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Abstract— Human movement prediction is difficult as hu-
mans naturally exhibit complex behaviors that can change
drastically from one environment to the next. In order to
alleviate this issue, we propose a prediction framework that de-
couples short-term prediction, linked to internal body dynamics,
and long-term prediction, linked to the environment and task
constraints. In this work we investigate encoding short-term
dynamics in a recurrent neural network, while we account for
environmental constraints, such as obstacle avoidance, using
gradient-based trajectory optimization. Experiments on real
motion data demonstrate that our framework improves the
prediction with respect to state-of-the-art motion prediction
methods, as it accounts to beforehand unseen environmental
structures. Moreover we demonstrate on an example, how this
framework can be used to plan robot trajectories that are
optimized to coordinate with a human partner.

I. INTRODUCTION

For safe and efficient human-robot interaction it is cru-
cial to foresee human motion in order to plan around the
human partner and interact with the human partner without
disturbing the natural flow of the human’s motion. A good
interaction strategy needs to plan trajectories that minimally
intervene with the human while still retaining the ability that
both, the human and the robot, can achieve their goals with-
out having to deviate widely from their optimal trajectory.

However, human motion is the result of complex biome-
chanical processes that are challenging to model. As a con-
sequence, state-of-the-art work on motion prediction focuses
on data-driven models, such as recurrent neural network
models [1], [2], [3]. A drawback of these architectures is that
the network is only trained on the human state and therefore
not able to take scene context, such as targets for reaching
motion or obstacles into account. Adapting scene context
directly into the architecture would require a generalizable
scene representation and huge amounts of training data to be
able to generalize to unseen environments.

In prior work [4], we proposed to account for environmen-
tal constraints in a later trajectory optimization step, using
a Gaussian Process (GP) to model the low-level dynamics.
However, GPs do not scale to large datasets of training data
as they require comparing all training points in the data set
to predict the next state. In this work, we instead propose to
adapt a state-of-the-art recurrent neural network model [3] to
learn purely kinematic predictions of the human. In order to
optimize the human motion in a later stage, we introduce
a modification to the network architecture to control the

Fig. 1: Prediction of 1.5sec reaching motion towards the bowl
on the big shelf by our method

velocities of the human at each prediction step. We can then
differentiate the network with respect to this control input,
and optimize the motion using a gradient-based optimization
algorithm.

While the idea of blending motion capture data and motion
planning algorithms for motion prediction is not new [5], to
the best of our knowledge, this paper is the first to combine
motion optimization with a recurrent neural network in order
to predict human motion. This approach has the following
advantages: 1) It relies on potentially infinite amount of
motion capture data to train the low-level dynamics as the
network does not grow with the size of the training dataset,
2) Optimization is a flexible framework for motion planning,
which allows to integrate many different constraints (i.e.,
smoothness, obstacle avoidance, closed kinematic chain,
hand orientation, goalset, human-robot interaction, etc.).

In this work, we present experiments on motion capture
data recorded at the University of Stuttgart. We test our
approach on segmented motions ranging between 1 and 4
seconds as shown in Figure 1 using goalset constraints,
obstacle avoidance and joint human-robot coordination. Our
results indicate that the additional motion optimization phase
leads to higher predictive performance than state-of-the-art
neural network predictors, especially in long-term prediction.

This paper is organized as follows: In Section II we discuss
relevant prior work. Section III introduce our framework
theoretically and explain how the implementation is done.
In Section IV we evaluate our prediction framework on real
motion data. Conclusions are drawn in Section V.
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II. RELATED WORK

A. Human Motion Prediction in Robotics

Prior work on motion prediction in robotics has made
use of graphical models. For example, Kulić et al. encoded
full-body motion primitives using Hidden Markov Models
and applied the model to motion imitation [6]. Koppula and
Saxena focused on movement prediction using conditional
random fields [7]. While these approaches are sound they
generally do not scale to large databases of motion capture.

