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Abstract— Even though mobile robots have been around for
decades, trajectory optimization and continuous time collision
avoidance remain subject of active research. Existing methods
trade off between path quality, computational complexity, and
kinodynamic feasibility. This work approaches the problem
using a nonlinear model predictive control (NMPC) framework,
that is based on a novel convex inner approximation of the
collision avoidance constraint. The proposed Convex Inner
ApprOximation (CIAO) method finds kinodynamically feasible
and continuous time collision free trajectories, in few iterations,
typically one. For a feasible initialization, the approach is
guaranteed to find a feasible solution, i.e. it preserves feasibility.
Our experimental evaluation shows that CIAO outperforms
state of the art baselines in terms of planning efficiency and
path quality. Experiments on a robot with 12 states show
that it also scales to high-dimensional systems. Furthermore
real-world experiments demonstrate its capability of unifying
trajectory optimization and tracking for safe motion planning
in dynamic environments.

I. INTRODUCTION

Several existing mobile robotics applications (e.g. intra-
logistic and service robotics) require robots to operate in
dynamic environments among other agents, such as humans
or other autonomous systems. In these scenarios, the reactive
avoidance of unforeseen dynamic obstacles is an important
requirement. Combined with the objective of reaching opti-
mal robot behavior, this poses a major challenge for motion
planning and control and remains subject of active research.

Recently several researchers have tackled the obstacle
avoidance problem by formulating and solving optimization
problems [1]–[14]. This approach is well suited for finding
locally optimal solutions, but generally gives no guarantee
of finding the global optimum. Most methods therefore rely
on the initialization by an asymptotically optimal sampling-
based planner [15]–[17]. A shortcoming of most common
trajectory optimization methods is that they are incapable
of respecting kinodynamic constraints, e.g. bounds on the
acceleration, and typically lack a notion of time in their
predictions, [1]–[4]. These approaches are typically limited
to the optimization of paths rather than trajectories and
impose constraints by introducing penalties.
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Fig. 1: CIAO trajectories for the Astrobee robot (top row)
in red and for a unicycle robot (last two rows) with three
different maximum speeds vmax and corresponding minimum
distances d (see (8)): green - slow, red - normal, blue -
fast. The boxes and spheres represent obstacles, the turquoise
dots the reference path. A wider spacing between the dots
indicates a higher speed. The start is always located in the
bottom and the goal in the top. It is clearly visible that CIAO
maintains higher distances to obstacles for higher speeds.

The increase of computing power and the availability
of fast numerical solvers, as discussed in [18], has given
rise to model predictive control (MPC) based approaches,
e.g. [3]–[7]. In this framework, an optimal control problem
(OCP) is solved in every iteration. These methods succeed
in finding kinodynamically [5]–[7] or kinematically [3]–[5]
feasible trajectories, but typically use penalty terms in the
cost function that offer no safety guarantees [7] or require
that obstacles are given as a set of convex hulls [4].

Contribution: This work presents CIAO, a nonlinear
MPC (NMPC) based approach to real-time collision avoid-
ance for single body robots. It preserves feasibility across
iterations and uses a novel, convex formulation of the col-
lision avoidance constraint that is compatible with many
implementations of the distance function, even discrete ones
like distance fields. To the best of authors’ knowledge, CIAO
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is the first real-time capable NMPC approach that guarantees
continuous time collision free trajectories and is agnostic
of the distance function’s implementation. The method’s
efficacy is demonstrated and evaluated in simulation and real-
world using robots with nonlinear, constrained dynamics and
state of the art baselines.

Structure: The paper is structured as follows: The
related work is discussed in Section II and Section III
introduces the problem we want to solve. Section IV details
CIAO alongside some considerations on feasibility, safety
and practical challenges. In Section V we detail how CIAO
can be used for trajectory optimization and receding horizon
control (RHC). The experiments and results are discussed in
Section VI. A summary and an outlook is given in Section
VII.

II. RELATED WORK

Trajectory optimization methods try to find time-optimal
and collision-free robot trajectories by formulating and solv-
ing an optimization problem [1]–[14]. Classical approaches
to obstacle avoidance include [19]–[23]. These approaches
do neither produce optimal trajectories, nor unify planning
and control, nor account for complex robot dynamics.

A simple and effective method that is still used in practice,
is the elastic-band algorithm [1]. The computed paths, how-
ever, are generally non-smooth, i.e. they are not guaranteed
to satisfy kinodynamic constraints, nor does this algorithm
compute a velocity profile. Like Zhu et al. [9], our approach
aims to fix this shortcoming, while building up on the notion
of (circular) free regions. Instead of optimizing velocity
profile and path length separately, as done in [1], [9], we
optimize them jointly utilizing an nonlinear MPC (NMPC)
setup. Also Rösmann et al. [10] provide an approach which
combines elastic-band with an optimization algorithm. Con-
trarily to ours, their approach does not enforce obstacle
avoidance as constraint, and requires a further controller for
trajectory tracking.

