1907.04298v2 [cs.CV] 29 Aug 2019

arxXiv

Deep Learning for Spacecraft Pose Estimation from Photorealistic
Rendering

Pedro F. Proenga! and Yang Gao'

Abstract— On-orbit proximity operations in space ren-
dezvous, docking and debris removal require precise and robust
6D pose estimation under a wide range of lighting conditions
and against highly textured background, i.e., the Earth.

This paper investigates leveraging deep learning and pho-
torealistic rendering for monocular pose estimation of known
uncooperative spacecrafts. We first present a simulator built on
Unreal Engine 4, named URSO, to generate labeled images of
spacecrafts orbiting the Earth, which can be used to train and
evaluate neural networks.

Secondly, we propose a deep learning framework for pose
estimation based on orientation soft classification, which allows
modelling orientation ambiguity as a mixture of Gaussians.
This framework was evaluated both on URSO datasets and
the ESA pose estimation challenge. In this competition, our
best model achieved 3™ place on the synthetic test set and
2" place on the real test set. Moreover, our results show
the impact of several architectural and training aspects, and
we demonstrate qualitatively how models learned on URSO
datasets can perform on real images from space.

I. INTRODUCTION

Spacecraft position and attitude estimation is essential to
on-orbit operations [1], e.g., formation flying, rendezvous,
docking, servicing and space debris removal [2]. These rely
on precise and robust estimation of the relative pose and
trajectory of object targets in close-proximity under harsh
lighting conditions and against highly textured background
(i.e. Earth). As surveyed in [3], according to the specific
operation scenario, the targets may be either: (i) cooperative
if they use a dedicated radio-link, fiducial markers or retro-
reflectors to aid pose determination or (ii) non-cooperative
with either unknown or known geometry. Recently, the latter
has been gaining more interest by both the research commu-
nity and space agencies due mainly to the accumulation of
inactive satellites and space debris in low Earth orbit [4] but
also military space operations. For instance, ESA opened a
competition [5], this year, to estimate the pose of a known
spacecraft from a single image using supervised learning.
This papers addresses this problem.

The main limitation of deep learning (DL) is that it
needs a lot of data, which is especially costly in space.
Therefore, as our first contribution, we propose a visual
simulator built on Unreal Engine 4, named URSO, which
allows obtaining photorealistic images and depth masks of
commonly used spacecrafts orbiting the Earth, as seen in
Fig. 1. Secondly, we carried out an extensive experimental
study of a DL-based pose estimation framework on datasets

IThe authors are with the Surrey Space Centre, Faculty of Engineering
and Physical Sciences, University of Surrey, GU2 7XH Guildford, U.K.
{p.f.proenca, yang.gao}@surrey.ac.uk

v

Fig. 1: Example of frames synthesized by URSO of a soyuz
model. For videos and the datasets used in this work, refer
to: https://pedropro.github.io/project/urso/

obtained from URSO, where we investigate the performance
impact of several aspects of the architecture and training
configuration. Among our findings, we conclude that data
augmentation with random camera orientation perturbations
is quite effective to combat overfitting and we present a
probabilistic orientation estimation via soft classification that
performs significantly better than direct orientation regres-
sion and it can further model uncertainty due to orientation
ambiguity as a Gaussian mixture. Moreover, our best solution
achieved 3™ place on the synthetic dataset and 2™ place on
the real dataset of ESA pose estimation challenge [5]. We
also demonstrate qualitatively how models trained on URSO
data can generalize to real images from space through our
augmentation pipeline.

II. RELATED WORK

Previous monocular solutions [6—1 1] to spacecraft tracking
and pose estimation rely on model-based approaches (e.g.
[12]) that align a wireframe model of the object to an
edge image (typically given by a Canny detector) of the
real object based on heuristics. However objects are more
than just a collection of edges and geometric primitives.
Convolutional Neural Networks (CNNs) can learn more
complex and meaningful features to the task at hand while
ignoring background features (e.g. clouds) based on context.

