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Abstract— Current end-to-end grasp planning methods pro-
pose grasps in the order of seconds that attain high grasp
success rates on a diverse set of objects, but often by con-
straining the workspace to top-grasps. In this work, we present
a method that allows end-to-end top-grasp planning methods to
generate full six-degree-of-freedom grasps using a single RGB-
D view as input. This is achieved by estimating the complete
shape of the object to be grasped, then simulating different
viewpoints of the object, passing the simulated viewpoints to
an end-to-end grasp generation method, and finally executing
the overall best grasp. The method was experimentally validated
on a Franka Emika Panda by comparing 429 grasps generated
by the state-of-the-art Fully Convolutional Grasp Quality CNN,
both on simulated and real camera images. The results show
statistically significant improvements in terms of grasp success
rate when using simulated images over real camera images,
especially when the real camera viewpoint is angled. Code
and video are available at https://irobotics.aalto.fi/beyond-top-
grasps-through-scene-completion/.

I. INTRODUCTION

Robotic grasping has undergone a paradigm shift from
analytical methods toward data-driven ones. Deep learning
is the major driving force behind the shift and has given
rise to a diverse set of methods [1]–[8]. These methods
typically reach high grasp success rates (often above 90%) on
a wide variety of objects while keeping the total computation
time in the order of seconds, surpassing analytical methods
by a large margin. However, to reach such a performance
the grasp planning problem is usually constrained to the
generation of top-grasps with four degrees-of-freedom (dof):
one orientation and three translations. Top-grasps are good
if the camera perceiving the environment is perpendicular
to the plane supporting the target. However, as shown in
this work, once the camera views a scene from an angle the
performance drops. In such situations the grasping methods
need to propose grasps in full six dof space to allow a robot
to approach objects from any possible direction.

One viable option to achieve full 6 dof grasping with cur-
rent state-of-the-art grasping methods is to mount a camera
on the robot itself and have it scan the scene from multiple
viewpoints. However, not only is such an approach slow
as the robot needs to first plan where to move and then
physically move there but also the robot might self-occlude
the view of the camera, rendering the method useless. A
novel alternative, which is studied in this work, is to simulate
different viewpoints of the object to be grasped and feed
these to the methods proposing 4 dof grasps. As shown in
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Fig. 1: (a) shows a point-cloud of a cluttered scene acquired
with a real camera while (b) shows a simulated top-view of
the same scene but shape completed. (c) shows that with our
method, successful grasps can be generated from approach
directions different from the camera viewpoint.

Fig. 1, such a solution enables a robot to grasp objects from
directions different from the one of the real camera.

TO this end, we present a grasping pipeline that uses
the state-of-the-art Fully Convolutional Grasp Quality CNN
(FC-GQ-CNN) [2] to propose grasps. The pipeline first
segments a point-cloud of the scene into objects. Then the
shape of each object is estimated and placed in a physics
simulator. In the context of this work, we refer to this as
scene completion. Inside the physics simulator, a set of depth
images are sampled from different viewpoints and fed to the
grasp proposal method generating a set of grasp candidates.
The grasp candidate with the highest score is then executed
on the robot.

The proposed grasping pipeline is experimentally validated
on a Franka Emika Panda by benchmarking it against grasps
proposed on real depth images on single object grasping and
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grasping in clutter. The results of 429 grasps on single object
grasping show statistically significant improvement in terms
of higher grasp success rate when planning is performed
on simulated depth images compared to planning solely on
real camera images. Similar results were also evident when
grasping in cluttered scenes.

The main contributions of this paper are: (i) a novel grasp
planning pipeline that enables existing 4 dof end-to-end
methods to propose full 6 dof grasps, (ii) a method to densely
sample simulated depth images, and (iii) an empirical evalu-
ation of the proposed method against state-of-the-art on real
hardware, presenting a statistically significant improvement
in terms of higher grasp success rate using the proposed
method.

