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Abstract— The common pipeline in autonomous driving sys-
tems is highly modular and includes a perception component
which extracts lists of surrounding objects and passes these lists
to a high-level decision component. In this case, leveraging the
benefits of deep reinforcement learning for high-level decision
making requires special architectures to deal with multiple
variable-length sequences of different object types, such as
vehicles, lanes or traffic signs. At the same time, the architecture
has to be able to cover interactions between traffic participants
in order to find the optimal action to be taken. In this
work, we propose the novel Deep Scenes architecture, that can
learn complex interaction-aware scene representations based
on extensions of either 1) Deep Sets or 2) Graph Convolutional
Networks. We present the Graph-Q and DeepScene-Q off-policy
reinforcement learning algorithms, both outperforming state-of-
the-art methods in evaluations with the publicly available traffic
simulator SUMO.

I. INTRODUCTION

In autonomous driving scenarios, the number of traffic
participants and lanes surrounding the agent can vary consid-
erably over time. Common autonomous driving systems use
modular pipelines, where a perception component extracts a
list of surrounding objects and passes this list to other mod-
ules, including localization, mapping, motion planning and
high-level decision making components. Classical rule-based
decision-making systems are able to deal with variable-sized
object lists, but are limited in terms of generalization to
unseen situations or are unable to cover all interactions in
dense traffic. Since Deep Reinforcement Learning (DRL)
methods can learn decision policies from data and off-policy
methods can improve from previous experience, they offer a
promising alternative to rule-based systems. In the past years,
DRL has shown promising results in various domains [1],
[2], [3], [4], [5]. However, classical DRL architectures like
fully-connected or convolutional neural networks (CNNs) are
limited in their ability to deal with variable-sized, structured
inputs or to model interactions between objects.

Prior works on reinforcement learning for autonomous
driving that used fully-connected network architectures and
fixed sized inputs [6], [7], [5], [8], [9] are limited in the
number of vehicles that can be considered. CNNs using
occupancy grids [10], [11] are limited to their initial grid
size. Recurrent neural networks are useful to cover temporal
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context, but are not able to handle a variable number of ob-
jects permutation-invariant w.r.t to the input order for a fixed
time step. In [12], limitations of these architectures are shown
and a more flexible architecture based on Deep Sets [13]
is proposed for off-policy reinforcement learning of lane-
change maneuvers, outperforming traditional approaches in
evaluations with the open-source simulator SUMO.

In this paper, we propose to use Graph Networks [14] as
an interaction-aware input module in reinforcement learning
for autonomous driving. We employ the structure of Graphs
in off-policy DRL and formalize the Graph-Q algorithm. In
addition, to cope with multiple object classes of different
feature representations, such as different vehicle types, traffic
signs or lanes, we introduce the formalism of Deep Scenes,
that can extend Deep Sets and Graph Networks to fuse mul-
tiple variable-sized input sets of different feature representa-
tions. Both of these can be used in our novel DeepScene-Q
algorithm for off-policy DRL. Our main contributions are:

1) Using Graph Convolutional Networks to model in-
teractions between vehicles in DRL for autonomous
driving.

2) Extending existing set input architectures for DRL to
deal with multiple lists of different object types.

II. RELATED WORK

Graph Networks are a class of neural networks that can
learn functions on graphs as input [15], [16], [17], [18], [19]
and can reason about how objects in complex systems inter-
act. They can be used in DRL to learn state representations
[20], [21], [22], [17], e.g. for inference and control of physi-
cal systems with bodies (objects) and joints (relations). In the
application for autonomous driving, Graph Networks were
used for supervised traffic prediction while modeling traffic
participant interactions [23], where vehicles were modeled as
objects and interactions between them as relations. Another
type of interaction-aware network architectures, Interaction
Networks, were proposed to reason about how objects in
complex systems interact [18]. A vehicle behavior interaction
network that captures vehicle interactions was presented in
[24]. In [25], a convolutional social pooling component was
proposed using a CNN to model spatial connections between
vehicles for vehicle trajectory prediction.