Nowadays optimization based methods receive increas-
ingly more attention. Popular methods include CHOMP
[3], TrajOpt [4], OBCA [6], and GuSTO [7], which have
been shown to produce smooth trajectories efficiently. They
typically use a simplified system model to compute a path
from the current to the goal state (or set), and further need
an additional controller to steer the system along the pre-
computed path. The proposed method, CIAO, is MPC-based
and provides algorithms for both trajectory optimization and
RHC, simultaneously controlling the robot and optimizing
its trajectory.

Also Neunert et al. [14] propose RHC to unify trajec-
tory optimization and tracking, but their approach does not
include a strategy for obstacle avoidance. They propose to
solve an unconstrained nonlinear program (NLP) online,
CIAO on the other hand is solving a constrained NLP online
that enforces collision avoidance as constraint.

Frasch et al. [11] propose an MPC with box-constraints
to model obstacles and road boundaries. Liniger et al. [12]
handle obstacles in a similar way, but apply contouring

control, i.e. the approach steers a race car in a corridor
around a predefined path. These frameworks do not consider
arbitrarily placed obstacles, particularly no moving obstacles,
which makes them unsuitable for many applications. In
our approach we handle more complex obstacle definitions,
modeled according to a generic nonlinear and nonconvex
distance function. To this end, we propose a novel constraint
formulation that is shown to be a convex inner approximation
of the actual collision avoidance constraint.

Herbert et al. [5] propose a hybrid approach to safely avoid
dynamic obstacles. The trajectory tracker does not consider
the obstacles explicitly, but relies on the planning layer. The
method proposed in this work presents a unified approach
for all robot motion planing, control, and obstacle avoidance,
using constrained NMPC.

The recently proposed method GuSTO [7] uses sequential
convex programming (SCP), like other common algorithms,
e.g. [4], [10]–[12]. SCP requires a full convexification of the
originally nonlinear and nonconvex trajectory optimization
problem. This is accomplished by linearizing the system
model and incorporating paths constraints, including colli-
sion avoidance, as penalties in the objective function. In
general these approximations may lead to infeasible, i.e.
colliding or kinodynamically intractable trajectories. Typi-
cally several SCP iterations are required to find a feasible
solution. CIAO, on the other hand, solves partially con-
vexified NLPs, using a convex inner approximation of the
collision avoidance constraint, and finds feasible solutions
in less iterations, typically one. The individual iterations are
computationally cheaper and feasibility is preserved. Since
the dynamical model is accounted for by the NLP-solver,
linearization errors are minimized.

Finally CIAO can be considered as a trust region method
[24], where the nonlinear state constraints are approximated
with a convex inner approximation.

III. PROBLEM FORMULATION
We want to find a kinodynamically feasible, collision free

trajectory by formulating and solving a constrained OCP.
Kinodynamic feasibility is ensured by using a dynamical
model to simulate the robot’s behavior and collision avoid-
ance is achieved constraining the robot to positions with a
minimum distance d to all obstacles.

The occupied set O is defined as the set of points in the
robot’s workspace W ⊆ Rn that are occupied by obstacles.
The Euclidean distance to the closest obstacle for any point
p ∈W is given by the distance function dO : W → R:

dO(p) = d(p;O) = min
o∈O
‖p−o‖2 . (1)

For the sake of simplicity we assume that the robot’s shape
is contained in an n-dimensional sphere with radius < d and
center point p. Collision avoidance can now be achieved by
requesting that the distance function at the robot’s position
p ∈W is at least the minimum distance d:

dO(p)≥ d, (2)

which is equivalent to ‖p−o‖2 ≥ d,∀o ∈ O .



We assume d > 0 to be fixed from now on, to ensure that
points in the occupied set O do not satisfy (2). A point p∈W
that satisfies (2) is called ‘free’. Further we define the safety
margin as the area for which 0 < dO(p)< d holds.

We can now formulate an OCP that enforces collision
avoidance as path constraint:

min
x(·),u(·)

∫ T

0
l(x(t),u(t),r(t)) dt + lT(x(T ),r(T ))

s.t. x(0) = x0,

x(T ) ∈ XT,

ẋ(t) = f (x(t),u(t)), t ∈ [0,T ],
h(x(t),u(t))≤ 0, t ∈ [0,T ],

dO(p(t))≥ d, t ∈ [0,T ],

(3)

where x(·) :R→Rnx denotes the robot’s state, u(·) :R→Rnu

is the vector of controls, r(·) :R→Rnx+nu provides reference
states and controls, T is the length of the horizon in seconds,
the function l(·) denotes the cost at time point t and lT(·)
the terminal cost, x0 is robot’s current state, and XT ⊆ Rnx

is the set of admissible terminal states. We use the common
shorthand ẋ to denote the derivative with respect to time, i.e.
ẋ = ∂ x

∂ t . The function f models the robot’s dynamics and h
implements a set of path constraints, e.g. physical limitations
of the system, and p(t) = Sp · x(t) ∈ W denotes the robot’s
position with a selector matrix Sp chosen accordingly.