II. RELATED WORKS

To date, many grasping methods rely fully or in part
on deep learning. Some methods only use deep learning
to extract additional information about objects with e.g.,
shape completion [9], [10] or tactile information [11] and
then use analytical methods to plan the actual grasp [12],
while others employ data-driven grasp planning in an end-
to-end fashion to generate grasps directly from images [1]–
[8]. We will review both shape completion and end-to-end
data-driven grasp planning as both are vital parts of our
grasping pipeline.

A. Deep Shape Completion

In the context of shape completion from incomplete point-
clouds, most recent improvements come from the adoption
of deep learning. For instance, different works have explored
tailored network structures [9], [13], [14], semantic object
classification to aid the reconstruction [15], the integration
of other sensing modalities such as tactile information [11],
or the exploitation of the network uncertainty [10].

In the context of robotics grasping, [9], [11] and [10]
are the most interesting as they not only focus on shape
reconstruction quality but also on grasping accuracy. In
this work, we make use of our previous shape completion
network [10] to complete objects but instead of planning
grasps with analytical methods—which is computationally
expensive—we turn to data-driven grasp planning.

B. End-To-End Data-Driven Grasp Planning

The general interest in end-to-end data-driven grasp plan-
ning came after the pioneering work by Saxena et al. [16]
where they trained a logistic regression model to directly
predict good grasping points from a monocular image. To
train the logistic regressor they used a large amount of
synthetically labeled images of objects and the corresponding
grasping location.

The use of synthetic data to train the sensor-to-grasp map
was later used in a wide variety of similar methods [1]–[8].
For instance, Mahler et al. [1] used a data-set containing
millions of synthetic antipodal top-grasps on a wide variety
of objects to train a Grasp Quality CNN (GQCNN) that
generates a grasp from a depth image in the order of seconds.

The GQCNN was later improved in [2] through the use of
on-policy data and a fully convolutional network structure
called FC-GQ-CNN. The state-of-the-art FC-GQ-CNN was
faster than GQCNN while sampling about 5000x more grasps
and was thus used to generate grasps in this work.

Another line of research in end-to-end data-driven grasp
planning is Reinforcemnt Learning (RL) [17]–[20] where the
goal is to learn the sensor-to-grasp map directly through trial
and error on the robot. Models learned with RL can attain a
high grasp success rate without any hand-labeled data-sets,
but the extensive interaction time needed to learn the model,
which can be months on physical robots [19], is a bottleneck.
Although some work have reduced the real-world interaction
by using simulation [20], the learned models still needs fine-
tuning on physical hardware to reach similar grasp success
rate as methods that uses supervision [1], [2].

A major limitation in most end-to-end data-driven grasp
planning works is that the planned grasp is only from the
viewpoint of the camera, which effectively constrains the
grasps to a subset of the complete 6 dof workspace (typically
4 dof grasps are considered). The work presented here lifts
this limitation by shape completing the real objects, placing
them into a physics simulator, and from there sampling
different viewpoints of the object. Our method hence enables
standard end-to-end data-driven grasp planning methods that
suggest grasps from only one camera viewpoint to generate
full 6 dof grasps from other directions such as the back of
the object.

III. PROBLEM FORMULATION

In this work, we address the problem of grasping unknown
objects lying on a supporting surface with a robotic arm
equipped with a parallel-jaw gripper. Information about the
scene is obtained by a RGB-D camera whose pose is arbitrary
but known relative to the robot.

Formally, let x = (c,O) denote a state representing the
environment, where c ∈ R6 is the camera pose, and the
set O = {(Oi,pi)}Ni=0 contains the properties of the N
objects to be grasped, described by their pose p ∈ R6 and
model O. The state is partially observable as O can only
be indirectly and incompletely observed using the RGB-
D camera. The camera produces a 2.5D point-cloud y =
{yi}H×Wi=1 ∈ RH×W+ which can be represented as a H ×W
depth image, assuming known camera intrinsic parameters.