Despite the maturity of DL in many computer vision
tasks. Only recently [13-19] has DL become common in


https://pedropro.github.io/project/urso/

pose estimation problems. Kendall et al. [13] first pro-
posed adapting and training GoogLeNet on Structure-from-
Motion models for camera relocalization. Their network was
trained to regress a quaternion by minimizing the Lo loss
between quaternions. Moreover, they extended their method
to model uncertainty by using Monte Carlo sampling with
dropout. [20]. Kehl et al. [15] proposed a DL solution for
detection and pose estimation of multiple objects based on
hard viewpoint classification, where ambiguous views are
manually removed a-priori. On the other hand, Xiang et al.
[14] proposed a model based on a segmentation network
for handling multiple objects. While object locations are
estimated using Hough voting on the network image output,
their orientations are estimated through quaternion regression
following ROI pooling. To account for object symmetries, a
loss function based on ICP is used, but this is prone to local
minima and it requires a depth map. To handle more than one
object instance per class, Thanh-Toan et al. [16] extended
Mask-RCNN to pose estimation by simply adding a head
branch, which regresses orientation as the angle-axis vector.
Although, this minimal parameterization avoids the quater-
nion normalization, they still employed an Lo loss function.
Mahendran et al. [21] also regress the angle-axis vector, but
they minimize directly the geodesic loss. Su et al.[22] per-
formed fine grained hard viewpoint classification. Hara et al.
[23] compared regressing the azimuth using either the Lo loss
or the angular difference loss versus hard classification with
mean-shift algorithm to retrieve a continuous value. DL has
also been successfully applied to visual odometry [24, 25].
While Wang et al. [24] simply regresses Euler angles, Zhou
et al. [25] regress simultaneously multiple (i.e. 64) pose
hypothesis with angle-axis representation and then average
them since pose updates in visual odometry are usually small.
There is a large body of work on pose estimation from RGB-
D images, which was recently comprehensively evaluated in
[26], where typically ICP is used for pose refinement. In their
benchmark, [26] concluded that learning-based solutions are
still not on par with point-cloud-based methods [27] in terms
of precision. But more recently, [17—19] have advanced state-
of-the-art by refraining from estimating directly pose and
instead use CNNs to regress the 2D projections of predefined
3D keypoints and finally estimate pose using robust PnP
solutions, e.g., embedded in RANSAC. Approaches such as
[17] however need further work to handle very small or far-
away objects, as they rely on coarse segmentation grids.
Sharma et al. [28] were the first to propose using CNNs
for spacecraft pose estimation based on hard viewpoint
classification, but later they [29] proposed doing position
estimation based on bounding box detection and orientation
estimation based on soft classification. Although, the ap-
proach to position fails when part of object is outside the field
of view, the orientation estimation has its merits. Two head
branches are used for orientation estimation: one does hard
classification, given a set of pre-defined quaternions, to find
the N closest quaternions, then a second branch estimates the
weights for these N quaternions, and the final orientation is
given by the weighted average quaternion. Our method for

Location
b 1 [X,)Y,Z]

CNN Backbone Bottleneck

Orientation
¥ ¢
E—

|:> Conv

—> FC

Probabilistic Quaternion Fitting

Fig. 2: Simplified overview of the network architecture
proposed in this work.

orientation estimation is similar to this approach, however,
our framework does not require two orientation branches,
provides intuitive regularization parameters and can handle
multiple hypothesis due to perceptual aliasing.

The same work [29] introduced the dataset used in the
ESA challenge, which is just made of montages of real
images with basic OpenGL renderings of a satellite. On the
other hand, two image simulation tools have so far been
specifically developed to support vision-based navigation in
space scenes (e.g. Martian surface, asteroid landing): the
early PANGU [30] used by ESA and the more comprehensive
Airbus internal simulator: SurRender [31], which supports
ray tracing and very large datasets. Nevertheless, state-of-
the-art game engines (e.g. UE4), widely used in autonomous
driving [32] and robotics [33, 34] offer far more resources
to develop complex and photorealistic environments, but
these have been criticized in [31] for being designed for
human vision and lacking the photometric accuracy of actual
sensors. We point out that recent efforts have been made
in the source-available UE4 to implement physically-based
shading models and cameras.

III. POSE ESTIMATION FRAMEWORK

Our network architecture, depicted in Fig. 2 is aimed at
simplicity rather than efficiency to perform a first ablation
study. We adopted the ResNet architectures with pre-trained
weights as the network backbone, due to its low number
of pooling layers, and good accuracy-complexity trade-off
[35]. The last fully-connected layer and the global average
pooling layer of the original network were removed to
keep spatial feature resolution, leaving effectively only one
pooling layer at the second layer. The global pooling layer
was replaced by one extra 3x3 convolution with stride of
2 (bottleneck layer) to compress the CNN features since
our task branches are fully-connected to the input tensor.
For lower space complexity, one could use instead a Region
Proposal Network as in [14, 16, 36], but this complicates
our end-to-end pose estimation. As a drawback, our network
does not handle multiple objects per se.