III. PRELIMINARIES

We model the task of high-level decision making for
autonomous driving as a Markov Decision Process (MDP),
where the agent is following a policy π in an environment
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Fig. 1. Scheme of DeepScene-Q, using (a) Deep Sets and (b) Graphs. Both architectures combine multiple variable-length object lists in a scene, here
a traffic sign s1, lanes l1, l2 and vehicles x1, x2. The modules φi, ρ and Q are fully-connected networks. As permutation invariant pooling operator, we
use the sum. The vector xstatic includes static features and q the action value output.

in a state st, applying a discrete action at ∼ π to reach a
successor state st+1 ∼ M according to a transition model
M. In every time step t, the agent receives a reward rt,
e.g. for driving as close as possible to a desired velocity.
The agent tries to maximize the discounted long-term return
R(st) =

∑
i>=t γ

i−tri, where γ ∈ [0, 1] is the discount
factor. In this work, we use Q-learning [26]. The Q-function
Qπ(st, at) = Eai>t∼π[R(st)|at] represents the value of
following a policy π after applying action at. The optimal
policy can be inferred from the optimal action-value function
Q∗ by maximization over actions.

A. Q-Function Approximation

We use DQN [1] to estimate the optimal Q-function by
function approximator Q, parameterized by θQ. It is trained
in an offline fashion on minibatches sampled from a fixed
replay buffer R with transitions collected by a driver policy
π̂. As loss, we use L(θQ) = 1

b

∑
i

(
yi −Q(si, ai|θQ)

)2
with

targets yi = ri+γmaxaQ
′(si+1, a|θQ

′
), where Q′ is a target

network, parameterized by θQ
′
, and (si, ai, si+1, ri)|0≤i≤b

is a randomly sampled minibatch from R. For the target
network, we use a soft update, i.e. θQ

′ ← τθQ + (1− τ)θQ
′

with update step-size τ ∈ [0, 1]. Further, we use a variant of
Double-Q-learning [27] which is based on two Q-network
pairs and uses the minimum of the predictions for the target
calculation, similar as in [28].

B. Deep Sets

A network QDS can be trained to estimate the Q-function
for a state representation s = (Xdyn, xstatic) and action a.
The representation consists of a static input xstatic and a
dynamic, variable-length input set Xdyn = [x1, .., xseq len]>,
where xj |1≤j≤seq len are feature vectors for surrounding
vehicles in sensor range. In [12], it was proposed to use
Deep Sets to handle this input representation, where the
Q-network consists of three network modules φ, ρ and Q.
The representation of the dynamic input set is computed by

Ψ(Xdyn) = ρ
(∑

x∈Xdyn φ(x)
)
, which makes the Q-function

permutation invariant w.r.t. the order of the dynamic input
[13]. Static feature representations xstatic are fed directly to
the Q-module, and the Q-values can be computed by QDS =
Q(Ψ(Xdyn)||xstatic), where || denotes a concatenation of two
vectors. The Q-learning algorithm is called DeepSet-Q [12].

IV. METHODS

A. Deep Scene-Sets

To overcome the limitation of DeepSet-Q to one variable-
sized list of the same object type, we propose a novel
architecture, Deep Scene-Sets, that are able to deal with
K input sets Xdyn1 , ..., XdynK , where every set has variable
length. A combined, permutation invariant representation of
all sets can be computed by

Ψ(Xdyn1 , ..., XdynK ) = ρ

∑
k

∑
x∈Xdynk

φk(x)

 ,

where 1 ≤ k ≤ K. The output vectors φk(·) ∈ RF of
the neural network modules φk have the same length F .
We additionally propose to share the parameters of the last
layer for the different φ networks. Then, φk(·) can be seen
as a projection of all input objects to the same encoded
object space. We combine the encoded objects of different
types by the sum (or other permutation invariant pooling
operators, such as max) and use the network module ρ to
create an encoded scene, which is a fixed-sized vector. The
encoded scene is concatenated to xstatic and the Q-values can
be computed by QD = Q(Ψ(Xdyn1 , ..., XdynK )||xstatic). We
call the corresponding Q-learning algorithm DeepScene-Q,
shown in Algorithm 2 (Option 1) and Figure 1 (a).