IV. CONVEX INNER APPROXIMATION (CIAO)

In this section we describe how we solve the OCP pre-
sented in (3) by adopting a convex inner approximation of
the actual collision avoidance constraint presented in Sec. III.

First we discretize (3) using a direct multiple shooting
scheme as proposed by [25]. The resulting NLP is a function
of r, x0, and the sampling time ∆t. Using the shorthand xk =
x(k ·∆t), k ∈ Z for cleaner notation, we discretize (3) as:

minw J(w,r) (4a)

s.t. x0−x0 = 0, (4b)
xN ∈ XT, (4c)

xk+1−F(xk,uk;∆t) = 0, k = 0, . . . ,N−1, (4d)
h(xk,uk)≤ 0, k = 0, . . . ,N, (4e)

dO(pk)≥ d, k = 0, . . . ,N, (4f)

where w = [x>0 ,u
>
0 , . . . ,u

>
N−1,x

>
N ]
> ∈ Rnw is a vector of

optimization variables that contains the stacked controls and
states for all N steps in the horizon, similarly r contains the
reference states and controls, J(w,r) = ∑

N−1
k=0 l(xk,uk,rk)+

lT(xN ,rN) is the discretized objective, with stage cost l
and terminal cost lT, and F models the discretized robot
dynamics. We denote the feasible set of (4) by F(4) ⊂ Rnw .

A. Free Balls: A Convex Inner Approximation of the Obsta-
cle Avoidance Constraint

The actual obstacle avoidance constraint formulated in
Eq. (2) is generally nonconvex and nonlinear, which makes it
ill-suited for rapid optimization. We propose a convex inner

dO (c)−d dO (c)
c o

(a) Example of a free ball
around the center c marked by
the red cross for a 2D envi-
ronment. It is also the center
of the circles, the black circle
has radius dO (c), and the blue
circle radius dO (c)−d.

p
c o

(b) Example for free ball con-
straint. The green arrow head
depicts the robot’s current po-
sition p, the orange dot the
closest obstacle o, the circles,
and the red cross are identical
to the ones in 2a.

Fig. 2: The left figure illustrates the free ball concept, the
right shows how it can be used as a constraint.

approximation of the constraint that is based on the notion
of free balls (FBs), as proposed in [1] and extended by [9].
For cleaner notation we first define the free set.

Definition 1: Let O be the occupied set and d > 0 be the
minimum distance, then the free set A is defined as

A = {a ∈W : ‖a−o‖2 ≥ d ∀ o ∈ O}.
Remark: This definition implies that the free set A and the
occupied set O are disjunct, i.e. A ∩O = /0.

We can now formulate an obstacle avoidance constraint
by enforcing that the robot’s position lies within an n-
dimensional ball formed around c ∈A as shown in Fig. 2.

Definition 2: For an arbitrary free point c ∈A we define
the free ball as Ac := {p ∈W : ‖p− c‖2 ≤ dO(c)−d} .

We will now show that a free ball is a convex subset of
the free set.

Lemma 1: Let c ∈ A be a free point, then the free ball
Ac is a convex subset of A , i.e. c ∈A ⇒Ac ⊆A .

Proof: We will prove this lemma in two steps. First, we
observe that the free ball is a norm ball and therefore convex.
Second, we show by contradiction that Ac * A ⇒ c /∈A .

Suppose ∃ o ∈ O and p ∈ Ac such that ‖p−o‖2 < d.
We now apply the triangle inequality and obtain ‖c−o‖2 ≤
‖p− c‖2 + ‖p−o‖2 < ‖p− c‖2 + d, see Fig. 2b. Using the
distance function’s definition we get dO(c) < ‖p− c‖2 + d.
Reordering yields ‖p− c‖2 > dO(c)− d, which shows that
Ac * A .

Based on Lem. 1 and Def. 2 we can approximate the
collision avoidance constraint by ‖p− c‖2 ≤ dO(c)−d. This
formulation is not differentiable in p = c and might pose
a problem for gradient based solvers. To prevent this case
and linear independence constraint qualification (LICQ) vio-
lations at the only feasible point we assume dO(c)> d.This
implies that both sides are grater 0, such that we can square
both sides and get

‖p− c‖2
2 ≤ (dO(c)−d)2. (5)

With the constraint formulated in (5) and assuming that
LICQ holds for all free ball center points ck with k= 0, . . . ,N,



we can partially convexify the NLP (4). We obtain the CIAO-
NLP, which like (4) depends on r, x0, ∆t, and additionally
the tuple of center points C = (c0, . . . ,cN):

minw,s J(w,r)+
N

∑
k=0

µk · sk (6a)

s.t. x0−x0 = 0, (6b)
xN ∈ XT, (6c)

xk+1−F(xk,uk;∆t) = 0, k = 0, . . . ,N−1, (6d)
h(xk,uk)≤ 0, k = 0, . . . ,N, (6e)