Our 3D location estimation is a simple regression branch
with two fully-connected layers, but instead of minimizing
the absolute Euclidean distance, we minimize the relative er-
ror, corresponding to the first term of our total loss function:



m i (1)
||t( ) — tg

Low=f1) #t”g + B2 Lo (1)
i gl

where t() and té? are respectively the estimated and ground-
truth translation vector. The solely advantage of minimizing
the relative error, is that the fine-tuned loss weights {31, 52}
in our experiments generalize better to other datasets, as this
loss does not depend on the translation scale. To avoid having
to fine-tune loss weights, we have also experimented instead
in Section VI regressing three virtual 3D keypoints and then
estimate pose using a closed-form solution [37].

A. Direct Orientation Regression

While several works [13, 16, 24] have used Lo or ILq
loss to regress orientation. This does not represent correctly
the actual angular distance for any orientation representation.
Quaternions, for example, are non-injective. While one can
map quaternions to lie only on one hemisphere as in [38],
L, distances to quaternions near the equator will still not
express the geodesic distance. Therefore we have experi-

e .. . . . AT ()
mented minimizing directly either: L, = arccos(|q(* gt 1)
or: Leosoy =1 — |q(i)Tq£(,?| to regress a unit quaternion ¢(*),
subject to a normalization layer. One possible issue with the
first expression is that the derivative of cos™!(z) is infinite
at x = 1, but this can be easily solved by scaling down z.

B. Probabilistic Orientation Soft Classification

Alternatively, we propose to do continuous orientation
estimation via classification with soft assignment coding
[39]. The key idea is to encode each label (gq4) as a
Gaussian random variable in an orientation discrete output
space (represented in Fig. 2), so that the network learns
to output probability mass functions. To this end, a 3D
histogram is used as the network output, where each bin
maps to a combination of discrete Euler angles specified by
the quantization step. Special care is taken to avoid redundant
bins in the Gimbal lock and borders. Let Q = {by,..,bn}
be the quaternions corresponding to the histogram bins, then,
during training, each bin is encoded with the soft assignment

function:
K(bl ) Q_qt)

Z;V K (b, qgt)

where the kernel function K(z,y) uses the normalized
angular difference between two quaternions:

2
od o2 - 1)

f(bisqqe) = 2

(2cos*1<\ﬂm> 2
=

K(eg)=e 37

12 ©)

and the variance o2 is given by the quantization error
approximation, where A /M represents the quantization step,
A is the smoothing factor that controls the Gaussian width
and M is the number of bins per dimension (i.e. Euler angle).

At test time, given the bin activations {a1,..,an} and
the respective quaternions, in one hemisphere, we can fit

a quaternion by minimizing the weighted least squares:
N

qg= argminZwi(l — biTq)2 4

a i
where a; is assigned to w; and the optimal solution is given
by the right null space of the matrix va wi(bibi—r) [40].

This solution was also employed in [29].

C. Multimodal Orientation Estimation

When there are ambiguous views in the training-set,
this results in one-to-many mappings, therefore the optimal
network that minimizes the cross entropy losses, given the
soft assignments in (2), will output a multimodal distribu-
tion. To extract multiple orientation hypothesis from such
network’s output, we propose an Expectation-Maximization
(EM) framework to fit a Gaussian Mixture model © =
{01, ..., 0k } with means {q1, ..., qx }. As the E step, for every
model ¢; and bin we compute the membership:

p(bi]6;)p(6;)
Sk p(bil6e)p(0)
where p(b;10;) = K(b;, ¢;) with o; initialized as in (3) and
the priors p(6;) as equiprobable. These are then updated in
the M step:

N N
2cos (|6 gj])\ 2
p(0,) = ap(0s1b0) and oy = 3wy, (22 Pe il

T

(6)
where g; is firstly obtained by solving (4) with the weights:
aip(9] \bl)

p(0;bi) =

(&)

2

Wi (0, . The model means are initialized as
the K bins with strongest activations after non-maximum
suppression. To find the optimal number of models, we
increase K until the log-likelihood stops increasing by more
than a threshold.