B. Graphs

In the Deep Set architecture, relations between vehicles
are not explicitly modeled and have to be inferred in ρ. We
extend this approach by using Graph Networks, considering



Algorithm 1: Graph-Q
1 initialize QG = (φ, ρ,H,Q) and Q′G = (φ′, ρ′, H ′, Q′), set

replay buffer R
2 for optimization step o=1,2,. . . do
3 get minibatch (si, ai, (X

dyn
i+1, x

static
i+1 ), ri+1) from R

4 foreach transition do
5 foreach object xji+1 in Xdyn

i+1 do
6 (φ′i+1)j = φ′

(
xji+1

)
7 compute H

′(L)
i+1 by GCN with

H
′(0)
i+1 = [(φ′i+1)1, ..., (φ′i+1)seq len]>

8 get ρ′i+1 = ρ′

(∑
k

∑
j

H
′(L)
i+1

)
9 yi = ri+1 + γmaxaQ

′(ρ′i+1, x
static
i+1 , a)

10 perform a gradient step on loss: 1
b

∑
i

(QG(si, ai)− yi)2

11 update target network by: θQ
′
G ← τθQG + (1− τ)θQ

′
G

graphs as input. Graph Convolutional Networks (GCNs)
[14] operate on graphs defined by a set of node features
Xdyn = [x1, .., xseq len]> and a set of edges represented by
an adjacency matrix A. The propagation rule of the GCN
is H(l) = σ(D

1
2 ÃD

1
2H(l−1)W (l−1)) with 1 ≤ l ≤ L,

where we set H(0) = [φ(x1), ..., φ(xseq len)]> using an
encoder module similar as in the Deep Sets approach. Ã ∈
RN×N is an adjacency matrix with added self-connections,
Di,i =

∑
j Ãi,j , σ the activation function, H(l) ∈ RN×F

hidden layer activations and W (l) the learnable matrix of
the l-th layer. The dynamic input representation can be
computed from the last layer L of the GCN: Ψ(Xdyn) =
ρ
(∑

x∈Xdyn H(L)
)
, where φ is a neural network and the

output vector φ(·) ∈ RF has length F . The Q-values can
be computed by QG = Q(Ψ(Xdyn)||xstatic). We call the cor-
responding Q-learning algorithm Graph-Q, see Algorithm 1.

C. Deep Scene-Graphs

The graph representation can be extended to deal with
multiple variable-length lists of different object types
Xdyn1 , ..., XdynK by using K encoder networks. As node
features, we use H(0) = [Φ1, ...,ΦK ]> and Φk =
[φk(x1), ..., φk(xseq lenk)] for 1 ≤ k ≤ K, and compute the
dynamic input representation from the last layer of the GCN:

Ψ(Xdyn1 , ..., XdynK ) = ρ

∑
k

∑
x∈Xdynk

H(L)

 ,

with 1 ≤ k ≤ K. Similar to the Deep Scene-Sets archi-
tecture, φk are neural network modules with output vector
length D and parameter sharing in the last layer. To create a
fixed vector representation, we combine all node features by
the sum into an encoded scene. The Q-values can be com-
puted by QD = Q(Ψ(Xdyn1 , ..., XdynK )||xstatic). This module
can replace the DeepScene-Sets module in DeepScene-Q as
shown in Algorithm 2 (Option 2) and in Figure 1 (b).