Another approach commonly used for predicting human
motion is Inverse Optimal Control (IOC), which aims to
find a cost function underlying the observed behavior. For
example, Berret et al. investigated cost functions for arm
movement planning [8]. The authors reported that such
movements are closely related to mechanical energy ex-
penditure and joint-level smoothness. Mainprice et al. in-
vestigated prediction of human reaching motions in shared
workspaces [9]. Their method accounts for obstacles and a
moving collaborator using iterative replanning. In IOC, bio-
kinematic processes are typically represented by simplified
models, which are not able to completely capture the com-
plex bio-mechanical behaviors of human full-body motion
and to accurately forecast an observed motion.

B. Neural Network Human Motion Prediction

Recent work on human motion prediction for short-term
motion has focused on recurrent neural network architectures
(RNN). Fragkiadaki et al. proposed a RNN based model
that incorporates nonlinear encoder and decoder networks
before and after recurrent layers [10]. Their model is able to
handle training across multiple subjects and activity domains.
Jain et al. introduced a method to incorporate structural
elements into a RNN architecture [11]. Autoencoders also
can be used for denoising the prediction [12]. Martinez et al.
introduced a gated recurrent unit (GRU) based approach with
a residual connection in the loop function and showed that
this outperforms prior RNN based methods [1]. Pavllo et al.
further improved the RNN-based prediction by changing the
joint angle representation to quaternions [2], [13]. However,
this comes at the cost of additional normalization layers
and normalization penalty. Recently Wang and Feng intro-
duced a position-velocity recurrent encoder-decoder model
(VRED) [3]. Their model adds an additional velocity con-
nection as an input to the GRU cell in the recurrent structure.

Motion prediction based on recurrent neural networks
promises good results for predicting short-term motion. How-
ever, the models are trained on human data only. Handling
environmental constraints is not possible yet and would
require large amounts of training data. Human environments
are typically cluttered with objects and obstacles. Thus,
in a human-robot collaboration scenario, adapting to such
environmental constraints is crucial for the prediction.

For our human prediction model we adapt the VRED
architecture by Wang and Feng and modify it as described
in Subsection III-D.

C. Motion Optimization

Gradient-based optimization algorithms are widely used in
the field of robotics and optimal control [14], [15], [16], [17],
[18], [19] for optimizing trajectories. These techniques have
been shown to successfully generate motions with a variety
of kinematic and dynamic objective and constraints. In 2009
[15], Ratliff et al. have used insights from differential geom-
etry making it possible to use gradient-based optimization
to solve motion planning with non-convex obstacles. Their
main finding was that obstacle costs should be integrated
with respect to arc-length in Cartesian space, leading to the
notion of workspace geodesics [20], [21], which we use
here.

Mordatch et al. use motion optimization techniques to
synthesize complex behaviors [22], [23]. The authors show
that motion optimization approaches for synthesizing motion
and animating characters can generate realistic motions even
without the use of motion capture data. While the focus
of their work does not lie on forecasting an observed
motion, concepts, such as constraining foot contacts, have
great potential to be incorporated in our motion prediction
framework.

III. METHOD

Next we formalize our approach, by presenting first our
method for predicting human motion and then for planning
a coordinated human-robot behavior.

A. Human Motion Optimization

When predicting human motion, the aim is to find a trajec-
tory s∗t+1:T that maximizes the likelihood of the next states
given our demonstration data D and fulfills the constraints.
The constraints are the human dynamics st+1 = d(st) and
further constraints h and g that arise from the environment.

This can be written as the following optimization problem:

min
st+1:T

T∑
t+1

− log p(st+1|s0:t,D) (1)

subject to st+1 = d(st)

h(st) = 0

g(st) ≤ 0

We approximate the maximum likelihood given D as a
regression problem and train a recurrent neural network
model to find the prediction states st+1:T = f(s0:t, δt+1:T )
as discussed in Subsection III-D. We introduce parameters
δt+1:T to the model in order to be able to vary the predictions
and thus account for the constraints h and g using numerical
optimization. We will describe this in Subsection III-E. The
dynamic constraint st+1 = d(st) is learned from the data and
thus also approximated by the recurrent neural network f .

