
Efficient Multi-Agent Trajectory Planning with Feasibility Guarantee
using Relative Bernstein Polynomial

Jungwon Park, Junha Kim, Inkyu Jang and H. Jin Kim1

Abstract— This paper presents a new efficient algorithm
which guarantees a solution for a class of multi-agent trajec-
tory planning problems in obstacle-dense environments. Our
algorithm combines the advantages of both grid-based and
optimization-based approaches, and generates safe, dynamically
feasible trajectories without suffering from an erroneous opti-
mization setup such as imposing infeasible collision constraints.
We adopt a sequential optimization method with dummy agents
to improve the scalability of the algorithm, and utilize the con-
vex hull property of Bernstein and relative Bernstein polynomial
to replace non-convex collision avoidance constraints to convex
ones. The proposed method can compute the trajectory for
64 agents on average 6.36 seconds with Intel Core i7-7700 @
3.60GHz CPU and 16G RAM, and it reduces more than 50% of
the objective cost compared to our previous work. We validate
the proposed algorithm through simulation and flight tests.

I. INTRODUCTION

Multi-agent systems with many unmanned aerial vehicles
(UAVs) broaden the range of achievable missions to complex
environments unsafe or hard to reach for humans or a single
agent. For successful operation of these multi-agent systems,
path planning algorithm is required to generate a collision-
free trajectory in any obstacle environment. However, many
works have a risk to fail in dense cluttered environments due
to deadlock [1, 2] or failure caused by enforcing infeasible
collision constraints in the formulation [3, 4].

In this paper, we present an efficient multi-agent trajectory
planning algorithm which generates safe, dynamically feasi-
ble trajectories in obstacle-dense environments by extending
our previous work [5]. The proposed algorithm is designed
to have the advantages of both grid-based and optimization-
based approaches. First, it guarantees the feasibility of op-
timization problem formulation by utilizing an initial tra-
jectory computed from grid-based multi-agent path finding
algorithm. Second, it generates a continuous dynamically
feasible trajectory by optimizing the initial trajectory with
consideration of quadrotor dynamics as shown in Fig. 1.
When we formulate the optimization problem, we utilize
the convex hull property of relative Bernstein polynomial to
translate non-convex collision avoidance constraints to con-
vex ones. Compared to the previous work [5], we modify the
method for constructing constraints not to occur infeasible

This work was supported by Institute of Information & Communications
Technology Planning & Evaluation(IITP) grant funded by the Korea gov-
ernment(MSIT) (No. 2019-0-00399, Development of A.I. based recognition,
judgement and control solution for autonomous vehicle corresponding to
atypical driving environment)

1The authors are with the Department of Mechanical and Aerospace En-
gineering, Seoul National University, Seoul, South Korea. {qwerty35,
wnsgk02, leplusbon, hjinkim}@snu.ac.kr

Fig. 1: Flight in an obstacle environment with 6 quadrotors.

constraints between collision avoidance constraints, and we
introduce a sequential optimization method. This sequential
method can deal with a large scale of agents with improved
computational efficiency, and does not cause deadlock by
employing dummy agents.

Our main contributions can be summarized as follows.
• A multi-agent trajectory planning algorithm is pre-

sented for obstacle-dense environments, which gener-
ates collision-free and dynamically feasible trajectories
without a potential optimization failure by using relative
Bernstein polynomial.

• A sequential trajectory optimization method is proposed
with dummy agents, which reduces computational load.

• The source code will be released in https://
github.com/qwerty35/swarm_simulator.

There have been discussions in literature closely related
to our work on multi-agent trajectory planning. In [6, 7,
3], the trajectory generation problems are reformulated as
mixed-integer quadratic programming (MIQP) or sequential
convex programming (SCP) problems, that apply collision
constraints at each discrete time step. These methods suit
well systems with a small number of agents, but they are in-
tractable for large teams and complex environments because
an additional adaptation process is required to find proper
discretization time step depending on the size of agents and
obstacles. On the other hand our method does not require
this process because we do not use time discretization.