D. Graph Construction

We propose two different strategies to construct bidirec-
tional edge connections between vehicles for Graphs and

Algorithm 2: DeepScene-Q
1 initialize QD = (φ1, ..., φK , ρ,H,Q) and

Q′D = (φ1′, ..., φK ′, ρ′, H ′, Q′), set replay buffer R
2 for optimization step o=1,2,. . . do
3 get minibatch (si, ai, (X

dyn1
i+1 , ..., X

dynK
i+1 , xstatic

i+1 ), ri+1)
from R

4 foreach transition do
5 foreach object type k ∈ (1, ...,K) do
6 foreach object xji+1 in Xdynk

i+1 do
7 (φk

i+1
′
)
j

= φk′ (xji+1

)
8 Set (Option 1):

9 get ρ′i+1 = ρ′

(∑
k

∑
j

(φk
i+1
′
)j

)
10 Graph (Option 2):
11 compute H

′(L)
i+1 by GCN with

H
′(0)
i+1 = [Φ1, ...,ΦK ]> and Φk =

[(φ′i+1)1, ..., (φ′i+1)seq len]

12 get ρ′i+1 = ρ′

(∑
k

∑
j

H
′(L)
i+1

)
13 yi = ri+1 + γmaxaQ

′(ρ′i+1, x
static
i+1 , a)

14 perform a gradient step on loss and update target network
as in Algorithm 1.

Deep Scene-Graphs representations:
1) Close agent connections: Connect agent vehicle to its

direct leader and follower in its own and the left and
right neighboring lanes (6 · 2 edges).

2) All close vehicles connections: Connect all vehicles to
their leader and follower in their own and the left and
right lanes (K ·6 ·2 edges for K surrounding vehicles).

Edge weights are computed by the inverse absolute dis-
tance between two vehicles, as shown in [23]. A fully-
connected graph is avoided due to computational complexity.

E. MDP Formulation

The feature representations of the the surrounding cars
and lanes are shown in section V-B. The action space A
consists of a discrete set of three possible actions in lateral
direction: keep lane, left lane-change and right lane-change.
Acceleration and collision avoidance are controlled by low-
level controllers, that are fixed and not updated during
training. Maintaining safe distance to the preceding vehicle
is handled by an integrated safety module, as proposed in
[11], [5]. If the chosen lane-change action is not safe, the
agent keeps the lane. The reward function r : S ×A 7→ R is
defined as: r(s, a) = 1 − |vcurrent(s)−vdesired(s)|

vdesired(s)
− plc(a), where

vcurrent and vdesired are the actual and desired velocity of the
agent, plc is a penalty for choosing a lane-change action and
minimizing lane-changes for additional comfort.

V. EXPERIMENTAL SETUP

We use the open-source SUMO [29] traffic simulation to
learn lane-change maneuvers.



Driver Type maxSpeed lcCooperative accel/ decel length lcSpeedGain

agent driver 10 - 2.6/4.5 4.5 -
passenger drivers 1 U(8, 12) 0.2 2.6/4.5 U(4, 5) U(5, 10)
passenger drivers 2 U(5, 9) 1.0 2.6/4.5 U(4, 5) U(5, 10)
passenger drivers 3 U(3, 7) 0.8 2.6/4.5 U(4, 5) U(5, 10)

truck drivers U(2, 4) 0.4 1.3 / 2.25 U(9.5, 14.5) U(0, 3)
motorcycle drivers U(7, 11) 0.2 3.0/5.0 U(2, 3) U(15, 20)

TABLE I
SUMO PARAMETERS FOR DIFFERENT DRIVER TYPES. IN EACH SCENARIO, TRUCKS AND MOTORCYCLES ARE SAMPLED WITH 10% AND 5%

PROBABILITY, PASSENGER CARS AND THEIR DRIVER TYPES ARE SAMPLED UNIFORMLY FOR THE REMAINING NUMBER OF VEHICLES.