‖pk− ck‖2
2 ≤ (dO(ck)−dk)

2 + sk, k = 0, . . . ,N, (6f)
sk ≥ 0, k = 0, . . . ,N. (6g)

This reformulation of the actual NLP (4) is called Convex
Inner ApprOximation (CIAO). For numerical stability we
include slack variables s = [s0, . . . ,sN ]

> ∈ RN+1 that are
penalized. A point w is only considered admissible if all
slacks are zero, i.e. s = 0 in a vector sense. To ensure
that the slacks are only active for problems, that would be
infeasible otherwise, the multipliers µk have to be chosen
sufficiently large, i.e. µk� 1 for k= 0, . . . ,N. The feasible set
for optimization variables w of this NLP depends on C and is
denoted as F(6)(C), recall that w = [x>0 ,u

>
0 , . . . ,u

>
N−1,x

>
N ]
>

and pk = Sp ·xk.
Note that dO(c) enters the NLP as a constant (c is a

parameter not an optimization variable). Thereby CIAO is
compatible any implementation of the distance function, even
discrete ones.

Note that for a convex objective J(·), a convex terminal
set XT, affine dynamics F , and convex path constraints h,
the CIAO-NLP (6) is convex. Further note that for a linear-
quadratic objective J(·), affine-quadratic path constraints h,
affine dynamics F , and a terminal set XT that can be written
as either (i) an affine equality or (ii) an affine-quadratic
inequality constraint, CIAO-NLP (6) is a quadratically con-
strained quadratic program (QCQP). If is also convex, it is
a convex QCQP.

Lemma 2: Given dO(c) > d ∀ c ∈ C⇒ F(6)(C) ⊆ F(4),
i.e. each feasible point of the CIAO-NLP (6) is a feasible
point of the original NLP (4).

Proof: We observe that (4) and (6) are identical except
for the collision avoidance constraint (4f) and (6f). As stated
above s = 0 holds for feasible points, thus the slacks s can
be ignored. As shown in Lem. 1 (6f) is a convex inner
approximation of (4f), therefore F(6)(C)⊆F(4) follows by
construction.

B. The CIAO-iteration

We will now introduce the CIAO-iteration, as detailed in
Alg. 1. It takes a two step approach that first formulates
the CIAO-NLP (6) by finding a tuple of center points C =
(c0, . . . ,cN) before solving it.

In Line 2 we find an initial tuple of center points C.
In practice the free balls resulting from these center points
are very small and therefore very restrictive, which leaves
little room for optimization, especially if the initial guess w

Algorithm 1 the CIAO-iteration
1: function CIAO-ITERATION(w ; r, x0, ∆t)
2: C← (ck = Sp ·xk for k = 0, . . . ,N) . recall xk ∈ w
3: C∗← (c∗ = MAXIMIZEFB(c) for all c ∈ C) . solve (7)
4: w∗← SOLVENLP(w; C∗, r, x0, ∆t) . solve (6)
5: end function return w∗ . return newly found trajectory

approaches obstacles closely. To overcome this problem we
maximize free balls (FBs) (Line 3) by solving the following
optimization problem for each c∈C and obtain an optimized
center point c∗ = η ·g+ c:

max
η≥0

η s.t. dO (η ·g+ c) = η +dO(c), (7)

where c ∈ A is a given initial point, g ∈ Rn is the search
direction with ‖g‖2 = 1 and η is the step size. It yields a
maximized free ball Ac∗ with radius r = dO(c∗) and center
point c∗ = η · g+ c for each c ∈ C. The optimized center
points are collected in the tuple C∗ = (c∗0, . . .c

∗
N). To ensure

convergence of Alg.1 we require that the distance function
is bounded, i.e. ∃ d > 0 such that dO(p) ≤ d ∀ p ∈W .

We will now show that the optimization problem (7)
preserves feasibility of the initial guess w by showing that
Ac∗ includes Ac, i.e. Ac ⊆Ac∗ .

Lemma 3: For c∈A , g∈ {g∈Rn : ‖g‖2 = 1} and η ≥ 0,
dO(c∗) = η +dO(c)⇒Ac ⊆Ac∗ holds with c∗ = η ·g+ c.

Proof: We will prove this by contradiction, assum-
ing ∃ p ∈ Ac s.t. p /∈ Ac∗ . Using Def. 2 we can rewrite
this as ‖(η ·g+ c)−p‖2 > dO(c∗)− d. Applying the trian-
gle inequality on the left side yields ‖p− (c+η ·g)‖2 ≤
‖p− c‖2+‖η ·g‖2 = ‖p− c‖2+η and based on our assump-
tion ‖p− c‖2+η ≤ dO(c)−d+η holds. Inserting this gives
dO(c)+η−d > dO(c∗)−d and thus contradicts the condition
dO(c∗) = η +dO(c).

