https://www.axios.com/california-people-cause-most-autonomous-
vehicle-accidents-dc962265-c9bb-4b00-ae97-50427f6bc936.html.”

[3] D. J. Fremont, X. Yue, T. Dreossi, S. Ghosh, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: Language-based scene gen-
eration,” arXiv:1809.09310, Tech. Rep., 2018.

[4] T. Huynh, A. Gambi, and G. Fraser, “AC3R: Automatically
Reconstructing Car Crashes from Police Reports,” in Proceedings
of the 41st International Conference on Software Engineering:
Companion Proceedings, ser. ICSE ’19. Piscataway, NJ, USA: IEEE
Press, 2019, pp. 31–34. [Online]. Available: https://doi.org/10.1109/
ICSE-Companion.2019.00031

[5] “Youtube crash videos.” [Online]. Available: https://youtu.be/
WFKB9BxtZUs,https://youtu.be/vxqBS2-4puw

[6] O. Michel, “Webotstm: Professional mobile robot simulation,” 03
2004.

[7] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based
adversarial test generation for autonomous vehicles with machine
learning components,” 2018 IEEE Intelligent Vehicles Symposium
(IV), pp. 1555–1562, 2018, to appear in Transacion of Intelligent
Transportation Systems.

[8] [Online]. Available: https://cpslab.assembla.com/spaces/sim-atav/
[9] A. Ji, B. A, H. D, and A. Tomas, “Automatic vehicle trajectory

extraction for traffic analysis from aerial video data,” ISPRS - Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XL-3/W2, pp. 9–15, 03 2015.

[10] Zu Whan Kim and J Malik, “High-quality vehicle trajectory generation
from video data based on vehicle detection and description,” in
Proceedings of the 2003 IEEE International Conference on Intelligent
Transportation Systems, vol. 1, Oct 2003, pp. 176–182 vol.1.

[11] J. Yaghoobi Ershadi N, Menndez JM, “D. Robust vehicle detec-
tion in different weather conditions: Using MIPM,” PLoS One.
2018;13(3):e0191355, 2018.

[12] R. Sabzevari and D. Scaramuzza, “Multi-body Motion Estimation
from Monocular Vehicle-Mounted Cameras,” IEEE Transactions on
Robotics, vol. 32, no. 3, pp. 638–651, June 2016.

[13] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn:
A convolutional neural network for 6d object pose estimation
in cluttered scenes,” CoRR, vol. abs/1711.00199, 2017. [Online].
Available: http://arxiv.org/abs/1711.00199

[14] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “DeepIM: Deep Iterative
Matching for 6D Pose Estimation,” CoRR, vol. abs/1804.00175, 2018.
[Online]. Available: http://arxiv.org/abs/1804.00175

[15] X. Ren, D. Wang, M. Laskey, and K. Goldberg, “Learning Traffic
Behaviors by Extracting Vehicle Trajectories from Online Video
Streams,” in 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), Aug 2018, pp. 1276–1283.

[16] A. Rangesh and M. M. Trivedi, “No Blind Spots: Full-Surround
Multi-Object Tracking for Autonomous Vehicles using Cameras &
LiDARs,” CoRR, vol. abs/1802.08755, 2018. [Online]. Available:
http://arxiv.org/abs/1802.08755

[17] Y. Xiang, A. Alahi, and S. Savarese, “Learning to Track: Online Multi-
object Tracking by Decision Making,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Dec 2015, pp. 4705–4713.

[18] H. Hu, Q. Cai, D. Wang, J. Lin, M. Sun, P. Krähenbühl,
T. Darrell, and F. Yu, “Joint Monocular 3D Vehicle Detection and
Tracking,” CoRR, vol. abs/1811.10742, 2018. [Online]. Available:
http://arxiv.org/abs/1811.10742

[19] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and
K. Granstrm, “Mono-Camera 3D Multi-Object Tracking Using Deep
Learning Detections and PMBM Filtering,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), June 2018, pp. 433–440.

[20] [Online]. Available: https://developer.nvidia.com/drive/drive-software
[21] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”

CoRR, vol. abs/1612.08242, 2016. [Online]. Available: http://arxiv.
org/abs/1612.08242

[22] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” CoRR, vol. abs/1311.2524, 2013. [Online]. Available:
http://arxiv.org/abs/1311.2524

[23] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal
Networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available:
http://arxiv.org/abs/1506.01497

[24] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet:
Unified, Small, Low Power Fully Convolutional Neural Networks for
Real-Time Object Detection for Autonomous Driving,” CoRR, vol.
abs/1612.01051, 2016. [Online]. Available: http://arxiv.org/abs/1612.
01051

[25] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask
R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06870

[26] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A Survey,” ACM
Computing Surveys, vol. 38, pp. 1–45, 01 2006.