A. Scenarios

a) Highway: To evaluate and show the advantages of
Graph-Q, we use the 1000 m circular highway environment
shown in [12] with three continuous lanes and one object
class (passenger cars). To train our agents, we used a dataset
with 500.000 transitions.

b) Fast Lanes: To evaluate the performance of
DeepScene-Q, we use a more complex scenario with a
variable number of lanes, shown in Figure 2. It consists
of a 1000 m circular highway with three continuous lanes
and additional fast lanes in two 250 m sections. At the
end of lanes, vehicles slow down and stop until they can
merge into an ongoing lane. The agent receives information
about additional lanes in form of traffic signs starting 200 m
before every lane start or end. Further, different vehicle
types with different behaviors are included, i.e. cars, trucks
and motorcycles with different lengths and behaviors. For
simplicity, we use the same feature representation for all
vehicle classes. As dataset, we collected 500.000 transitions
in the same manner as for the Highway environment.

B. Input Features

In the Highway scenario, we use the same input features
as proposed in [12]. For the Fast Lanes scenario, the input
features used for vehicle i are:
• relative distance: dri = (pi − pagent)/dmax ∈ R,
pagent, pi are longitudinal positions in a curvilinear
coordinate system of the lane.

• relative velocity: dvi = (vi − vagent)/vallowed
• relative lane index: dli = li − lagent ∈ N,

where li, lagent are lane indices.
• vehicle length: leni/10.0

The state representation for lane j is:
• lane start and end: distances (km) to lane start and end
• lane valid: lane currently passable
• relative lane index: dlj = lj − lagent ∈ N,

where lj , lagent are lane indices.

Fig. 2. Fast Lanes scenario in SUMO. The agent (blue) is overtaking other
vehicles (red) on the fast lane and has to merge before the lane ends.

For the agent, the normalized velocity vcurrent/vdesired is
included, where vcurrent and vdesired are the current and desired
velocity of the agent. Passenger cars, trucks and motorcycles
use the same feature representation. When the agent reaches
a traffic sign indicating a starting (ending) lane, the lane
features get updated until the start (end) of the lane.

C. Training & Evaluation Setup

All agents are trained off-policy on datasets collected
by a rule-based agent with enabled SUMO safety module
integrated, performing random lane changes to the left or
right whenever possible. For training, traffic scenarios with
a random number of n ∈ (30, 60) vehicles for Highway
and with n ∈ (30, 90) vehicles for Fast Lanes are used.
Evaluation scenarios vary in the number of vehicles n ∈
(30, 35, ..., 90). For each fixed n, we evaluate 20 scenarios
with different a priori randomly sampled positions and driver
types for each vehicle, to smooth the high variance.

In SUMO, we set the time step length to 0.5 s. The action
step length of the reinforcement learning agents is 2 s and
the lane change duration is 2 s. Desired time headway τ
and minimum gap are 0.5 s and 2 m. All vehicles have no
desire to keep right (lcKeepRight = 0.0). The sensor range
of the agent is dmax = 80 m. LC2013 is used as lane-change
controller for all other vehicles. To simulate traffic conditions
as realistic as possible, different driver types are used with
parameters shown in Table I.

D. Comparative Analysis

Each network is trained with a batch size of 64 and
optimized by Adam [30] with a learning rate of 10−4. As
activation function, we use Rectified Linear Units (ReLu) in
all hidden layers of all architectures. The target networks
are updated with a step-size of τ = 10−4. All network
architectures, including the baselines, were optimized using
Random Search with the same budget of 20 training runs. We
preferred Random Search over Grid Search, since it has been
shown to result in better performance using budgets in this
range [31]. The Deep Sets architecture and hyperparameter-
optimized settings for all encoder networks are used from
[12]. The network architectures are shown in Table II. Graph-
Q is compared to two other interaction-aware Q-learning
algorithms, that use input modules originally proposed for
supervised vehicle trajectory prediction. To support our ar-
chitecture choices for the Deep Scene-Sets, we compare to a



Social CNN VBIN GCN

Input(B × 80× 5) Input(B × 15) Input(B × seq× 3)

