Loading [a11y]/accessibility-menu.js
Hierarchical Quadtree Feature Optical Flow Tracking Based Sparse Pose-Graph Visual-Inertial SLAM | IEEE Conference Publication | IEEE Xplore

Hierarchical Quadtree Feature Optical Flow Tracking Based Sparse Pose-Graph Visual-Inertial SLAM


Abstract:

Accurate, robust and real-time localization under constrained-resources is a critical problem to be solved. In this paper, we present a new sparse pose-graph visual-inert...Show More

Abstract:

Accurate, robust and real-time localization under constrained-resources is a critical problem to be solved. In this paper, we present a new sparse pose-graph visual-inertial SLAM (SPVIS). Unlike the existing methods that are costly to deal with a large number of redundant features and 3D map points, which are inefficient for improving positioning accuracy, we focus on the concise visual cues for high-precision pose estimating. We propose a novel hierarchical quadtree based optical flow tracking algorithm, it achieves high accuracy and robustness within very few concise features, which is only about one fifth features of the state-of-the-art visual-inertial SLAM algorithms. Benefiting from the efficient optical flow tracking, our sparse pose-graph optimization time cost achieves bounded complexity. By selecting and optimizing the informative features in sliding window and local VIO, the computational complexity is bounded, it achieves low time cost in long-term operation. We compare with the state-of-the-art VIO/VI-SLAM systems on the challenging public datasets by the embedded platform without GPUs, the results effectively verify that the proposed method has better real-time performance and localization accuracy.
Date of Conference: 31 May 2020 - 31 August 2020
Date Added to IEEE Xplore: 15 September 2020
ISBN Information:

ISSN Information:

Conference Location: Paris, France

Contact IEEE to Subscribe

References

References is not available for this document.