[27] Y. Xu, X. Zhou, S. Chen, and F. Li, “Deep learning for multiple object
tracking: a survey,” IET Computer Vision, vol. 13, no. 4, pp. 355–368,
2019.

[28] D. Gordon, A. Farhadi, and D. Fox, “Re3 : Real-
Time Recurrent Regression Networks for Object Tracking,”
CoRR, vol. abs/1705.06368, 2017. [Online]. Available: http:
//arxiv.org/abs/1705.06368

[29] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.

[30] [Online]. Available: https://github.com/kcg2015/
Vehicle-Detection-and-Tracking

[31] D. Xu, D. Anguelov, and A. Jain, “PointFusion: Deep Sensor Fusion
for 3D Bounding Box Estimation,” CoRR, vol. abs/1711.10871, 2017.
[Online]. Available: http://arxiv.org/abs/1711.10871

[32] X. Du, M. H. A. Jr., S. Karaman, and D. Rus, “A General Pipeline
for 3D Detection of Vehicles,” CoRR, vol. abs/1803.00387, 2018.
[Online]. Available: http://arxiv.org/abs/1803.00387

[33] X. Ma, Z. Wang, H. Li, W. Ouyang, and P. Zhang,
“Accurate Monocular 3D Object Detection via Color-Embedded 3D
Reconstruction for Autonomous Driving,” CoRR, vol. abs/1903.11444,
2019. [Online]. Available: http://arxiv.org/abs/1903.11444

[34] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urta-
sun, “Monocular 3D Object Detection for Autonomous Driving,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 2147–2156.

[35] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3D Bounding
Box Estimation Using Deep Learning and Geometry,” CoRR, vol.
abs/1612.00496, 2016. [Online]. Available: http://arxiv.org/abs/1612.
00496

[36] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
the KITTI dataset,” The International Journal of Robotics Research,
vol. 32, pp. 1231–1237, 09 2013.

[37] Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and
K. Q. Weinberger, “Pseudo-LiDAR from Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous
Driving,” CoRR, vol. abs/1812.07179, 2018. [Online]. Available:
http://arxiv.org/abs/1812.07179

[38] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised
Monocular Depth Estimation with Left-Right Consistency,” CoRR,
vol. abs/1609.03677, 2016. [Online]. Available: http://arxiv.org/abs/
1609.03677

[39] Z. Li and N. Snavely, “MegaDepth: Learning Single-View Depth
Prediction from Internet Photos,” in Computer Vision and Pattern
Recognition (CVPR), 2018.

[40] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep
Ordinal Regression Network for Monocular Depth Estimation,”
CoRR, vol. abs/1806.02446, 2018. [Online]. Available: http://arxiv.
org/abs/1806.02446

[41] X. Weng and K. Kitani, “Monocular 3D Object Detection with
Pseudo-LiDAR Point Cloud,” CoRR, vol. abs/1903.09847, 2019.
[Online]. Available: http://arxiv.org/abs/1903.09847

[42] Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Pseudo-LiDAR++: Accurate
Depth for 3D Object Detection in Autonomous Driving,” CoRR, vol.
abs/1906.06310, 2019. [Online]. Available: http://arxiv.org/abs/1906.
06310

https://doi.org/10.1109/ICSE-Companion.2019.00031
https://doi.org/10.1109/ICSE-Companion.2019.00031
https://youtu.be/WFKB9BxtZUs , https://youtu.be/vxqBS2-4puw
https://youtu.be/WFKB9BxtZUs , https://youtu.be/vxqBS2-4puw
https://cpslab.assembla.com/spaces/sim-atav/
http://arxiv.org/abs/1711.00199
http://arxiv.org/abs/1804.00175
http://arxiv.org/abs/1802.08755
http://arxiv.org/abs/1811.10742
https://developer.nvidia.com/drive/drive-software
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1705.06368
http://arxiv.org/abs/1705.06368
https://github.com/kcg2015/Vehicle-Detection-and-Tracking
https://github.com/kcg2015/Vehicle-Detection-and-Tracking
http://arxiv.org/abs/1711.10871
http://arxiv.org/abs/1803.00387
http://arxiv.org/abs/1903.11444
http://arxiv.org/abs/1612.00496
http://arxiv.org/abs/1612.00496
http://arxiv.org/abs/1812.07179
http://arxiv.org/abs/1609.03677
http://arxiv.org/abs/1609.03677
http://arxiv.org/abs/1806.02446
http://arxiv.org/abs/1806.02446
http://arxiv.org/abs/1903.09847
http://arxiv.org/abs/1906.06310
http://arxiv.org/abs/1906.06310


[43] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
Learning of Depth and Ego-Motion from Video,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017, pp. 6612–6619.

[44] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised Learning
of Depth and Ego-Motion from Monocular Video Using 3D
Geometric Constraints,” CoRR, vol. abs/1802.05522, 2018. [Online].
Available: http://arxiv.org/abs/1802.05522

[45] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview
to Visual Odometry and Visual SLAM: Applications to Mobile
Robotics,” Intelligent Industrial Systems, vol. 1, 11 2015.