To solve the line search problem (7) we propose to use
the distance function’s normalized gradient g = ∇dO (c)

‖∇dO (c)‖2
as

search direction. Starting from η = η > 0 the step size is
exponentially increased until a step size η > η is found for
which the constraint is violated. The optimal step size can
now be found using the bisection method. SOLVENLP uses
a suitable solver to solve (6), e.g. Ipopt [26], and computes
a new trajectory w∗ (Line 4).

Lemma 4: For a feasible initial guess w ∈ F(4) Alg. 1
finds a feasible point w∗ ∈F(4) with J(w∗)≤ J(w).

Proof: We prove this in two steps: first we assume
that SOLVENLP uses a suitable, working NLP-solver, then
we show the feasibility. From Ac ⊆ Ac∗ as shown in
Lem. 3 follows F(6)(C)⊆F(6)(C∗). Further Lem. 2 yields
F(6)(C)⊆F(6)(C∗)⊆F(4).

C. Continuous Time Collision Avoidance for Systems with
Bounded Acceleration

The constraints formulated in (5) can be extended to
the continuous time case. Using Lem. 1 we can write the
continuous time collision avoidance constraint as

‖ck−p(t)‖2 ≤ dO(ck)−d, ∀t ∈ [tk, tk+1],k = 0, . . . ,N.



0
∆t
2

tk−1 tk tk+1 tN

past future

t
tk+tk+1

2
tk−1+tk

2 tN − ∆t
2

prediction horizon

Fig. 3: Maximal action radius between sampling points.

Assuming a double integrator model of the form p(t) = pk +
ṗk · (t− tk)+

∫ t
tk

∫
τ

tk
p̈(s) ds dτ with the shorthand pk = p(tk)

for all k = 0, . . . ,N and t ∈ [tk, tk+1] it can be written as∥∥∥∥pk + ṗk · (t− tk)+
∫ t

tk

∫
τ

tk
p̈(s) ds dτ− ck

∥∥∥∥
2
≤ dO (ck)−d.

Using the triangle inequality we get

‖pk− ck‖2 ≤ dO (ck)−d−‖ṗk‖2 · (t− tk)−
∥∥∥∥∫ t

tk

∫
τ

tk
p̈(s) ds dτ

∥∥∥∥
2
.

With ‖
∫

p̈(τ)dτ‖2 ≤
∫
‖p̈(τ)‖2 dτ and assuming that sys-

tem’s total acceleration is bounded ‖p̈(t)‖2 ≤ a ∀ t ∈ R,
which is a reasonable assumption for most physical systems,
yields

‖pk− ck‖2 ≤ dO(ck)−d−‖ṗk‖2 · (t− tk)−
a
2
· (t− tk)2.

We assume that velocities are bounded in all discretization
points, i.e., ‖ṗk‖2 ≤ v for k = 0, . . . ,N. Considering that
t0 − ∆t

2 and tN + ∆t
2 lie outside of the prediction horizon

and that ‖ṗk±1‖2 ≤ v for k = 1, . . . ,N−1, it is sufficient to
consider the interval tk± ∆t

2 in each time step tk and get

‖pk− ck‖2 ≤ dO(ck)−d− v · ∆t
2
−a · ∆t2

8
for k = 0, . . . ,N.

To illustrate the reasoning Fig. 3 sketches the maximum
deviation from the current location over time. For the sake
of simplicity we assume

dk ≥ v · ∆t
2
+a · ∆t2

8
+d k = 0,1, . . . ,N (8)

from now on, such that (6f) guarantees continuous-time
collision freedom is under the assumptions made above.

Note that (8) implies that Ack and Ack+1 overlap or touch
in the point where the trajectory transits from one into the
next. This is achieved by taking the robot’s action radius into
account, see Fig. 3.

D. Rotational Invariance Trick

Modeling a robot’s kinematics and dynamics using Euler-
angles and continuous variables for the orientation is intu-
itive, but leads to ambiguities and possibly singularities, e.g.
the gimbal lock. Unit quaternions are widespread approach
to circumvent these problems for 3-D rotations. For the 2-D
case, however, they pose an avoidable overhead. In this case
we use Euler-angles and continuous orientation variables for
computational efficiency and the ‘rotational invariance trick‘

to compensate for the ambiguity. We measure the distance
between of two orientations θ1,θ2 ∈ R by

d(θ1,θ2) =

∥∥∥∥cosθ1− cosθ2
sinθ1− sinθ2

∥∥∥∥
2
. (9)

Note that d(θ1,θ2) = d(θ1 + l1 · 2π,θ2 + l2 · 2π),∀l1, l2 ∈ Z.
We thereby avoid unnecessary 360◦ rotations of the robot,
which is relevant for example if the robot drives in a circle.