IV. URSO: UNREAL RENDERED SPACECRAFT ON ORBIT

Our simulator leverages Unreal Engine 4 (UE4) features
to render realistic images, e.g., physically based materials,
bloom and lens flare. Lighting in our environment is sim-
ply made of a directional light and spotlight to simulate
respectively sunlight and Earth albedo. Ambient lighting was
disabled and to simulate the sun we used a body of emissive
material with UE4 bloom scatter convolution. Earth was
modelled as a high polygonal sphere textured with 21600 X
10800 Earth and cloud images from the Blue Marble Next
Generation collection [41]. This is further masked to obtain
specular reflections from the ocean surface. Additionally a
third party asset is used to model the atmospheric scattering.
Our scene includes a Soyuz and Dragon spacecraft models
with geometry imported from 3D model repositories [42].

To generate datasets, we sample randomly 5000 view-
points around the day side of the Earth from low Earth
orbit altitude. The Earth rotation, camera orientation and
target object pose are all randomized. Specifically, the target
object is placed randomly within the camera viewing frustum
and an operating range between [10,40] m. Our interface
uses UnrealCV plugin [43], which allows obtaining an RGB



Fig. 3: Image augmentation and sim-to-real examples. (a)
Image warped due to camera orientation perturbation, (b) and
(c) Images after our sim-to-real post-processing. (d) and (e)
show real images (5 seconds apart) of a soyuz with overlayed
estimated pose after training with data augmentation. Notice
the thrusters in action on (e).

image and depth map for each viewpoint. Images were
rendered at a resolution of 1080x960 pixels by a virtual
camera with a 90° horizontal FOV and auto-exposure.

V. DATA AUGMENTATION AND SIM-TO-REAL TRANSFER

Typical image transformations (e.g. cropping, flipping)
have to be considered carefully as these may change the
object nature and camera intrinsic parameters, which, in our
case, is embedded in the network. One can do random in-
plane rotation, since there is no concept of up and down in
space, but the object may get out of bounds due to the aspect
ratio, therefore this was only done for the ESA & Stanford
dataset, where the satellite is always nearly centered. Ad-
ditionally, we can cause small random perturbations to the
camera orientation by warping the images as shown in Fig.
3. We do this during training and accordingly update the
pose labels by repeating the encoding in (2). To generalize
the learned models to real data, we convert the images to
grayscale, change the image exposure and contrast, add AWG
noise, blur the images and drop out patches as shown in
Fig. 3. The motivation to use the latter is that it can help
disentangling features from our mock-up that do not match
the real object and it can improve robustness to occlusions
and shadows.

VI. EXPERIMENTS

We conducted experiments on datasets captured using
URSO and the ESA & Stanford’s benchmark dataset [5],
named SPEED. The latter contains both synthetic and real
images with 1920x1200 px, generated in [29], of a mock-
up model of one satellite used in a flight mission, named
PRISMA [44]. The testing set contains 300 real images
and 2998 synthetic images, whereas the training-set contains
12000 synthetic images and only 5 real images. All images

are in grayscale. The labels of the testing set are not provided,
instead the methods are evaluated by the submission server
based on a subset of the testing-set. As for URSO, we
collected one dataset for the dragon spacecraft and two
datasets for the soyuz model with different operating ranges:
soyuz_easy with [10-20] m and soyuz_hard with [10-40]
m. Low ambient light was also exceptionally enabled on
soyuz_easy. We have noticed that training on soyuz_easy
converges faster, therefore our first experiments in this sec-
tion use this dataset. All three datasets contain 5000 images,
of which 10% were held out for testing and another 10%
for validation. Performance is reported as the mean absolute
location error, the mean angular error and also the metric
used by the ESA challenge server, referred to as ESA Error,
which is the sum of the mean relative location error, as in
(1), and the mean angular error.

A. Implementation and Training Details

Networks were trained on one NVIDIA GTX 2080 Ti,
using SGD with a moment of 0.9, a weight decay regular-
ization of 0.0001 and a batch size of 4 images. Training
starts with weights from the backbone of Mask R-CNN
trained on COCO dataset, since we use high image res-
olutions. The learning rate (Ir) was scheduled using step
decay depending on the model convergence, which we have
found to depend highly on the orientation estimation method,
number of orientation bins, augmentation pipeline and the
dataset. By default, unless explicitly stated, we used: ResNet-
50 with a bottleneck width of 32 filters, orientation soft
classification with 16 bins per Euler angle, camera rotation
perturbations with maximum magnitude of 10° to augment
the dataset and images were resized to half their original
size. Training a model with this default configuration on
soyuz_easy converges after 30 epochs with [ = 0.001 plus
5 epochs with [ = 0.0001, whereas orientation regression
takes approximately half the number of iterations.