Let g ∈ R6 denote a parallel-jaw grasp, described by the
6D pose of the gripper center point and S(g,x) ∈ {0, 1}
be a binary-valued grasp success metric indicating, e.g.,
force closure. Assuming a joint distribution p(S,g,x,y),
let Q(g,y) = E [S | g,y] be the expected value of the
metric given a grasp g and a point-cloud y. The quality
Q is intractable in most real cases. Therefore, it is modeled
in data-driven grasp planning methods with a learned para-
metric model Qθ with parameters θ. The parametric model
Qθ is typically optimized either with supervised learning on
synthetic [1] or real grasping data [4], or with RL [19].

Then, given a point-cloud y obtained from a known
camera pose c, the goal of most data-driven grasp planning
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Fig. 2: The proposed grasping pipeline

methods is to find a grasp g∗ such that:

g∗ = arg max
g∈G

Qθ(g,y), (1)

where G is a set of grasp candidates. However, such a
formulation only accounts for grasps approaching the scene
from the same direction as the camera, which is usually
looking at it from top, leading to only top-grasps being
proposed.

Instead, we propose to extend this framework to allow
object grasping from any direction, even those not directly
seen by the camera. For this, we need a function x̂ = C(y)
as an estimate of the full state x from the point-cloud y.
Practically, this means understanding how many and what
objects are in the scene (i.e., segmentation), and then for
each object proposing a model O and a pose p (i.e., shape
completion). Once a state estimate x̂ is available we want to
evaluate the quality of grasps approaching from any direction
and execute the first kinetically feasible one with highest
quality. Our proposed pipeline to achieve this is described
next.

IV. GRASPING PIPELINE

The grasping pipeline shown in Fig. 2 consist of: (i) fil-
tering and segmenting the real objects, (ii) shape complet-
ing each segment and add them to a physics simulator,
(iii) generate and rank grasps from different viewpoints of
the objects, (iv) execute the best ranked grasp on the real
robot.

A. Segmentation
The scene in the point-cloud contains an unknown number

of objects lying on a table. We first remove points that are
part of the background indicated by their distance exceeding
a threshold, as well as points that belong to the supporting
surface identified using the known pose of the camera with
respect to the robot. We are then left with a filtered point-
cloud ȳ containing only the view of the objects to be
segmented.

Given the point-cloud ȳ, we define an N -region segmen-
tation as a partition R = {ri}Ni=1 of the points of ȳ. More
precisely, the regions must satisfy the following constraints:

∀y ∈ ȳ (∃r ∈ R | y ∈ r) ;
∀r ∈ R (@r′ ∈ R \ {r} | r ∩ r′ 6= ∅) . (2)

These constrains enforce that all points in the point-cloud ȳ
have to belong in a region but no point can belong in two
regions.

The pipeline is agnostic to the segmentation algorithm
employed, but the assumption is that, after the segmentation
step, each region in R contains points belonging to a
different object to be grasped. The next step is to estimate
each object’s properties through scene completion.

B. Scene Completion

Scene completion refers to the process of both shape
completing each object in the scene and then placing them
in a physics simulator according to their individual estimated
pose. Shape completion refers to reconstructing the shape of
an object from partial information about it in the form of a
point-cloud. More precisely, a shape completion algorithm
estimates (O,p) given a point-cloud r. To shape complete
objects we used the pre-trained fully convolutional hour-glass
shaped Deep Neural Network (DNN) proposed in [10] whose
input is a voxel grid of the point-cloud captured from the
camera and output is a completed voxel grid. The completed
voxel grid is post-processed into a mesh by merging it
with the input point-cloud and running the marching cube
algorithm [21].

The DNN in [10] also included dropout layers throughout
that were active during run-time to generate a set of shape
samples representing, through Monte Carlo sampling, the
shape uncertainty. In this work, we also generate shape
samples but average them together to get a mean shape,
effectively ignoring the shape uncertainty. Although it would
be possible to deactivate the dropout layers at run-time and
only consider a point estimate of the shape, the benefit of
using the mean shape is that it is smoother, removing sharp
artefacts on the shape which many end-to-end data-driven
grasp planning methods often rank as stable grasp points.