E. Choosing the Objective Function

We use a quadratic cost function for reference tracking
with regularization:

J(w) =
N−1

∑
k=0

α
k ‖q(xk)−q(x̂k)‖2

Q +‖uk− ûk‖2
R

+α
N ‖q(xN)−q(x̂N)‖2

QN
,

where α > 1 leads to exponentially increasing stage cost and
reduces oscillating behavior around the goal, x̂k, ûk denote
reference state and controls at stage k, q : Rnx → Rnq aug-
ments the state x by applying proper transformations where
applicable, Q,QN ∈ Rnq×nq , and R ∈ Rnu×nu are positive
definite matrices.

V. CIAO-BASED MOTION PLANNING

In this section we propose and detail two algorithms, one
for pure trajectory optimization (Alg. 2) and the other for
simultaneous trajectory optimization and tracking (Alg. 3).

A. CIAO for Trajectory Optimization

The proposed trajectory optimization algorithm (see
Alg. 2) starts by computing a feasible initial guess and
a reference trajectory (Lines 1–2). In the general case of

Algorithm 2 CIAO for offline trajectory optimization
Require: xS, xG, ∆t, ε . start and goal state

1: w∗← INITIALGUESS(xS, xG, ∆t) . feasible initialization
2: r← REFERENCETRAJECTORY(xS, xG, ∆t)
3: do
4: w← w∗ . set last solution as initial guess
5: w∗← CIAO-ITERATION(w ; r, x0, ∆t) . x0 = xS
6: while COST(w∗)− COST(w)> ε

7: return w∗

nonconvex scenarios, such as cluttered environments, feasi-
ble initializations can be obtained through a sampling-based
motion planner [27], [28]. To monitor the progress the initial
guess is copied (Line 4), before using it as initial guess
for the CIAO-ITERATION (Line 5). Lines 4–5 are repeated
as long as the COST-function shows an improvement that
exceeds a given threshold ε (Line 6). Finally the best known
solution w∗ is returned (Line 7). For trajectory optimization
the terminal constraint in (6) becomes an equality constraint,
which enforces that the goal state xG is reached at the end
of the horizon, i.e. XT = {xG}.



B. CIAO-NMPC

While Alg. 2 iteratively improves a trajectory that con-
nects xS and xG, Alg. 3 uses a shorter, receding hori-
zon. This can be considered the real-time iteration (RTI)
version of Alg. 2. Therefore the trajectory computed by
INITIALGUESS (Line 1) is not required to reach the goal
state xG ∈ XG. In many cases it is sufficient to choose
w = [x>0 ,u

>
s , . . . ,u>s ,x>0 ]

>, where us is chosen, such that the
robot remains in the current state x0.

Algorithm 3 CIAO-NMPC
Require: x0, xG, ∆t, XG . current and goal state

1: w← INITIALGUESS(x0, xG, ∆t) . feasible initialization
2: while x0 /∈ XG do
3: x0← GETCURRENTSTATE()
4: r← REFERENCETRAJECTORY(x0, xG, ∆t)
5: w∗← CIAO-ITERATION(w; r, x0,∆t) . Alg. 1
6: APPLYFIRSTCONTROL(w∗) . recall u0 ∈ w∗
7: w← SHIFTTRAJECTORY(w∗) . recede horizon
8: end while

While the robot has not reached the goal region XG
(Line 2), it is iteratively steered to it (Lines 3–8). Each
iteration starts by updating the robot’s current state x0. Based
on the complexity of the scenario REFERENCETRAJECTORY
may return a guiding trajectory to the goal or just the goal
state itself (Line 4). We run Alg. 1 to compute a new
trajectory (Line 5), before sending the first control to the
robot (Line 6). SHIFTTRAJECTORY moves the horizon one
step forward (Line 7).

To ensure recursive feasibility, which implies collision
avoidance, the terminal constraint (6c) is commonly chosen
such that the robot comes to a full stop at the end of the
horizon, i.e. XT = {x ∈ Rnx : Sv ·x = 0}, where Sv ∈ Rnv×nx

is the matrix that selects the velocities from the state vector.

VI. EXPERIMENTS AND DISCUSSION

To evaluate CIAO in terms of planning efficiency and final
trajectory quality, we compare it against a set of baselines.
We challenge CIAO by using nonlinear dynamics and a
nonconvex cost function. Further we use a sampling based
motion planner to initialize it with a collision free path
that does not satisfy the robot’s dynamics. In this case a
NLP-solver is required to solve the CIAO-NLP (6). We
use the primal-dual interior point solver Ipopt [29] with
the linear solver MA-27 [30] called through CasADi [31]
(version 3.4.5).
For the evaluation, we consider three types of experiments:
(A) numerical experiments to investigate the behavior of the

free ball constraint against competing formulations;
(B) a trajectory optimization benchmark to evaluate the

quality of trajectories found by CIAO;
(C) real-world experiments where CIAO is qualitatively

compared to a state of the art baseline.