B. Results

First, results from fine-tuning the parameters of our proba-
bilistic orientation estimation based on soft classification are
shown in Table I for soyuz_easy.

Angular error

Angular error Method Train Test
A #Bins Train Test Regress;  6.7° 13.5°
3 16 6.50 55~l Regressa 6.9° 13.4°
6 16 5.3 8.6 Regress3  9.0° 20.0°
9 16 8.0° 10.3° Class 5.3° 8.0°
6 4 11.8 20.0

o o . .

6 8 8.9 119 TABLE 1II: Orientation
6 24 3.1° 7.4°

error for each method.
Regresss uses regression
of 3D points, whereas
Regress; and Regresss
correspond to the best (8
ratio in Fig. 4.

TABLE I: Impact of ori-
entation soft classification
parameters. #Bins is the
number of bins per dimen-
sion.

As one can see, A which is used to scale the Gaussian tail,
acts as regularizer: when it is too small, it leads to overfitting,
whereas when it is too high, precision is decreased, leading



to underfitting. Increasing the number of bins per dimension
of the orientation discrete space, improves the precision
but the number of network parameters has cubic growth.
Furthermore, similarly to A, it can lead to overfitting, since
bins will be less often activated during training.

Fig. 4 evaluates this method against regressing orien-
tation on soyuz_easy, for different ratios of loss weights.
Interestingly, for the three alternatives, using the network
only for orientation estimation by setting 8; = 0 in (1)
yields higher orientation error than performing both tasks
simultaneously. The same cannot be said about the location
error which grows with 5. Table II compares the orientation
errors of train and test sets between these methods plus
regressing instead three 3D keypoints. We can see that all
three regression alternatives are outperformed and suffer
from more overfitting on this dataset than the classification
approach. It is worth noting that we have experimented using
the adaptive weighting based on Laplace likelihood in [38]
but achieved poor results. Moreover, optimal loss weights are
subjective to the importance assigned to the specific tasks.

To demonstrate multimodal orientation estimation, we
collected, via URSO, a dataset for the symmetrical marker
shown in Fig. 5. As shown in this figure, after training,
the network learns to output two modes representing the
two possible solutions. Using naively our unimodal estima-
tion method on this dataset results in the error distribution
labeled: Top-1 errors in Fig. 5, whereas if we use the
multimodal EM algorithm, proposed in Section III-C, and
score the best of two hypothesis: Top-2 errors, we see that
this method finds frequently the right solution.

Fig. 6 shows how feature compression in the bottleneck
layer degrades performance and controls the network size.
Similarly, for both tasks, performance changes significantly
from using 8 to 128 convolutional filters.

Network Loc. err. Ori. err
ResNet-18 1.7 m 19.9 Resolution Loc. err. Ori. err
ResNet-34 14 m 20.0° 320 x 240 16 m 24.9°
ResNet-50 1.1 m 13.0° 640 %480 1.1 m 13.0°
ResNet-101 1.0 m 12.2° 1280x960 1.3 m 10.7°
TABLE III: Impact of TABLE 1IV: Impact of
architecture depth on image resolution on
soyuz_hard. soyuz_hard.
II 2.0 Regress; 2
0.4 1 mmm Regress;
— Class > 204
n £151 S
HLeE Ml
& ] = ||
1.0 1 o
& 021 8 8 101 |
bl | ey
0.1 3051 || ii g5
0.0 ~J|——II——L 0.0 u u u u 0 II II
1 5 10 0 1 5 10 1 5 10 Inf
Ba/B1 B2/B1 B2/B1

Fig. 4: Test errors vs ratio of loss weights. Regress; and
Regress, regress orientation respectively using the L, and
Lcos o from Section I11-A.

Top-1 errors
100 §
04 .L SN __J

0 50 100 150

Top-2 errors

100 ‘
—l T T

100 150

Fig. 5: Multimodal orientation estimation experiment with
a symmetrical marker, shown on the rop-left. Histograms
of angular errors (deg) are shown on the top-right for the
testing set: Top-1 error corresponds to our single-hypothesis
estimation method, whereas Top-2 error is scored as the
hypothesis with smallest error from the top 2 hypothesis
estimated by our EM framework. The botfom image shows
on the top row the encoded label of the left frame, whereas
the bottom row shows the respective network output after
training.