φ: FC(20), FC(80) φ: FC(20), FC(80) φ: FC(20), FC(80)
16× Conv2D(3× 1) concat(·) 1× GCN(80)
32× Conv2D(3× 1) ρ: FC(80), FC(20) sum(·)

concat(·, Input(B × 3))
FC(100)∗, FC(100), Linear(3)

Deep Scene-Sets Deep Scene-Graphs

Input(B × seq0 × 4) and Input(B × seq1 × 4)

φ0: FC(20), FC(80),FC(80)∗∗ φ0: FC(20), FC(80),FC(80)∗∗
φ1: FC(20), FC(80), FC(80)∗∗ φ1: FC(20), FC(80),FC(80)∗∗

sum(·) 1× GCN(80)
ρ: FC(80), FC(80) sum(·)

concat(·, Input(B × 3))
FC(100), FC(100), Linear(3)

TABLE II
NETWORK ARCHITECTURES. FC(·) ARE FULLY-CONNECTED LAYERS.
THE CNN USES STRIDES OF (2× 1). (*) FOR VBIN FC(200). (**)

PARAMETERS OF THE LAST LAYERS ARE SHARED.

modification with separate ρ networks. We use the following
baselines1:

a) Rule-Based Controller: Naive, rule-based agent con-
troller, that uses the SUMO lane change model LC2013.

b) Convolutional Social Pooling (SocialCNN): In [25],
a social tensor is created by learning latent vectors of all cars
by an encoder network and projecting them to a grid map in
order to learn spatial dependencies.

c) Vehicle Behaviour Interaction Networks (VBIN): In
[24], instead of summarizing the output vectors as in the
Deep Sets approach, the vectors are concatenated, which
results in a limitation to a fixed number of cars. We consider
the 6 vehicles surrounding the agent (leader and follower on
own, left and right lane).

d) Multiple ρ-networks: Deep Scene architecture
where all object types are processed separately
by using K different ρ-network modules. The
K resulting output vectors are concatenated as[
ρ1
(∑

x∈Xdyn1 φ
1(x)

)
, ..., ρK

(∑
x∈XdynK φK(x)

) ]
and

fed into the Q-network module.

E. Implementation Details & Hyperparameter Optimization

All networks were trained for 1.25 · 106 optimization
steps. The Random Search configuration space is shown in
Table III. For all approaches except VBIN, we used the same
φ and Q architectures. Due to stability issues, adapted these
parameters for VBIN. For SocialCNN, we used the optimized
grid from [12] with a size of 80× 5. The GCN architectures
were implemented using the pytorch gemoetric library [32].

VI. RESULTS

The results for the Highway scenario are shown in Fig-
ure 3. Graph-Q using the GCN input representation (with

1Since we do not focus on including temporal context, we adapt recurrent
layers to fully-connected layers in all baselines.

Architecture Parameter Configuration Space

Encoders φ: num layers 1, 2, 3
φ: hidden/ output dims 5, 20, 80, 100

Deep Sets ρ: num layers 1, 2, 3
ρ: hidden/ output dims 5, 20, 100

GCN num GCN layers 1,2,3
hidden and output dim 20, 80

use edge weights True, False
SocialCNN CONV: num layers 2, 3

kernel sizes ([7, 3, 2], [2, 1])
strides ([2, 1], [2, 1])
filters 8, 16, 32

VBIN φ : output dim 20, 80
ρ : hidden dim 20, 80, 160, 200
Q : hidden dim 100, 200

Deep Scene-Sets ρ : output dim 20, 80
shared parameters True, False

Deep Scene-Graphs use ρ network True, False
ρ : output dim 20, 80

shared parameters True, False

TABLE III
RANDOM SEARCH CONFIGURATION SPACE. FOR EVERY ARCHITECTURE,

WE SAMPLED 20 CONFIGURATIONS TO FIND THE BEST SETTING.