A. Comparison of constraint formulations

In a first set of experiments, the numerical performance of
the free ball constraint formulation, as derived in Sec. IV-A,

actual linear CIAO log-barrier

ms / iteration 2.00 0.72 0.70 2.23
ms / step 40.78 13.13 17.26 50.34
iterations / step 20.35 18.23 24.64 22.57
time to goal [s] 14.35 14.39 18.67 (13.46)∗
path length [m] 10.22 10.33 10.58 (9.25)∗
max ms / step 448.94 230.07 179.26 > 1000
% timeouts 0 0 0 11.3

TABLE I: Comparison of constraint formulations.1

is compared to common alternatives: the actual constraint as
defined in Eq. (2) (actual), a linearization of the actual con-
straint (linear), and a log-barrier formulation (log-barrier).
They differ only in the way the obstacle avoidance constraint
(4f) is formulated. Our findings are reported in Tab. I.

The average computation time taken per MPC-step and per
Ipopt iteration are given as ‘ms / step’ and ‘ms / iteration’
respectively, ‘iters / step’ are the average Ipopt iterations per
MPC-step. The path quality is evaluated in terms of ‘time to
goal‘ and ‘path length‘. Averages in the first five rows are
taken over 62 scenarios, for which the maximum CPU time
of 1.0s was not exceeded. The percentage of runs that exceed
the CPU time is given by ‘% timeouts’. The maximum CPU
time taken for a single MPC-step is given by ‘max ms / step’.

We observe that the actual constraint is producing both
fastest and shortest paths. This path quality comes at compar-
atively high computational cost. Linearizing the actual con-
straint reduces the computational effort, while maintaining a
high path quality. In contrast to CIAO, linearization is not an
inner approximation and can lead to constraint violations that
necessitate computationally expensive recovery iterations.
This increases the overall computation time significantly and
leads to a higher maximal computation time. At the cost
of lower path quality, but a similar average computation
time, CIAO overcomes this problem by preserving feasibility.
This leads to a lower variance in the computation time, and
allows for continuous time collision avoidance guarantees.
A further advantage, which is relevant in practice, is that
CIAO generalizes to not continuously differentiable distance
function implementations, e.g. distance fields.

Including the collision avoidance constraint as a barrier
term in the objective, i.e. by adding − log(dO(pk) − d)
to the stage cost lk, is an alternative approach to enforce
collision freedom. Our results suggest, however, that for our
application it is least favorable among the considered options.

B. Trajectory Optimization Benchmark

In a second set of experiments CIAO is compared to
GuSTO [7] using the implementation publicly provided by
the authors. In these experiments we consider a free-flying
Astrobee Robot with 12 states and 6 controls, that has to
be rotated and traversed from a start position on the bottom

1These experiments were conducted in simulation considering a robot
with differential drive dynamics (5 states, 2 controls) and a prediction
horizon of 50 steps, resulting in a total of 405 optimization variables.
∗ in Table I: not representative because complex scenarios with long
transitions failed.



CIAO GuSTO
5
6
7
8
9
10

Cost

CIAO GuSTO
5

10

15

20
Control effort

CIAO GuSTO
50
60
70
80
90

Time to goal [s]

CIAO GuSTO

16.0

16.5

17.0

17.5

Path length [m]

CIAO GuSTO

0.04

0.06

0.08

0.10
Clearance [m]

Fig. 4: Trajectory Optimization Benchmark Results. CIAO finds faster trajectories with higher clearance than GuSTO.

measure CIAO GuSTO

Compute2 [s] 14.792±11.966 131.367±130.743
Iterations 30.660±15.886 4.520±1.282
Compute / Iteration [s] 0.475±0.230 27.729±22.096
Linearization Error 4.66e-14±3.67e-15 4.10e-06±1.28e-06

TABLE II: Numerical Performance: Average ± std values.

front left corner of a 10× 10× 10 m cube to a goal in the
opposite corner. The room between start and goal point is
cluttered with 25 randomly placed static obstacles of varying
sizes (between 1 and 2 meters). Fig. 1 shows some examples.

The results reported in Tab. II and Fig. 4 were performed
in Julia on a MacBook Pro with an Intel Core i7-8559U
clocked at 2.7GHz. The SCPs formulated by GuSTO [7] are
solved with Gurobi [32]. Both algorithms are provided with
the same initial guess, which is computed based on a path
found with RRT [33]. We used a horizon of 100 s equally
split into 250 steps, resulting in a sampling time of 0.4 s.
Since both GuSTO and CIAO use tailored cost functions
we evaluate the computed trajectories using a common cost
function Jρ , which is based on the state distance metric ρ :
Rnx×Rnx→R proposed by [34]: Jρ(w;xG)=∑

N
k=0 ρ(xk,xG),

with goal state xG and all weights of the distance metric
chosen equal. The controls are evaluated separately and
reported as control effort given by Ju(w) = ∑

N−1
k=0 ∆t · ‖uk‖1.