#Parametersleg Mean angular error Mean location error

-0.72
0.66
0.60
0.54
0.48

8
T
N
o
8
'
©
o
N
8

Bottleneck width
512 128 32
——

o
© N
Bottleneck width
\
©o
o

512 128 32
\
~
0
Bottleneck width

~
N

512 128 32
.. |

"
512 1024 2048
Branch input size

U
512 1024 2048
Branch input size

" U
512 1024 2048
Branch input size

Fig. 6: Bottleneck width and size of branch input layers
vs. performance and complexity in terms of number of
parameters on soyuz_easy.

. Dataset Loc err. Ori err.
Aug. Loc err. Ori err. SPEED 017 m 7.0°
None 1.06 m 19'20 Soyuz hard 0.8 m 7.7°
Rotation 0.56 m 8.0 Dragon hard 0.9 m 13.9°
TABLE V: Impact of TABLE VI: Results per

applying rotation pertur-
bations on soyuz easy

dataset obtained with 24 bins
per orientation dimension and
128 bottleneck filters.

Beyond 128 features, performance gain incurs a great mem-
ory footprint. Performance does not seem to be much sensi-
tive to the size of the head input layers.

The impact of the architecture depth is shown in Table
III. ResNet with 50 layers is significantly better than its
shallower counterparts, however adding more layers does
not seem to improve much more the performance. Table IV
shows that orientation estimation is quite sensitive to the
image input resolution. The same is not clear for localization.

In terms of data augmentation, as reported in Table V,
rotation perturbations prove to be an effective technique to
augment the dataset and our sim-to-real augmentation is
essential to apply models learned on URSO to real footage as
particularly to deal
with the lighting changes in Fig. 3. Furthermore, as shown

shown in https://youtu.be/x8Ibxm0z730,


https://youtu.be/x8IbxmOz730

Team Real err. Synthetic err.
UniAdelaide 0.3752 0.0095
EPFL_cvlab 0.1140 0.0215
Triple ensemble (ours) 0.1555 0.0571
Best model 1 (ours) 0.1630 0.0604
Top 10 average 1.3848 0.1515

TABLE VII: ESA pose estimation final scores of top 3 teams.
Results for { were obtained for 20 % of the full test set. For
the complete leaderboard, refer to [5].

in Table VII, we achieved 2" place on the real dataset
just by using our sim-to-real augmentation pipeline with
the 5 real images provided. Table VI compares performance
between the three datasets using an increased bottleneck
width and orientation output resolution. As we can see,
SPEED with better lighting conditions is the easiest dataset
and dragon_hard is the most challenging dataset due to
viewpoint ambiguity, as shown in Fig. 7 and Fig. 8.a.

Table VII summarizes the results of the ESA pose estima-
tion challenge. Our best single model used a bottleneck width
of 800 filters and 64 bins per orientation dimension and was
trained for a total of 500 epochs, whereas our second best
model using 512 bottleneck filters and 32 x32x 32 orientation
bins achieved respectively: 0.144 and 0.067 on the real and
synthetic set. To combine the higher precision of the best
model with the less likely overfitting second model we used
a triple ensemble, which is an average of results (using
quaternion averaging) of this last model plus two models
with 64x64x64 bins, picked at different training epochs.
Our accuracy comes with a very large amount of parameters
(around 500M) and it is still far from the scores of the top 2
teams, which rely on 2D keypoint regression solutions, image
cropping+zooming and robust PnP. As shown in Fig. 7, gross
errors start appearing after 20 m, therefore we could also
benefit from running the models a second time on zoomed
images, since we only used half the original size.

C. Conclusion and Future Work

This paper proposed both a simulator and a DL frame-
work for spacecraft pose estimation. Experiments with this
framework reveal the impact of several network hyperpa-
rameters and training choices and attempts to answer open
questions, such as, what is the best way to estimate ori-
entation? We conclude that estimating orientation based on
soft classification gives better results than direct regression
and furthermore it provides the means to model uncertainty.

soyuz_hard dragon_hard speed
E .
S P I T s
0 M 04 0 __—F“I&,L._
@ L I S T +
S 100 . |04 * .7 TR 100 )
= . o e, 38 . .
S 0 |netiutetambitt| ) | Gabnetadididds | () | anmme————"-
20 40 20 40 10 20 30
Distance (m) Distance (m) Distance (m)

Fig. 7: Test-set errors distributed by object distance, for the
models reported in Table VI.