Sequential planning proposed in [8] for better scalability
is similar to our work. However, it may not be able to find
a feasible solution for a crowded situation. To solve this, we
adopt dummy agents which move along the initial trajectory
computed by a grid-based planner to prevent deadlock. The
most relevant work can be found in [9, 10]. They plan an
initial trajectory with a grid-based planner and then construct
a safe flight corridor (SFC), which indicates a safe region
of each agent. However, they need to resize SFC iteratively
until the overall cost converges, while our proposed method
does not need an additional resizing process by using relative
Bernstein polynomial.

ar
X

iv
:1

90
9.

10
21

9v
2 

 [
ee

ss
.S

Y
] 

 8
 M

ar
 2

02
0

https://github.com/qwerty35/swarm_simulator
https://github.com/qwerty35/swarm_simulator


Recently, distributed planning is receiving much attention
due to scalability [1, 2, 4]. However, such distributed meth-
ods are not able to guarantee a safe solution in obstacle-dense
environments due to deadlock.

II. PROBLEM FORMULATION
In this section, we formulate an optimization problem to

generate safe, continuous trajectories for a multi-agent robot
system consisting of N quadrotors. We assign the mission
for the ith quadrotor to move from the start point si to the
goal point gi. The quadrotors may have a different size with
radius r1, ..., rNm. The maximum velocity and acceleration
of the ith quadrotor are vimax, aimax respectively.

A. Assumption
We assume that prior knowledge of the free space F of

the environment is given as a 3D occupancy map. We also
assume that the grid-based initial trajectory planner in section
V-A can find a solution when the grid size is d.

B. Trajectory Representation
Due to the differential flatness of quadrotor dynamics,

it is known that the trajectory of quadrotor can be repre-
sented in a polynomial function with flat outputs in time t
[11]. However, it is difficult to handle collision avoidance
constraints with standard polynomial basis. For this reason,
we formulate the trajectory of quadrotors using a piecewise
Bernstein polynomial. The Bernstein polynomial is the linear
combination of Bernstein basis polynomials, and the Bern-
stein basis polynomial of degree n is defined as follows:

Bk,n(t) =

(
n

k

)
tk(1− t)n−k (1)

for t ∈ [0, 1] and k = 0, 1, ..., n. The trajectory of the ith

quadrotor, pi(t) ∈ R3, can be represented as M -segment
piecewise Bernstein polynomials:

pi(t) =



∑n
k=0 c

i
1,kBk,n(τ1) t ∈ [T0, T1]∑n

k=0 c
i
2,kBk,n(τ2) t ∈ [T1, T2]

...
...∑n

k=0 c
i
M,kBk,n(τM ) t ∈ [TM−1, TM ]

(2)

where τm = t−Tm−1

Tm−Tm−1
, cim,k is the kth control point of the

mth segment of the ith quadrotor’s trajectory, and Tm−1, Tm
are the start and end time of the mth segment, respectively.
Thus, the decision vector of our optimization problem, c,
consists of all the control points of pi(t) for i = 1, ..., N .

C. Objective Function
We define the objective function to minimize the integral

of the square of the φth derivative:

J =

N∑
i=1

∫ TM

T0

∥∥∥∥ dφdtφ pi(t)
∥∥∥∥2
2

dt = cTQc (3)

where Q is the Hessian matrix of the objective function.
In this paper, we set φ = 3 to minimize the jerk of the
trajectory, so that the input to the quadrotor becomes less
aggressive [12].

Fig. 2: (Left) Obstacle collision model, (Right) Inter-collision
model.

D. Convex Constraints

The trajectory must pass the start and goal points and
should be continuous up to the φ− 1th derivatives. Also, it
must not exceed maximum velocity and acceleration. These
constraints can be written in affine equality and inequality
constraints respectively:

Aeqc = beq (4)

Adync � bdyn (5)

E. Non-Convex Collision Avoidance Constraints

1) Obstacle Avoidance Constraints: We define an obstacle
collision model of the ith quadrotor, which models a collision
region between a quadrotor and obstacles (See Fig. 2):

Ciobs = {p ∈ R3 | ‖p‖22 ≤ (ri)2} (6)

The ith quadrotor must satisfy the condition below not to
collide with obstacles:

pi(t)⊕ Ciobs ⊂ F , t ∈ [T0, TM ] (7)

where ⊕ is the Minkowski sum.
2) Inter-Collision Avoidance Constraints: A collision re-

gion between ith and jth agents can be expressed with an
inter-collision model Ci,jinter:

Ci,jinter = {p ∈ R3 | pTEp ≤ (ri + rj)2} (8)

where E is diag([1, 1, 1/(cdw)2]), and cdw is a coefficient to
consider a downwash effect. The ith agent does not collide
with the jth agent if the relative trajectory of the jth agent
respect to the ith agent, pi,j(t) = pj(t)− pi(t), satisfies the
following condition:

pi,j(t) ∩ Ci,jinter = ∅, t ∈ [T0, TM ] (9)

Non-convexity of (7) and (9) makes it difficult to directly
employ them. In the next section, we will show the method
that relaxes those non-convex constraints to convex ones
using relative Bernstein polynomial.

III. RELATIVE BERNSTEIN POLYNOMIAL

One of the useful properties of the Bernstein polynomial
is a convex hull property that the Bernstein polynomial is
confined within the convex hull of its control points [13].
This property has been used to confine the trajectory to
a convex set called safe flight corridor (SFC) for obstacle



Fig. 3: Collision avoidance constraints. The region sur-
rounded by the blue dashed line is safe flight corridor (SFC)
for the blue agent, and the region surrounded by green dashed
line is the intersection of relative safe flight corridor (RSFC)
for the blue agent. To generate a safe trajectory, there must
exist intersection between SFC and RSFC (gray shaded area).

avoidance [14, 15]. Here, we introduce the method to con-
fine the relative polynomial trajectory to inter-collision-free
region by utilizing the convex hull property.

Let the mth segment of pi(t), pj(t) be pim(t), pjm(t)
respectively, and pi,jm (t) = pjm(t) − pim(t) is their relative
trajectory. Then pi,jm (t) can be written as

pi,jm (t) =

n∑
k=0

(cjm,k − c
i
m,k)Bk,n(τm)

=

n∑
k=0

ci,jm,kBk,n(τm)

(10)

where ci,jm,k = cjm,k − cim,k is the control point of pi,jm (t),
which implies that the relative Bernstein polynomial is also
Bernstein polynomial. Thus, by the convex hull property,
we can enforce the ith and jth quadrotors not to collide
with each other by limiting all control points ci,jm,k within
a convex, inter-collision free region. We call this region a
relative safe flight corridor (RSFC). In this way, we can
generate the safe trajectory by adjusting SFC, RSFC.

IV. DEFINITION

In the previous work [5], we determined RSFC by choos-
ing a proper one among pre-defined RSFC candidates. RSFC
candidates were designed to be able to utilize the differential
flatness of quadrotor, and so as to achieve fast planning
speed. However, it may fail to find a trajectory because a
feasible region that satisfies both RSFC and SFC constraints
may not exist. To guarantee the existence of such feasible
region as Fig. 3, we precisely define three key terms in this
paper: initial trajectory, SFC, and RSFC.

A. Initial Trajectory

An initial trajectory of the ith quadrotor, πi =
{πi0, ..., πiM}, is defined as a path that satisfies the following
conditions for all m = 0, ...,M and i 6= j:

πi0 = si, πiM = gi (11)

〈πim−1, πim〉 ⊕ Ciobs ⊂ F (12)

〈πi,jm−1, πi,jm 〉 ∩ C
i,j
inter = ∅ (13)

where 〈πim−1, πim〉 = {απim−1 + (1 − α)πim | 0 ≤ α ≤ 1}
is a line segment between waypoints πim−1 and πim, and
πi,jm = πjm − πim. (12) shows that the initial trajectory does
not collide with obstacles, and (13) means that the agents
do not collide with other agents when all the agents move
along their initial trajectory at constant velocity.

B. Safe Flight Corridor

The mth safe flight corridor (SFC) of the ith quadrotor,
Sim, is defined as a convex set satisfies following conditions:

Sim ⊕ Ciobs ⊂ F (14)

〈πim−1, πim〉 ⊂ Sim (15)

The condition (14) shows that an agent in SFC does not
collide with obstacles, so SFC can be used for obstacle
collision avoidance.