The path quality is evaluated in terms of time to goal,
path length, and clearance (minimum distance to the closest
obstacle along the trajectory). The first two measures take
the time and path length until the state distance metric falls
below a threshold of 0.5, while the latter is evaluated on
the entire trajectory. These three metrics are evaluated on an
oversampled trajectory using a sampling time ∆t = 0.01s.

The results in Fig. 4 show that CIAO finds faster trajec-
tories than GuSTO and thereby also achieves significantly
lower cost. As depicted in Fig. 1 it maintains a larger distance
to obstacles for higher speeds. This behavior allows for a
higher average speed, at the cost of a higher control activation
and slightly longer paths in comparison to GuSTO.

In our experiments both CIAO and GuSTO find solu-
tions to all considered scenarios. As reported in Tab. II,
CIAO (Alg. 2) requires more iterations to converge, but the
individual iterations are cheaper. Moreover CIAO obtains
a feasible trajectory after the first iteration and therefore
could be terminated early, while GuSTO does not have
this property and takes several iterations to find a feasible

2These timings are only indicative due to differences in implementation,
a similar trend is confirmed in Fig. 6.

Fig. 5: CIAO steers a wheeled mobile robot through a group
of people. Real-world (top) and RViz (bottom): Planned
trajectory as blue line, free balls as transparent circles,
obstacles in yellow, safety margin in light blue.

trajectory. Even though the dynamics are mostly linear we
observe linearization errors for GuSTO, originating from the
linear model they use.

In summary CIAO finds trajectories of higher quality than
GuSTO at lower computational effort.

C. Real-World Experiments - Differential Drive Robot

To qualitatively assess the behavior of CIAO-NMPC
(Alg. 3), it was tested in dynamic real-world scenarios with
freely moving humans. A representative example is depicted
in Fig. 5. Note that CIAO has no knowledge of the humans’
future movements. It is instead considering all humans as
static obstacles in their current position.

As in Sec. VI-A a differential drive robot is used, this
time with a horizon of 5s and a control frequency of 10 Hz
resulting in a total of 405 optimization variables (including
slacks). For these experiments CIAO was implemented as
a C++ ROS-module, the distance function was realized as
distance field based on the code by [35]. Initial guesses and
reference paths were computed using an A* algorithm [36].

Since GuSTO is not suitable for receding horizon control
(RHC), we used an extended version of the elastic-band (EB)
method [1]. To obtain comparable results, we used the same
A* planner and localization method with both algorithms.

In Fig. 5, it can be seen that the free balls (FBs) (trans-
parent circles) keep to the center of the canyon-like free
space. The predicted trajectory (blue line) is deformed to
stay inside the FBs. This is a predictive adaptation to the
changed environment. For the shown, representative example
in Fig. 5 the robot passed smoothly the group. Comparable
scenarios were solved similarly by EB.
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Fig. 6: NLP-solver times obtained in a simulated envi-
ronment including non-deterministically moving humans. A
comparison of these computation times with the ones re-
ported in [7] indicates, that CIAO is computationally cheaper
than GuSTO.

We observed that groups of people pose a particular
challenge that could, however, be solved by both approaches.
We note that the robot is moving a bit faster in proximity
to people for EB, while CIAO adjusts to blocked paths a bit
faster. The most significant difference between the methods is
that CIAO combines rotation and backward/forward motion,
while the EB rotates the robot on the spot. Both methods
succeeded in steering the robot through the group safely,
without a single collision.

Fig. 6 shows representative computation times obtained
in simulation on a set of 14 scenarios involving non-
deterministically moving virtual humans. The reported com-
putation time accounts only for solving the CIAO-NLP
and function evaluations in CasADi, the processing time
required by preprocessing steps and other components is not
included. High computation times originate from far-from-
optimal initializations occurring when a new goal is set, i.e.
around time t = 0, or if humans cross the planned path.

In summary CIAO and the elastic band (EB) approach
show similar behavior. In contrast to EB, CIAO computes
kinodynamically feasible and guaranteed continuous time
collision free trajectories. Further it has a notion of time
for the planned motion, such that predictions for dynamic
environments can be incorporated in future work.

VII. CONCLUSIONS AND FUTURE WORK
This work proposes CIAO, a new framework for trajectory

optimization, that is based on a novel constraint formulation,
that allows for NMPC based collision avoidance in real-
time. We show that it reaches or exceeds state of the art
performance in trajectory optimization at significantly lower
computational effort, scales to high dimensional systems, and
that it can be used for RHC style MPC of mobile robots in
dynamic environments.

Future research will focus on extending CIAO to full
body collision checking, guaranteed obstacle avoidance in
dynamic environments, time optimal motion planning, and
multi body robots. A second focus will lie on efficient
numerical methods that exploit the structure and properties
of the CIAO-NLP stated above.
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