For each region ri ∈ R we generate, through shape
completion, objects (Oi,pi). Together, all objects represents
an estimate x̂ of the real environment state x. The state
estimate x̂, containing all objects represented as meshes, are
subsequently placed in a physics simulator. The next step is
then to sample grasps over the state estimate.

C. Grasp Sampling

To obtain grasp candidates from all directions, we populate
a scene in a physic simulator according to the state estimate
x̂. Given the populated scene, we render n depth images Y =
y1, y2, . . . ,yn of the objects from different viewpoints. To
densely sample the scene we propose the sampling scheme
visualized in Fig. 3, which is to approximate a sphere around



Fig. 3: The proposed dodecahedron sampling scheme. The
object in yellow is lying on the blue plane. The sampled
viewpoints (represented as red circles) are the midpoints of
each face in the upper-half of the dodecahedron (best viewed
in color).

the workspace with a dodecahedron and use the midpoints of
each face in the upper half as the viewpoints. This amounts
to n = 6 viewpoints in total and includes the top-view of
the object that most end-to-end data-driven grasp planning
methods are trained on. Of course, other sampling strategies
can be devised to obtain an higher or lower number of
viewpoints, as desired.

Next, we add noise to each simulated depth image yi
to make them more similar to ones acquired from physical
cameras. The reason for adding noise is because many end-
to-end data-driven grasp planning methods [1], [2], [5] use
synthetic data to train Qθ and adding artificial noise mimics
depth images acquired from physical cameras which, in turn,
improves the sim-to-real transfer. Similar to [1], we added
both multiplicative and additive noise to each viewpoint
resulting in the noisy depth image ŷi = αyi + ε, where
α ∼ Γ(k, s) is a Gamma random variable modeling depth-
proportional noise, and ε is a pixel-wise zero-mean Gaussian
noise as explained in [22] with bandwidth l and measurement
variance σ modeling additive noise. Experiments verified that
adding noise to the depth images made the grasps more
robust.

Grasps Gi are then generated on the set of noisy depth
images ŷi. The grasp g∗ that achieves the highest utility
among all candidates from all viewpoints is considered the
best and, if physically reachable, is executed on the real
robot. Formally, the best grasp is

g∗ = arg max
g∈Gi,i=1,...,n

Qθ(g, ŷi). (3)

V. EXPERIMENTS

The two main questions we wanted to answer in the
experiments were:

1) What is the impact of generating grasps from simulated
depth images as opposed to real ones on grasp success
and object clearance rate?

90°

45°

30°

Fig. 4: The three camera viewpoints for single object grasp-
ing.

2) Is it beneficial to simulate angled viewpoints instead of
top-views only?

In order to provide justified answers to these questions,
we conducted two separate experiments. The first experiment
evaluates grasp success rate on single object grasping while
the second one evaluates the clearance rate in cluttered
scenes.

A. Experimental Setup

To perform the experiments we used the Franka Emika
Panda robot and a Kinect 360° camera to capture the input
point-clouds as shown in Fig. 4. We used an Aruco marker
[23] for the extrinsic calibration of the camera. Once a point-
cloud was captured, it was segmented, shape completed and
finally placed into a physical rendering of the scene with the
same transformation as in the real world. For segmentation
we used the region growing method in PCL and for physical
rendering MuJoCo [24]. For the zero-mean Gaussian noise ε
we set σ = 0.001 and kernel bandwidth l = 6. For the depth-
proportional noise α, modeled as a Gamma distribution, we
set k = 5000, s = 0.0002.