C. Relative Safe Flight Corridor

The mth relative safe flight corridor (RSFC) between ith

and the jth quadrotor, Ri,jm , is defined as a convex set that
satisfies the following conditions:

Ri,jm ∩ C
i,j
inter = ∅ (16)

〈πi,jm−1, πi,jm 〉 ⊂ Ri,jm (17)

If Ri,jm includes pi,j(t) for t ∈ [Tm−1, Tm], then there is no
collision between the ith and jth agents for t ∈ [Tm−1, Tm]
due to (9) and (16). For this reason, we can use RSFC to
avoid collision between agents.

V. METHOD

In this section, we introduce the efficient trajectory plan-
ning algorithm using convex safe corridors. Alg. 1 shows the
process of trajectory planning. We first plan initial trajecto-
ries (line 1), and we use them to determine safe flight corridor
(SFC) (line 3) and relative safe flight corridor (RSFC) (line
5). After that, we compose quadratic programming (QP)
problem using initial trajectories and safe corridors (line 8).
Finally, we scale the total flight time to satisfy dynamic
feasibility constraints (line 9). The detail of each process
is described in the following subsections.

A. Initial Trajectory Planning

To plan an initial trajectory, we use a graph-based multi-
agent pathfinding (MAPF) algorithm. Among various MAPF
algorithms such as [16, 17], we choose enhanced conflict-
based search (ECBS) for the following two reasons: (i) ECBS
can find a suboptimal solution in a short time. Because the
optimal MAPF algorithm is NP-complete [18], it could be
better to use a suboptimal MAPF solver with respect to
computation time. (ii) The ECBS algorithm is complete. To
guarantee completeness of Alg. 1, individual submodules in
the algorithm must be complete.

To utilize the graph-based ECBS in our problem, we
formulate the planInitialTrajectory function in line 1, Alg 1
as follows. First, we translate the given 3D occupancy map



Algorithm 1: Trajectory Planning Algorithm

Input: start point si, goal point gi for agents
i ∈ {1, ..., N}, 3D occupancy map E

Output: total flight time T , trajectory pi(t) for agents
i ∈ {1, ..., N}, t ∈ [0, T ]

1 π = (π1, ..., πN )← planInitialTraj(s∀i, g∀i, E);
2 for i← 1 to N do
3 Si = (Si0, ...,SiM )← buildSFC(πi, E);
4 for j ← i+ 1 to N do
5 Ri,j = (Ri,j0 , ...,Ri,jM )← buildRSFC(πi, πj);
6 end
7 end
8 p0(t), ..., pN (t)← trajOpt(π,S∀i,R∀i,j>i);
9 T, p0(t), ..., pN (t)← timeScale(p0(t), ..., pN (t));

10 return T, p0(t), ..., pN (t)

into a 3D grid map with grid size d. Next, we set constraints
which determine conflict in the ECBS algorithm to satisfy
the condition (13). After that, we give start and goal points
as the input and compute the initial trajectory. If start and
goal points are not located on the 3D grid map, then we
use the nearest grid points instead and append the start/goal
points to both ends respectively.

B. Safe Flight Corridor Construction
Alg. 2 shows the construction process of safe flight cor-

ridor (SFC). We initialize SFC to 〈πim−1, πim〉 to fulfill the
condition (15) (line 3). For all direction, we check whether
SFC is expandable (line 5-9), and we expand SFC by a pre-
specified length (line 10). This algorithm guarantees to return
convex sets that satisfy the definition of SFC.

Algorithm 2: buildSFC

Input: initial trajectory πi, 3D occupancy map E
Output: safe flight corridor Si = (Si0, ...,SiM )

1 D ← {±x,±y,±z};
2 for m← 1 to M do
3 Sim ← 〈πim−1, πim〉;
4 while D is not empty do
5 for µ in D do
6 if Sim cannot expand to direction µ then
7 D ← D\µ
8 end
9 end

10 expand Sim to all direction in D;
11 end
12 end

C. Relative Safe Flight Corridor Construction
To build RSFC, we first perform affine coordinate trans-

formation x̃ = E
1
2x, where E

1
2 is diag([1, 1, 1/cdw]). Then,

the inter-collision model Ci,jinter and initial trajectory πi,j are
transformed to C̃i,jinter and π̃i,j as shown in Fig. 4b. Let
π̃i,jmin be the nearest point of 〈π̃i,jm−1, π̃i,jm 〉 to the origin. We
construct RSFC as follows:

Ri,jm = {x = E−
1
2 x̃ | x̃ · ñmin − (ri + rj) > 0} (18)

(a) Before coordinate trans-
formation.