[46] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms:
a survey from 2010 to 2016,” IPSJ Transactions on Computer Vision
and Applications, vol. 9, 12 2017.

[47] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of
Monocular Visual-Inertial Odometry Algorithms for Flying Robots,”
in NA, 05 2018.

[48] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,”
CoRR, vol. abs/1607.02565, 2016. [Online]. Available: http://arxiv.
org/abs/1607.02565

[49] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct
Monocular SLAM,” September 2014.

[50] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras,” CoRR,
vol. abs/1610.06475, 2016. [Online]. Available: http://arxiv.org/abs/
1610.06475

[51] S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO: Towards
End-to-End Visual Odometry with Deep Recurrent Convolutional
Neural Networks,” CoRR, vol. abs/1709.08429, 2017. [Online].
Available: http://arxiv.org/abs/1709.08429

[52] F. Raudies and H. Neumann, “A review and evaluation of methods
estimating ego-motion,” Computer Vision and Image Understanding,
vol. 116, pp. 606–633, 02 2012.

[53] A. Jaegle, S. Phillips, and K. Daniilidis, “Fast, robust, continuous
monocular egomotion computation,” in 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2016, pp. 773–780.

[54] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking
using B-Snake,” Image and Vision Computing, vol. 22, no. 4, pp.
269 – 280, 2004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0262885603002105

[55] C. Lee and J. Moon, “Robust Lane Detection and Tracking for Real-
Time Applications,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 12, pp. 4043–4048, Dec 2018.

[56] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans,
and L. V. Gool, “Towards End-to-End Lane Detection: an Instance
Segmentation Approach,” CoRR, vol. abs/1802.05591, 2018. [Online].
Available: http://arxiv.org/abs/1802.05591

[57] G. Lu, “A Lane Detection, Tracking and Recognition System for Smart
Vehicles,” in NA, 2015.

[58] N. Mechat, N. Saadia, N. K. M’Sirdi, and N. Djelal, “Lane detection
and tracking by monocular vision system in road vehicle,” in 2012 5th
International Congress on Image and Signal Processing, Oct 2012, pp.
1276–1282.

[59] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Com-
paring images using the Hausdorff distance,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850–863,
Sep. 1993.

[60] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and N. Jacobs,
“DEEPFOCAL: A method for direct focal length estimation,” in 2015
IEEE International Conference on Image Processing (ICIP), Sep.
2015, pp. 1369–1373.

[61] H. Yan, Y. Zhang, S. Zhang, S. Zhao, and L. Zhang, “Focal length
estimation guided with object distribution on FocaLens dataset,”
Journal of Electronic Imaging, vol. 26, no. 3, p. 033018, 2017.

[62] h. yan, “FocaLens dataset,” May 2016. [Online]. Available:
https://figshare.com/articles/FocaLens/3399169/2

[63] G. S. K. Fung, N. H. C. Yung, and G. Pang, “Camera calibration
from road lane markings,” Optical Engineering - OPT ENG, vol. 42,
10 2003.

[64] H. Abbas, M. O’Kelly, A. Rodionova, and R. Mangharam, “Safe at
any speed: A simulation-based test harness for autonomous vehicles,”
in 7th International Workshop on Cyber-Physical Systems (CyPhy),
2017.

[65] R. Majumdar, A. Mathur, M. Pirron, L. Stegner, and D. Zufferey,

“Paracosm: A language and tool for testing autonomous driving
systems,” arXiv preprint arXiv:1902.01084, 2019.

http://arxiv.org/abs/1802.05522
http://arxiv.org/abs/1607.02565
http://arxiv.org/abs/1607.02565
http://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1709.08429
http://www.sciencedirect.com/science/article/pii/S0262885603002105
http://www.sciencedirect.com/science/article/pii/S0262885603002105
http://arxiv.org/abs/1802.05591
https://figshare.com/articles/FocaLens/3399169/2

	I INTRODUCTION
	II RELATED WORK
	III PROBLEM DESCRIPTION
	IV TRAJECTORY EXTRACTION
	IV-A Vehicle Detection and Tracking
	IV-B 3D bounding box Detector
	IV-C Point Cloud method for 3D vehicle centers
	IV-D Ego Motion Estimation
	IV-E Lane Detection and Tracking
	IV-F Camera Calibration

	V TRAJECTORY SIMULATION AND TESTING
	V-A Trajectory smoothing
	V-B Extrapolating Vehicle Trajectories
	V-C Generating Road Waypoints
	V-D Generating Trajectories in Webots

	VI EXPERIMENTS
	VI-A Qualitative Evaluation
	VI-B Quantitative Evaluation

	VII CONCLUSIONS
	References