In both experiments we tested three different methods
all using a pre-trained FC-GQ-CNN which is trained to
recognize stable top-grasps from depth images [2]. The
first method, which is the baseline, generates grasps with
the FC-GQ-CNN on real depth images captured from a
Kinect 360° camera. We benchmarked this against our
method with two different sampling schemes for simulating
depth images: one used the complete dodecahedron sampling
method described in Section IV-C while the other sampled
a depth image from a top-down view only. Henceforth we
refer to the baseline method as FC-GQ-CNN, ours with the
dodecahedron sampling as Simulated All-Grasps (SAG), and
our with top-down sampling as Simulated Top-Grasps (STG).
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Fig. 5: The 13 individually numbered objects used in the
experiment. All objects, except 6 and 13, are from the YCB
object set.

B. Single Object Grasping

For single object grasping we compared FC-GQ-CNN
with and without simulated depth images on the 13 objects
shown in Fig. 5. To study the effect of the camera viewing
angle on grasp performance, we ran the experiments on three
different angles towards the grasping plane (30°, 45° and
90°) all shown in Fig. 4. For the 30° and 45° viewing angles
the objects were placed in five different orientations: 0°, 72°,
144°, 216° and 288°, while for the 90° viewing angle, which
corresponds to a top-down view, we only placed the objects
at a 0° orientation. In total this setup amounts to 143 grasps
per method.

To evaluate if a grasp was successful, the robot moved
to the planned grasp pose, closed its fingers, and moved the
arm upward 20 cm. Then, the arm moved back to the starting
position, and once there rotated the hand ±90° around the
last joint. A grasp was successful if the object was within the
gripper for this whole procedure and unsuccessful if dropped.

The experimental results for the different methods, which
are analyzed for statistical difference with a one sided
Wilcoxon signed-rank test, are presented in Table I. Over
all viewing angles, the average grasp success rate is higher
with the proposed STG and SAG compared to the base-
line FC-GQ-CNN (p < 0.0001, p < .05). This result
stems from the fact that the performance of FC-GQ-CNN
deteriorates heavily when moving from a top-down view
to an angled view. For instance, the relative performance
drop for FC-GQ-CNN from a 90° viewing angle to a 45°
is -42.22% and to 30° the drop is -28.89%. This is much
higher compared to the performance drop for SAG, which
is only -5% and -10%. The performance drop for STG is
even less with -4.4% and -2.2% when moving from a 90°
viewing angle to a 45° and 30° respectively. Together, these
results show the importance of simulating depth images if
the viewing angle of the real camera is not 90°.

Another interesting result from Table I is that STG, which
simulates only top-down views, outperforms SAG which,
in addition to simulating a top-down view, also simulates
from angled viewpoints. One reason STG achieved a higher
grasp success rate than SAG was that in many cases when
an angled grasp was executed the gripper either tilted the
object over or if the gripper decided to grasp a corner of
an object the object simply slipped out of the gripper. Such
situations were not common for top-grasps as the surface on

which the object lies prevents the object from slipping and
reduces the chance of it falling over. Although top-grasps
seem more robust to external perturbations, we hypothesize
that the performance difference between STG and SAG
could be reduced if FC-GQ-CNN was also trained on angled
viewpoints.

Finally, Fig. 6 shows clearly that STG performs better
than average on all objects except for object 3 while SAG is
above average on 7 out of the 13 objects. The performance
of FC-GQ-CNN, on the other hand, is worse than average on
10 objects with an over 20% worse than average performance
on objects 2, 3, and 12. One possible reason FC-GQ-CNN
performs poorly on those objects is that grasping them from
an angled viewpoint is much harder than grasping them from
the top.

C. Grasping in Clutter

In this experiment we studied the clearance rate of each
method in a cluttered scene, meaning that the objective
was to remove as many objects as possible within a given
grasping budget. The grasping budget was set to 12 grasps
and the objects we chose to use were 4, 6, 7, 8, 10 and 12
in Fig. 5 as these represent different shapes and sizes. To
generate a cluttered scene, the objects were placed in a box
that was shaken and emptied onto a table. An example scene
is shown in Fig. 1. The physical camera perceiving the scene
was set to 45°. To evaluate if an object was successfully
removed from the scene we used the same procedure as in
the single object grasping experiments except the last step
to rotate the gripper was excluded for speed.