(b) After coordinate transfor-
mation.

Fig. 4: Construction of relative safe flight corridor. The red
ellipsoid is an inter-collision model between the quadrotors
i, j, and the green-shaded region is the relative safe flight
corridor (RSFC).

where ñmin = π̃i,jmin/‖π̃
i,j
min‖. As depicted in Fig. 4a, our

RSFC is a half-space divided by the plane, which is tangent
to the inter-collision model at the πi,jmin = E−

1
2 π̃i,jmin. We

note that the convex set in (18) satisfies the definition of
RSFC, but we omit the proof due to page limits.

D. Sequential Trajectory Optimization

Optimizing all control points of polynomials at once can
cause the scalability problem because the time complexity
of the QP solver is O(n3). Here, we propose an efficient
sequential optimization method using dummy agents.

Algorithm 3: trajOpt

Input: initial trajectory π, safe flight corridor S∀i,
relative safe flight corridor R∀i,j>i

Output: trajectory pi(t) for agents i ∈ b, t ∈ [0, T ]
1 pdmy(t) = (p0dmy(t), ..., p

N
dmy(t))← planDummy(π);

2 for l← 1 to Nb do
3 b← agents in lth batch;
4 pb(t)← solveQP(πb,Sb,R∀i,j>i, p∀i/∈bdmy (t));
5 pdmy(t)← p(t);
6 end
7 return p0(t), ..., pN (t)

Alg. 3 shows the process of sequential optimization. First,
we generate trajectories for dummy agents pdmy(t) using the
following control points (line 1):

cim,k =


πim−1 k = 0, ..., φ− 1

πim k = n− (φ− 1), ..., n

x ∈ 〈πim−1, πim〉 else

(19)

Next, we divide the agents into Nb batches, and we solve
the below QP problem for the batch b (line 3-4):

minimize cTQc

subject to Aeqc = beq

cim,k = control points of pidmy(t), ∀i /∈ b,m, k
cim,k ∈ Sim, ∀i ∈ b,m, k
cjm,k − c

i
m,k ∈ Ri,jm ∀i, j > i,m, k

(20)



where c ∈ R
N
Nb
M(n+1), Aeq ∈ R

N
Nb

(M+1)φ× N
Nb
M(n+1),

and the number of inequality constraints is (N − 1
2 (

N
Nb

+

1)) NNb
M(n + 1). pidmy(t) is the trajectory for ith dummy

agent. At last, we replace the trajectory of dummy agents to
the previously planned one (line 5), and plan the trajectory
for the next batch sequentially.

Fig. 5 visualizes the overall process. For each iteration,
we deploy dummy agents except the agents in the current
batch (Fig. 5a). Then, we plan the trajectory for the current
batch to avoid dummy agents (Fig. 5b). After that, agents
in the current batch are used as dummy agents at the next
iteration (Fig. 5c). At the end of the iteration, collision-free
trajectories are found without deadlock because all the agents
are planned to avoid the previous batch (Fig. 5d).

This sequential method can achieve better scalability be-
cause we can avoid the high time complexity of QP solver
by increasing the number of the batch as the number of
agents increases while keeping the same number of decision
variables of QP. Furthermore, we can prove that (20) consists
of feasible constraints, which means that our method does
not cause optimization failure due to infeasible constraints.

Theorem 1. If n ≥ 2φ−1, then there exists a decision vector
c that satisfies the constraints of eq. (20) for all iterations.

Proof. For any iteration l, let us assign the decision vector
c as (19) for i ∈ b and m = 1, ...,M . Then c satisfies
the waypoint constraints due to (11). pi(t) is continuous up
to φ − 1th derivatives at t = Tm for m = 1, ...,M − 1
because cim,n−(φ−1):n = cim+1,0:φ−1 = πim. c also fulfills
safe corridor constraints due to (15) and (17). Note that
trajectories in the iteration 1, ..., l − 1 do not collide with
trajectories in the current batch because they are planned to
avoid dummy agents which consist of control points (19).
Thus, c is the decision vector that satisfies the constraints of
(20).

In (20), we do not consider dynamic limits in the QP
problem because they can be infeasible constraints for QP.
Instead, similar to [9], we scale the total flight time for all
agents uniformly after optimization (line 9 of Alg. 1).