B. Coordinated Motion Optimization

In the case of joint motion optimization of the human and
the robot, we not only aim to find a human trajectory s∗t+1:T
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Fig. 2: Architecture of the Recurrent Neural Network st+1:T = f(s0:t). In blue the past joint angles and velocities, in green
the future predicted states and in red the control input δ, which allows motion optimization.

but also a robot trajectory x∗t+1:T . The optimization problem
changes to:

min
st+1:T ,xt+1:T

T∑
t+1

− log p(st+1|s0:t,D) + cR(xt+1:T ) (2)

subject to st+1, xt+1 = d(st, xt)

h(st, xt) = 0

g(st, xt) ≤ 0

with CR being costs on the robot trajectory xt+1:T . The
additional constraints h and g can now be function of both,
st and xt, and arise from joint interaction objectives, such
as collision constraints.

C. Summary

Our approach works in two phases: 1) offline we learn a
predictive model of the human st+1:T = f(s0:t) where s0:t
is the observed trajectory of human states. The aim of f is
to predict the kinematic states of the human in the next time
steps up to a prediction horizon T , based on a sequence of
previous states. This is achieved by supervised training of a
position-velocity recurrent encoder-decoder neural network
model on human motion capture data, 2) online we use
the learned model to predict future states. The prediction is
optimized to fulfill constraints by varying the velocity inputs
in the decoder’s loop function at every time step.

D. Human Model

For prediction of the human we base our model on the
position-velocity recurrent encoder-decoder neural network
(VRED) [3]. We model the kinematic state of a human as
a vector consisting of base position, base rotation and joint
angles: s = (p, r, j) which in our case is a 66 dimensional
vector for full-body data. The joints are toes, ankles, knees,
hips, pelvis, torso, neck, head, inner shoulders, shoulders,
elbows and wrists.

As proposed in [3], we represent angles in the exponential
map representation and convert them to quaternions for
the loss computation. The velocity inputs v are computed
using finite differences. At each time step the positions and

velocities are fed into the network, which then only predicts
velocities. The new states s′ are obtained through a residual
connection by adding the velocity to the previous state.

The full architecture can be seen in Figure 2. Inputs
variables are depicted blue, the new predictions are depicted
green. In contrast to the original model, we stack 3 GRU
cells with 1000 hidden units, which improves the prediction
performance in our experiments Additionally we do not
feed the position of the base (i.e., pelvis) into the recurrent
unit. This avoids conditioning the model on world positions
and leads to better generalization. We found that the same
approach does not hold for the base rotation which encodes
the direction of motion. Hence we instead offset the rotation
randomly during training time to avoid overfitting.

For training, the data is sliced into same sized trajectories
of 2sec. One second is fed as input to the network and 1sec
is predicted by the network. The loss is computed on the full
trajectory. We use a squared error loss for the base position
and a quaternion loss for the base rotation and joint angles:

L =
∑

s0:T∈B
||p′ − p||2︸ ︷︷ ︸

position

+
∑
t,q

min(||q′t − qt||, ||q′t + qt||)︸ ︷︷ ︸
quaternion

(3)

with qt being the quaternion representations. The learning
rate is set to 0.0001 and the batch size is 8.

At test time we make use of numerical optimization to
handle additional constraints. In order to change the predic-
tions we add an additional connection δ to the velocity inputs
(see Figure 2 depicted red). The network thus has additional
input parameter s′t+1:T = f(s0:t, δt+1:T ). These parameters
can be used to change the velocities that are predicted by
the neural network and fed into the next time step which
can be viewed as adding an additional acceleration term into
the model.