all close vehicle connections) is outperforming VBIN and
Social CNN. Further, the GCN input module yields a better
performance compared to Deep Sets in all scenarios besides
in very light traffic with rare interactions between vehicles.
While the Social CNN architecture has a high variance,
VBIN shows a better and more robust performance and is
also outperforming the Deep Sets architecture in high traffic
scenarios. This underlines the importance of interaction-
aware network modules for autonomous driving, especially
in urban scenarios. However, VBIN are still limited to
fixed-sized input and additional gains can be achieved by
combining both variable input and interaction-aware methods
as in Graph Networks. To verify that the shown performance
increases are significant, we performed a T-Test exemplarily
for 90 car scenarios:

• Independence of the mean performances of DeepSet-
Q and Graph-Q is highly significant (< 0.001) with a
p-value of 0.0011.

• Independence of the mean performances between
Graph-Q and VBIN is significant (< 0.1) with a p-value
of 0.0848. Graph-Q is additionally more flexible and can
consider a variable number of surrounding vehicles.

Figure 3 (right) shows the performance of the two graph
construction strategies. A graph built with connections for
all close vehicles outperforms a graph built with close
agent connections only. However, the performance increase
is only slight, which indicates that interactions with the direct
neighbors of the agent are most important.

The evaluation results for Fast Lanes are shown in Figure 4
(left). The vehicles controlled by the rule-based controller
rarely use the fast lane. In contrast, our agent learns to drive
on the fast lane as much as possible (39.0% of the driving
time). We assume, that the Deep Scene-Sets are outperform-
ing Deep Scene-Graphs slightly, because the agent has to
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Fig. 3. Mean performance and standard deviation in the Highway scenario over 10 training runs for Graph-Q with all close vehicle connections, the
Deep Sets [12] and two other interaction-aware Q-function input modules (left), and Graph-Q using the two proposed graph construction strategies (right).
The number of vehicles indicates the traffic intensity, from light to dense traffic.
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Fig. 4. Mean performance and standard deviation in the Fast Lanes scenario over 10 training runs for Deep Scene-Sets, Deep Scene-Graphs and the
rule-based controller from SUMO (left), and different architecture choices of the Deep Scenes (right). The number of vehicles indicates the traffic intensity.

deal with less interactions than in the Highway scenario.
Finally, we compare Deep Scene-Sets to a basic Deep Sets ar-
chitecture with a fixed feature representation. Using the exact
same lane features (if necessary filled with dummy values),
both architectures show similar performance. However the
performance collapse for the Deep Sets agent considering
only its own, left and right lane shows, that the ability
to deal with an arbitrary number of lanes (or other object
types) can be very important in certain situations. Due to
its limited lane representation, the Deep Sets (closest lanes)
agent is not able to see the fast lane and thus significantly
slower. Figure 4 (right) shows an ablation study, comparing
the performance of the Deep-Scene Sets with and without
shared parameters in the last layer of the encoder networks.
Using shared parameters in the last layer leads to a slight
increase in robustness and performance, and outperforms the
architecture with separate ρ networks.

VII. CONCLUSION

In this paper, we propose Graph-Q and DeepScene-Q,
interaction-aware reinforcement learning algorithms that can
deal with variable input sizes and multiple object types in
the problem of high-level decision making for autonomous
driving. We showed, that interaction-aware neural networks,
and among them especially GCNs, can boost the perfor-
mance in dense traffic situations. The Deep Scene archi-
tecture overcomes the limitation of fixed-sized inputs and
can deal with multiple object types by projecting them into
the same encoded object space. The ability of dealing with
objects of different types is necessary especially in urban
environments. In the future, this approach could be extended
by devising algorithms that adapt the graph structure of
GCNs dynamically to adapt to the current traffic conditions.
Based on our results, it would be promising to omit graph
edges in light traffic, essentially falling back to the Deep Sets
approach, while it is beneficial to model more interactions
with increasing traffic density.
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