VI. EXPERIMENTS

A. Implementation Details

The proposed algorithm is run in C++ and executed the
proposed algorithm on a PC running Ubuntu 18.04. with Intel
Core i7-7700 @ 3.60GHz CPU and 16G RAM. We model
the quadrotor with radius r∀i = 0.15m, maximum velocity
v∀imax = 1.7m/s, maximum acceleration a∀imax = 6.2m/s2

and downwash coefficient cdw = 2 based on the specification
of Crazyflie 2.0 in [10]. We use the Octomap library [19] to
represent the 3D occupancy map and use CPLEX QP solver
[20] for trajectory optimization. The degree of polynomials is
determined to n = 5 to satisfy the assumption in the Theorem
1. We plan the initial trajectory in 3D grid map with grid size
d = 0.5 m, and set suboptimal bound of ECBS to 1.3.

(a) Deploy dummy agents. (b) Plan for one batch.

(c) Replace dummy agents
with the previous batch.

(d) Plan for next batch.

Fig. 5: Sequential planning with dummy agents when Nb =
2. Dummy agent is depicted as a black circle, and agent in
the current batch is depicted as a colored circle. For each
iteration, we plan a trajectory for the current batch (color
line) that avoids the trajectory of dummy agents (black line).

Fig. 6: Trajectory generated for 16 agents in a 10 m × 10 m
× 2.5 m random forest. Agents are marked with colored
circles at the goal (assigned to the opposite of the start
points), along with their trajectories.

B. Comparison with Previous Work

To validate the performance of our proposed algorithm, we
compared the result with previous work [5]. We conducted
the simulations in 50 random forests. Each forest has a size
of 10 m × 10 m × 2.5 m and contains randomly deployed
20 trees of size 0.3 m × 0.3 m × 1–2.5 m. We assigned
start point of quadrotors in a boundary of the xy-plane in 1
m height, and the goal points at the opposite to their start
position as shown in Fig. 6.

1) Success Rate: We executed the simulation with 16
agents, and measured the success rate by the size of agents.
As shown in the left graph of Fig. 7, both methods show a
100% success rate in 50 random forest when the radius of
agents is small, but the success rate of [5] decreases as the
size of agents increases. It is because the larger the agent size,
the smaller the space for agents can exist, which lead to the
higher probability that the constraints for SFC and RSFC are
infeasible each other. On the contrary, the proposed method
shows a perfect success rate for all case because we design



TABLE I: Computation time comparison with previous work
[5]. The numbers in parentheses represent the computation
time increment when the number of agents is doubled.

Computation Time (s)
Agents 4 8 16 32 64

[5] 0.093 0.19
(×2.0)

0.81
(×4.3)

5.30
(×6.5)

51.1
(×9.6)

Proposed (Nb = 1) 0.11 0.29
(×2.7)

1.15
(×3.9)

11.1
(×9.6)

197.0
(×17.8)

Proposed (N/Nb = 4) 0.11 0.23
(×2.2)

0.59
(×2.5)

1.55
(×2.6)

6.36
(×4.1)

Fig. 7: Comparison with previous work [5]. (Left) The
success rate for 16 agents, (Right) Objective cost and com-
putation time for 64 agents by the number of batches Nb.

SFC and RSFC to feasible each other.
2) Solution Quality: As depicted in the right graph of

Fig. 7, the proposed algorithm shows better performance with
respect to both objective cost and computation time compare
to previous work when the number of the batch Nb is more
than one. It can generate a trajectory for 64 agents in 6.36
s (Nb = 16), and it has 78% (Nb = 1), 53% (Nb = 16) less
objective cost. Note that we can adjust Nb depending on the
desired objective cost and computation time.

3) Scalability Analysis: The computation time increment
by the number of agents is shown in Table I. When the
number of agents is small, the computation time increases
linearly, regardless of the trajectory optimization method,
but it follows the time complexity of QP solver as the
number of agents increases if we do not adopt the sequential
optimization method. On the other hand, if we maintain the
size of the batch (N/Nb), it still shows good scalability with
the high number of agents.