EENEDDEEEEEEEEEE
(b)

1K L ‘ \d/

7k R

5 N

£ 225 ? e\

EEEEEEEEEEDDEEEE SEEEEEEEEEEAEEEE

(©) (d)

&
@
&

ANEEEEENEEEEEEEE SEEEERNNNNENEEEEE
© ®

Fig. 8: Failure and success cases from our testing sets with
predicted and groundtruth poses, and orientation weights.
Predicted and labeled 2D position are shown respectively
as green and red dots. Predicted and labeled orientations
are shown in the polar plots as Euler angles. (a) Incorrect
orientation due to an ambiguous view. Notice how the
respective distribution of weights is more spread out. (b)
Poor orientation estimation due to poor lighting. (c) and (d)
Good results under challenging background.

This information is useful not only to make decisions but it
can be used for filtering the pose if a temporal sequence is
provided. A promising direction is to address tracking using
Recurrent Neural Networks and video sequences generated
using URSO. As future work, we also plan to extend URSO
to SLAM to address targets with unknown geometry.

The architecture proposed in this work is not scalable
in terms of image and orientation resolution. Future work
should consider how to replace the dense connections with-
out sacrificing performance, e.g., pruning the last layer
connections. Additionally, the results reported in this work
were obtained using a dedicated network for each dataset.
It may be beneficial sharing the same backbone in terms of
efficiency and performance.

D. Acknowledgments

This work is supported by grant EP/R026092 (FAIR-
SPACE Hub) through UKRI under the Industry Strategic
Challenge Fund (ISCF) for Robotics and AI Hubs in Extreme
and Hazardous Environments. The authors are also grateful
for the feedback and discussions with Peter Blacker, Angadh
Nanjangud and Zhou Hao.



[1]

[2

—

[3]

[4]

[5]

[6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S. Nanjangud, P. Blacker, S. Bandyopadhyay, and Y. Gao, “Robotics
and ai-enabled on-orbit operations with future generation of small
satellites,” Proceedings of the IEEE, 2018.

B. Taylor, G. Aglietti, S. Fellowes, S. Ainley, T. Salmon, I. Retat,
C. Burgess, A. Hall, T. Chabot, K. Kanani, er al., “Remove debris
mission, from concept to orbit,” in 32nd Annual AIAA/USU Conference
on Small Satellites, 2018.

R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, “A review of
cooperative and uncooperative spacecraft pose determination tech-
niques for close-proximity operations,” Progress in Aerospace Sci-
ences, vol. 93, pp. 53-72, 2017.

J. L. Forshaw, G. S. Aglietti, N. Navarathinam, H. Kadhem, T. Salmon,
A. Pisseloup, E. Joffre, T. Chabot, I. Retat, R. Axthelm, et al., “Re-
movedebris: An in-orbit active debris removal demonstration mission,”
Acta Astronautica, vol. 127, pp. 448-463, 2016.

“European space agency, kelvins - esa’s advanced concepts
competition website.” https://kelvins.esa.int/
satellite-pose—estimation-challenge/.

B. Naasz, J. V. Eepoel, S. Queen, C. M. Southward, and J. Hannah,
“Flight results from the hst sm4 relative navigation sensor system,”
2010.

J. M. Kelsey, J. Byrne, M. Cosgrove, S. Seereeram, and R. K. Mehra,
“Vision-based relative pose estimation for autonomous rendezvous and
docking,” in IEEE Aerospace Conference, p. pp. 20, 2006.

C. Liu and W. Hu, “Relative pose estimation for cylinder-shaped
spacecrafts using single image,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 50, no. 4, 2014.

A. Petit, E. Marchand, and K. Kanani, “A robust model-based tracker
combining geometrical and color edge information,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3719—
3724, 2013.

A. Petit, E. Marchand, R. Sekkal, and K. Kanani, “3d object pose
detection using foreground/background segmentation,” in International
Conference on Robotics and Automation (ICRA), pp. 1858-1865,
IEEE, 2015.

V. Capuano, S. R. Alimo, A. Q. Ho, and S.-J. Chung, “Robust features
extraction for on-board monocular-based spacecraft pose acquisition,”
in AIAA Scitech 2019 Forum, p. 2005, 2019.

T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2002.

A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional net-
work for real-time 6-dof camera relocalization,” in IEEE International
Conference on Computer Vision (ICCV), pp. 2938-2946, 2015.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” 2018.

W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again,”
in IEEE International Conference on Computer Vision, pp. 1521-1529,
2017.

T.-T. Do, M. Cai, T. Pham, and I. Reid, “Deep-6dpose: recov-
ering 6d object pose from a single rgb image,” arXiv preprint
arXiv:1802.10367, 2018.

Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven
6d object pose estimation,” in CVPR, 2019.

B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot
6d object pose prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 292-301, 2018.

M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth,” in Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 3828-3836, 2017.

A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning
for camera relocalization,” in International Conference on Robotics
and Automation (ICRA), pp. 4762-4769, IEEE, 2016.

S. Mahendran, H. Ali, and R. Vidal, “3d pose regression using
convolutional neural networks,” in IEEE International Conference on
Computer Vision (ICCV), pp. 2174-2182, 2017.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model
views,” in IEEE International Conference on Computer Vision (ICCV),
2015.

K. Hara, R. Vemulapalli, and R. Chellappa, “Designing deep convo-

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]
[42]
[43]

[44]

lutional neural networks for continuous object orientation estimation,”
arXiv preprint arXiv:1702.01499, 2017.

S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” in International Conference on Robotics and Automation
(ICRA), pp. 2043-2050, IEEE, 2017.

H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep tracking and
mapping,” in The European Conference on Computer Vision (ECCV),
September 2018.

T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, et al., “Bop: benchmark for 6d
object pose estimation,” in European Conference on Computer Vision
(ECCV), pp. 19-34, 2018.

S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going
further with point pair features,” in European Conference on Computer
Vision (ECCV), pp. 834-848, Springer, 2016.

S. Sharma, C. Beierle, and S. D’Amico, “Pose estimation for non-
cooperative spacecraft rendezvous using convolutional neural net-
works,” in IEEE Aerospace Conference, pp. 1-12, 2018.

S. Sharma and S. D’Amico, “Pose estimation for non-cooperative
rendezvous using neural networks,” in AAS/AIAA Astrodynamics Spe-
cialist Conference, 2019.

S. Parkes, I. Martin, M. Dunstan, and D. Matthews, ‘“Planet surface
simulation with pangu,” in Space OPS 2004 Conference, p. 389.

R. Brochard, J. Lebreton, C. Robin, K. Kanani, G. Jonniaux, A. Mas-
son, N. Despré, and A. Berjaoui, “Scientific image rendering for space
scenes with the surrender software,” arXiv preprint arXiv:1810.01423,
2018.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, pp. 1-16, 2017.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics, pp. 621-635, Springer, 2018.

P. Martinez-Gonzalez, S. Oprea, A. Garcia-Garcia, A. Jover-Alvarez,
S. Orts-Escolano, and J. Garcia-Rodriguez, “Unrealrox: an extremely
photorealistic virtual reality environment for robotics simulations and
synthetic data generation,” arXiv preprint arXiv:1810.06936, 2018.
A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

K. He, G. Gkioxari, P. Dollér, and R. Girshick, “Mask r-cnn,” in [EEE
International Conference on Computer Vision (ICCV), pp. 2961-2969,
2017.

K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-d point sets,” IEEE Transactions on pattern analysis and
machine intelligence, no. 5, pp. 698-700, 1987.

A. Kendall and R. Cipolla, “Geometric loss functions for camera
pose regression with deep learning,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5974-5983, 2017.

L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,”
in International Conference on Computer Vision (ICCV), 2011.

F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193-1197, 2007.

“Nasa - visible earth.” https://visibleearth.nasa.gov/.
“Turbosquid.” https://www.turbosquid.com/.

W. Qiu, F. Zhong, Y. Zhang, S. Qiao, Z. Xiao, T. S. Kim, Y. Wang,
and A. Yuille, “Unrealcv: Virtual worlds for computer vision,” ACM
Multimedia Open Source Software Competition, 2017.

S. D’Amico, J.-S. Ardaens, and R. Larsson, “Spaceborne autonomous
formation-flying experiment on the prisma mission,” Journal of Guid-
ance, Control, and Dynamics, vol. 35, no. 3, pp. 834-850, 2012.


https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://kelvins.esa.int/satellite-pose-estimation-challenge/
https://visibleearth.nasa.gov/
https://www.turbosquid.com/

	I Introduction
	II Related Work
	III Pose Estimation Framework
	III-A Direct Orientation Regression
	III-B Probabilistic Orientation Soft Classification
	III-C Multimodal Orientation Estimation

	IV URSO: Unreal Rendered Spacecraft On Orbit
	V Data Augmentation and Sim-to-Real Transfer
	VI Experiments
	VI-A Implementation and Training Details
	VI-B Results
	VI-C Conclusion and Future Work
	VI-D Acknowledgments