The experimental results are presented in Table II. These
results show a clear improvement in average clearance rate
using STG and SAG over FC-GQ-CNN. For instance, STG
removed all objects in 9 out of 10 scenes and for the one
scene it did not clear only one object was left. SAG, on
the other hand, managed to clear 5 out of 10 scenes while
FC-GQ-CNN cleared 2 out of 10 scenes.

For scenes where not all objects were cleared, the average
clearance rate were 83.33% for STG, 76.68% for SAG,
and 47.9% for FC-GQ-CNN. In these cases, FC-GQ-CNN
manged to remove more than half of the objects in only
2 out of the 8 scenes. SAG and STG, on the other hand,
removed more than half of the objects in all scenes.

Based on the presented results, we demonstrated that it
is also beneficial to generate grasps from other viewing
angles when removing objects in cluttered scenes. Together,
both the result on single object grasping and grasping in
clutter demonstrate that the performance of FC-GQ-CNN, a
state-of-the-art end-to-end data-driven 4 dof grasp planning
method, deteriorates heavily when viewing the scene from
an angled viewpoint. However, through the use of shape
completion and simulated viewpoints this is no longer the
case.

VI. CONCLUSIONS

We presented a grasping pipeline that enables end-to-
end data-driven grasp planning methods which previously



TABLE I: Average grasp success rate on different viewing angles with test statistics and p-values of pair-wise one sided
Wilcoxon signed-rank test between methods.

Viewing angle FC-GQ-CNN STG SAG FC-GQ-CNN vs STG FC-GQ-CNN vs SAG SAG vs STG

90° (top-down) 69.23% 69.23% 61.54% – – –

45° 40.00% 66.15% 58.46% T=52, p<.0005*** T=144, p<.05* –

30° 49.23% 67.69% 55.38% T=144, p<.05* – –

Average success rate 46.85% 67.13% 57.34% T=450, p<.0001*** T=768, p<.05* –

Planning Time (s) 2.3 2.0 12.3

Shape Completion Time (s) – 27.6 27.6
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Fig. 6: Grasp success rate per object for each method minus the average success rate per object on each of the 13 objects
used in the experiment.

TABLE II: Results on the cluttered scene

FC-GQ-CNN STG SAG

Average clearance rate (%) 58.33 98.33 88.33
Planning Time (s) 1.86 2.7 12.84
Shape Completion Time (s) – 47.53 60.23

only generated 4 dof top-grasps from a single depth image
to generate full 6 dof grasps from simulated viewpoints.
The key component was the use of shape completion to
model a partly observed object and place it into a physics
simulator to simulate depth images from multiple viewpoints.
We used FC-GQ-CNN to generate grasps and compared the
6 dof grasps generated with our pipeline to the 4 dof grasps
proposed from a depth image captured by a real camera
on both single object grasping and grasping in clutter. The
single object grasping results show that generating full 6
dof grasps leads to a statistical significant improvement in
terms of higher grasp success rate. Major improvements were
also prominent for grasping in clutter when generating 6 dof
grasps opposed to 4 dof ones.

Despite the good results, shape completion is a major
computational bottleneck. Most computation time, however,

is not spent on shape completion but on the post-processing
of the completed voxel grid which could be improved with
better hardware and optimized implementation. Another lim-
itation is that the accuracy of shape completion is conditional
on successful segmentation. The analytical region growing
segmentation method used here is known to perform poorly
in highly cluttered scenes [25]. Thus, the segmentation
method would need to be replaced in such cases.

In conclusion the work presented here demonstrates that
planning full 6 dof grasps brings significant advantages over
4 dof grasps. This, in turn, poses new interesting research
questions. For instance, instead of simulating different view-
points of the shape completed object, is it maybe better to
plan directly on the object itself using, e.g., mesh neural
networks [26]? Or, is it possible to generate full 6 dof grasps
directly from real depth image, removing the need for shape
completion? These questions pave way for interesting future
research avenues.
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