C. Comparison with SCP-based Method

We compared the proposed algorithm with SCP-based
method [7]. Experiments are done in 10 m × 10 m × 2.5
m empty space with 8 agents. Start position and goal points
are same as the previous experiment as shown in Fig. 8, and
we assigned the same total flight time to both algorithm.

Table II shows that the proposed algorithm requires less
computation time for all the cases, and this result does not
change when we stop the SCP at the first iteration with
collision avoidance constraints. The third column shows the
safety margin ratio of each method. Safety margin ratio
is calculated by mini,jd

i,j
min/(r

i + rj), where di,jmin is a
minimum distance between two agents i, j. Safety margin
ratio must be over 100% to guarantee the collision avoidance,
however, SCP-based method does not satisfy this because
SCP checks only collision avoidance between discrete points

TABLE II: Comparison of proposed algorithm and SCP-
based method.

Comp.
Time per
Iter. (s)

Total
Comp.

Time (s)

Safety
Margin
Ratio

Total
Flight

Dist. (m)
SCP (h = 1.0 s) 0.78 2.80 12% 77.29
SCP (h = 0.5 s) 5.5 20.5 81% 77.36

SCP (h = 0.34 s) 16.2 60.4 92% 77.38
SCP (h = 0.25 s) 42.1 156.6 96% 77.40

Proposed (Nb = 1) - 0.65 101% 90.74

(a) SCP-based [7] (b) Proposed

Fig. 8: Trajectory planning result of the propose algorithm
and SCP-based method in empty space. The dots in (b) are
the initial trajectory of corresponding agents.

on each trajectory. On the contrary, the proposed method
satisfies the safety condition completely.

Although the proposed method perform better in com-
putation time and safety margin, it has longer total flight
distance compared to the SCP method. It is because our
initial trajectory is not optimal respect to total flight distance
in non-grid space. Thus, we need to plan initial trajectory
considering total flight distance, and leave it as future work.

D. Flight Test

We conducted real flight test with 6 Crazyflie 2.0 quadro-
tors in a 5 m x 7 m x 2.5 m space. We used Crazyswarm [21]
to follow the pre-computed trajectory, and we used Vicon
motion capture system to obtain the position information at
100 Hz. The snapshot of the flight test is shown in Fig. 1,
and the full flight is presented in the supplemental video.

VII. CONCLUSIONS

We presented an efficient trajectory planning algorithm for
multiple quadrotors in obstacle environments, combining the
advantages of grid-based and optimization-based planning
algorithm. Using relative Bernstein polynomial, we reformu-
lated trajectory generation problem to convex optimization
problem, which guarantees to generate continuous, collision-
free, and dynamically feasible trajectory. We improved the
scalability of the algorithm by using sequential optimization
method, and we proved overall process does not cause the
failure of optimization if there exist initial trajectory. The
proposed algorithm shows considerable reduction in com-
putation time and objective cost compared to our previous
work, and it shows better performance in computation time
and safety, compared to SCP-based method.

In future work, we plan to develop initial trajectory planner
that optimizes total flight distance in non-grid space, and we
will extend our work to dynamic obstacle environment.



REFERENCES

[1] Daman Bareiss and Jur Van den Berg. “Reciprocal col-
lision avoidance for robots with linear dynamics using
lqr-obstacles”. In: Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE. 2013,
pp. 3847–3853.

[2] Dingjiang Zhou et al. “Fast, on-line collision avoid-
ance for dynamic vehicles using buffered voronoi
cells”. In: IEEE Robotics and Automation Letters 2.2
(2017), pp. 1047–1054.

[3] Yufan Chen, Mark Cutler, and Jonathan P How.
“Decoupled multiagent path planning via incremental
sequential convex programming”. In: Robotics and
Automation (ICRA), 2015 IEEE International Confer-
ence on. IEEE. 2015, pp. 5954–5961.

[4] Carlos E Luis and Angela P Schoellig. “Trajectory
generation for multiagent point-to-point transitions
via distributed model predictive control”. In: IEEE
Robotics and Automation Letters 4.2 (2019), pp. 375–
382.

[5] Jungwon Park and H. Jin Kim. Fast Trajectory Plan-
ning for Multiple Quadrotors using Relative Safe
Flight Corridor. 2019. eprint: arXiv : 1909 .
02896.