During training δ is set to zero. Note that the δt is fed into
the network at one time step but changes the predictions for
all the following time steps as well. In the following, the
neural network f(δt+1:T ) will only be parameterized by δ
because s0:t is already observed at test time and is not able
to change during prediction.



E. Trajectory Optimization

In this paper we consider optimizing predictions with the
ability to account for the following additional constraints:
• low-level: human prediction should be close to the

original network prediction.
• goalset: human prediction should end up with a hand

close to a specified point.
• collision: human prediction should not collide with

obstacles.
• human-robot: human prediction and a robotics agent

should not collide.
• robot smoothness: robot trajectory should be smooth.
• robot goal: robot trajectory should end with an endef-

fector close to a specified point.
• robot collision: robot trajectory should not collide with

obstacles.
Due the fact that δ is only used as input to the neural

network and does not directly change the trajectory, it is
ensured that the predicted states still ground on the network
prediction. However, we add an additional loss term to fulfill
the low-level constraint:

cc(δ) = ‖δ‖2 (4)

This term ensures that δ is not becoming too big and thus
does not push the network into states that are too far from
the training data to make reliable predictions.

The goal is given as the squared distance between the
human endeffector and a reference point p∗:

cg(δ) = ‖φFK(f(δ)T )− p∗‖2 (5)

where φFK : s 7→ p is the forward kinematics of the human,
for example, calculating the hand position p ∈ R3. Thus
pt = φFK(f(δt))) computes the hand position at time t = T ,
where T is the last predicted time step by the network.

We represent objects using a signed distance field (SDF).
To account for the collision a potential function, similar as
used in CHOMP [15], is used. Because moving more quickly
through regions with high cost should not be penalized less,
cost elements are integrated with respect to an arc-length
parameterization in the workspace. Thus in our case, we have
the following obstacle potential:

co(δ) =

T∑
t=1

exp
{
− α SDF(pt)

}
∆H (6)

where ∆H = ‖pt+1 − pt‖, with pt = φFK(f(δt))).
Similarly we define the human-robot objective, as a func-

tion of the human variables δ and robot states x as:

cj(δ, x) =

T∑
t=1

exp
{
− α‖pt − xt‖

}
∆H∆R (7)

where ∆R = ‖pRt+1 − pRt ‖, with pRt = φFK(xt).
The robot goal cRg and robot obstacle cRo are similar to

the human goal and obstacle constraints with the difference

Fig. 3: Motion Capture Setup

that we optimize the trajectory directly and do not pass it
through the neural network.

The robot smoothness term is similar, as defined in
CHOMP, to a sum of squared derivatives:

csmooth(x) = x>Kdx (8)

where K is a finite differences matrix:

K =


6 −4 1 ... 0 0 0
−4 6 −4 ... 0 0 0
1 −4 6 ... 0 0 0

...
. . .

...
0 0 0 ... 6 −4 1
0 0 0 ... −4 6 −4
0 0 0 ... 1 −4 1

 . (9)

The full unconstrained proxy objective is given as the sum
of the cost functions for human, robot and joint cost:

c(δ, x) = cH(δ) + cR(x) + cJ(δ, x) (10)
cH(δ) = λ1cc(δ) + λ2cg(δ) + λ3co(δ) (11)
cR(x) = λ4cRg(x) + λ5cRo(x) + λ6csmooth(x) (12)

cJ(δ, x) = λ7cj(δ, x) (13)

with Lagrange multiplier λ. Note that implementing this
framework using a principled augmented Lagrangian opti-
mization algorithm would be straight forward and is left for
future work.

We derived the respective gradients and Jacobians mainly
using automatic differentiation frameworks. We implemented
the recurrent neural network using the Tensorflow library and
we use its automatic differentiation functionality to compute
the Jacobian of the network JNN = ∂f

∂δ . We use a limited
memory version of the numerical optimization algorithm
BFGS in order to optimize the trajectory [24].

IV. EXPERIMENTS

In this section we evaluate our method using real motion
data. Since available motion capture datasets do not include
obstacles, we gathered our own dataset, which can be made
available on request.