[6] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar.
“Mixed-integer quadratic program trajectory genera-
tion for heterogeneous quadrotor teams”. In: Robotics
and Automation (ICRA), 2012 IEEE International
Conference on. IEEE. 2012, pp. 477–483.

[7] Federico Augugliaro, Angela P Schoellig, and Raf-
faello D’Andrea. “Generation of collision-free trajec-
tories for a quadrocopter fleet: A sequential convex
programming approach”. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Con-
ference on. IEEE. 2012, pp. 1917–1922.

[8] D Reed Robinson et al. “An Efficient Algorithm
for Optimal Trajectory Generation for Heterogeneous
Multi-Agent Systems in Non-Convex Environments”.
In: IEEE Robotics and Automation Letters 3.2 (2018),
pp. 1215–1222.

[9] Wolfgang Hönig et al. “Trajectory planning for
quadrotor swarms”. In: IEEE Transactions on
Robotics 34.4 (2018), pp. 856–869.

[10] Mark Debord, Wolfgang Hönig, and Nora Ayanian.
“Trajectory planning for heterogeneous robot teams”.
In: 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE. 2018,
pp. 7924–7931.

[11] Daniel Mellinger and Vijay Kumar. “Minimum snap
trajectory generation and control for quadrotors”. In:
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on. IEEE. 2011, pp. 2520–2525.

[12] Mark W Mueller, Markus Hehn, and Raffaello
D’Andrea. “A computationally efficient motion prim-
itive for quadrocopter trajectory generation”. In: IEEE
Transactions on Robotics 31.6 (2015), pp. 1294–1310.

[13] Michael Zettler and Jürgen Garloff. “Robustness anal-
ysis of polynomials with polynomial parameter depen-
dency using Bernstein expansion”. In: IEEE Transac-
tions on Automatic Control 43.3 (1998), pp. 425–431.

[14] Sarah Tang and Vijay Kumar. “Safe and complete
trajectory generation for robot teams with higher-
order dynamics”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE. 2016, pp. 1894–1901.

[15] Fei Gao et al. “Online safe trajectory generation for
quadrotors using fast marching method and bernstein
basis polynomial”. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE.
2018, pp. 344–351.

[16] Glenn Wagner and Howie Choset. “M*: A complete
multirobot path planning algorithm with performance
bounds”. In: 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2011,
pp. 3260–3267.

[17] Guni Sharon et al. “Conflict-based search for optimal
multi-agent pathfinding”. In: Artificial Intelligence 219
(2015), pp. 40–66.

[18] Jingjin Yu and Steven M LaValle. “Structure and
intractability of optimal multi-robot path planning
on graphs”. In: Twenty-Seventh AAAI Conference on
Artificial Intelligence. 2013.

[19] Armin Hornung et al. “OctoMap: An efficient proba-
bilistic 3D mapping framework based on octrees”. In:
Autonomous robots 34.3 (2013), pp. 189–206.

[20] ILOG CPLEX. 12.7. 0 User’s Manual. 2016.
[21] James A Preiss et al. “Crazyswarm: A large nano-

quadcopter swarm”. In: Robotics and Automation
(ICRA), 2017 IEEE International Conference on.
IEEE. 2017, pp. 3299–3304.

arXiv:1909.02896
arXiv:1909.02896

	I INTRODUCTION
	II PROBLEM FORMULATION
	II-A Assumption
	II-B Trajectory Representation
	II-C Objective Function
	II-D Convex Constraints
	II-E Non-Convex Collision Avoidance Constraints
	II-E.1 Obstacle Avoidance Constraints
	II-E.2 Inter-Collision Avoidance Constraints


	III Relative Bernstein Polynomial
	IV Definition
	IV-A Initial Trajectory
	IV-B Safe Flight Corridor
	IV-C Relative Safe Flight Corridor

	V Method
	V-A Initial Trajectory Planning
	V-B Safe Flight Corridor Construction
	V-C Relative Safe Flight Corridor Construction
	V-D Sequential Trajectory Optimization

	VI EXPERIMENTS
	VI-A Implementation Details
	VI-B Comparison with Previous Work
	VI-B.1 Success Rate
	VI-B.2 Solution Quality
	VI-B.3 Scalability Analysis

	VI-C Comparison with SCP-based Method
	VI-D Flight Test

	VII CONCLUSIONS