All data was captured using an Optitrack motion capture
system with 50 reflecting markers placed on the entire human
body. The motion capture setup can be seen in Figure 3.
Data was recorded at a rate of 120Hz and downsampled
to 30Hz for use in the network. For the experiments we
captured 3 datasets using one single actor. A reaching1



Fig. 4: Human trajectory of reaching towards an object on the table for 2secs. The prediction by our method is shown in
green, baseline of human motion in gray. From left to right we show the prediction after 1sec, 1.3sec, 1.6sec and 2sec. The
top row shows the prediction without obstacle constraint, the bottom row with obstacle constraint. In the prediction without
obstacle constraint the human collides with the chair.

dataset, which contains pick and place motions of different
objects on different heights and lasts 31 minutes. A walking
dataset, which consists of 60 minutes of walking data in the
motion capture area. A reaching2 dataset, which contains 22
minutes of pick and place motions of different objects similar
to reaching1, however, chairs have been placed in the scene
so that the human has to perform the pick and place tasks
while walking around the chairs. We train our model with
data from all three datasets. A fraction of 10% from every
dataset is held out for testing purposes.

A. Goal Set Constraints

In our first experiment we evaluate whether the prediction
of the VRED network can be improved by our prediction
method when we already know the target position of the
reaching motion for the human hand.

From the reaching1 test set 25 reaching trajectories with a
length of 1sec have been extracted. We compare our method
with three baselines. We compute the distance of key joints
of the human (wrists, elbows, knees, ankles and pelvis) and
compute the mean distance of the predictions to the ground
truth (see Table I).

The zero velocity baseline predicts the same state for all
future steps. The VRED baseline is the prediction network
without the trajectory optimization part. Our method is
informed with the goal position of the hand. Table I (b)
shows the sum of the mean distances of the 9 key joints.
The use of trajectory optimization improves the prediction
among all future steps.

In Table I (w) we only compute the distance of the wrist
to the ground truth. We also compute a linear interpolation
baseline between the start position of the wrist and the
target position. The interpolation baseline and our method are
informed with the goal state and thus able to get zero error in
the last time step. However, our method, where the recurrent
neural network implicitly reconstructs the underlying human

ms 125 250 375 500 625 750 875 1000
Zerovel (b) 0.72 1.37 1.80 2.31 2.72 3.01 3.15 3.25
VRED (b) 0.20 0.36 0.45 0.57 0.68 0.78 0.86 0.94

ours (b) 0.20 0.35 0.44 0.53 0.56 0.59 0.62 0.64
Zerovel (w) 0.14 0.28 0.37 0.48 0.56 0.61 0.62 0.62
VRED (w) 0.03 0.07 0.09 0.11 0.13 0.14 0.15 0.15

ours (w) 0.03 0.07 0.08 0.09 0.08 0.06 0.04 0.01
Interp (w) 0.05 0.11 0.15 0.17 0.17 0.13 0.08 0.00

TABLE I: Error of state prediction on different time steps in
the future for the whole body (b) and the right wrist only (w).
Reported values are in meters. For the whole body the sum
distance of 9 key joints is shown.

ms 250 500 750 1000 1250 1500 1750 2000
Zerovel 1.21 2.45 3.90 5.50 7.53 9.49 11.15 11.74
VRED 0.70 1.25 1.79 2.48 3.48 4.56 5.70 6.39
ours g 0.68 1.25 1.79 2.27 2.57 2.52 2.24 2.18

ours g+o 0.69 1.25 1.74 2.18 2.45 2.41 2.15 2.10

TABLE II: Error of state prediction on different time steps
in the future for the whole body. Our method with goal
objective (g) and goal and obstacle objectives (g+o) is shown.

dynamics, outperforms the interpolation baseline on other
time steps, which simply constructs a naive straight line.

The results show that our method is able to reconstruct the
full-body trajectory of the human given a target state which is
useful for scenarios where we already know possible target
states of the human obtained by a higher level prediction
mechanism or through scene understanding, for example
using affordances [7].

A limitation of the approach with goal set constraint is that
we have to predefine the duration of the trajectory which is a
known problem in the trajectory optimization literature [15].
Simple approaches to solve this issues include optimizing
trajectories of different time horizon or reoptimizing the
trajectory with a longer horizon if the target position is not
reached. A more general approach would dynamically add
and remove samples during optimization.



Fig. 5: Joint trajectory optimization of human and robot. From left to right the trajectories after 1sec, 2.3sec, 3sec and 3.6sec.
The top row shows the trajectory without the joint optimization potential, the bottom trajectory is with joint optimization.

B. Obstacle Constraints

In this experiment we evaluate whether the obstacle po-
tential helps to further improve the prediction. Therefore we
extracted 22 reaching trajectories from the reaching2 test
set with a length of 2sec. Some of the trajectories contain
motion trajectories that are close to an obstacle (chair). We
approximate the chair sign distance field as a sphere and add
an obstacle objective in addition to the goal objective.

Figure 4 shows an example reaching trajectory with the
ground truth (gray) and our prediction (green). The top row
shows the prediction without obstacle objective. There the
human prediction collides with the chair because the RNN
has no information about obstacles in the scene. Activating
the obstacle objective in the trajectory optimization step pe-
nalizes collisions and forces the prediction around the object.
In the second row the improved prediction with obstacle
avoidance is shown. The prediction no longer collides with
the chair.

We performed a quantitative comparison averaged over
the 22 extracted reaching motions (see Table II). The table
shows the mean full body error of the key joints compared
to the ground truth. Note that only a few of the trajectories
contain motion trajectories that are close to the obstacle. The
method with additional obstacle objective outperforms the
other prediction methods.

C. Joint Human Robot Optimization

The last experiment is about joint optimization of hu-
man and robot for collaborative planning. We initialize a
human walking trajectory from the test data of the walking
dataset. Additionally, we add a robot model. We set a goal
objective for the human base and the robot base so that
the trajectories of human and robot intersect. We initialize
the robot trajectory as a straight line from start to target
position and the human trajectory with setting the δ to zero.
The trajectories are predicted for a duration of 4sec. Using
the goal objectives without the human-robot objective will
lead to a collision of robot and human (see Figure 5 top).

Only planning for the robot and assuming that the human
stays on the predicted trajectory would lead to a route where
the robot completely avoids the human and has to go for a
longer path around. In reality this is not necessary because
the human would react to the robot moving and adapt his or
her walking path to the robot moving. Similar, if we keep the
robot trajectory fixed, the human would either need to wait
till the robot passes or walk a longer way around the robot,
which results in reaching the goal state later. Our aim is to
find a collision free plan for human and robot so that both,
the human and the robot have to leave the optimal route only
a bit. Therefore we jointly optimize the robot states x and
the human prediction variables δ including the human-robot
objective. The resulting trajectory can be seen in Figure 5
bottom. The robot speeds up a bit and keeps farther away
from the human and the human prediction walks a bit further
to the right.

The experiment shows that our method can be used to plan
a robot trajectory while simultaneously adapting the human
prediction to it. This can be used to plan a trajectory that
minimally changes the human path. How much the robot
or the human has to deviate from the optimal path can be
modified by adapting the optimization parameters λ.

V. CONCLUSIONS

In this paper we presented a novel prediction framework
for human motion in the presence of environmental ob-
jectives. We showed that a state-of-the-art recurrent neural
network model can be adapted to use it within a trajectory
optimization framework. This improves the predictions and
accounts to unseen environmental structures.

Furthermore, we showed an initial experiment on how the
method could be used for shared human-robot planning.

For future work we plan to conduct real world experiments
on real human-robot interaction tasks. We plan to optimize
the trajectory optimization parameters in a way to adapt for
human comfort during more complex interaction scenarios
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