
Self-Supervised Sim-to-Real Adaptation for Visual Robotic Manipulation

Rae Jeong, Yusuf Aytar, David Khosid, Yuxiang Zhou, Jackie Kay, Thomas Lampe,
Konstantinos Bousmalis, Francesco Nori

Abstract— Collecting and automatically obtaining reward
signals from real robotic visual data for the purposes of training
reinforcement learning algorithms can be quite challenging
and time-consuming. Methods for utilizing unlabeled data can
have a huge potential to further accelerate robotic learning.
We consider here the problem of performing manipulation
tasks from pixels. In such tasks, choosing an appropriate state
representation is crucial for planning and control. This is
even more relevant with real images where noise, occlusions
and resolution affect the accuracy and reliability of state
estimation. In this work, we learn a latent state representation
implicitly with deep reinforcement learning in simulation, and
then adapt it to the real domain using unlabeled real robot
data. We propose to do so by optimizing sequence-based self-
supervised objectives. These exploit the temporal nature of
robot experience, and can be common in both the simulated and
real domains, without assuming any alignment of underlying
states in simulated and unlabeled real images. We propose
Contrastive Forward Dynamics loss, which combines dynamics
model learning with time-contrastive techniques. The learned
state representation that results from our methods can be used
to robustly solve a manipulation task in simulation and to
successfully transfer the learned skill on a real system. We
demonstrate the effectiveness of our approaches by training
a vision-based reinforcement learning agent for cube stacking.
Agents trained with our method, using only 5 hours of unlabeled
real robot data for adaptation, shows a clear improvement over
domain randomization, and standard visual domain adaptation
techniques for sim-to-real transfer.

I. INTRODUCTION

Learning-based approaches, and specifically the ones that
utilize the recent advances of deep learning, have shown
strong generalization capacity and the ability to learn relevant
features for manipulation of real objects [1], [2], [3], [4],
[5]. These features can be used to avoid explicit object pose
estimation [6] which is often inaccurate, even for known
objects, in the presence of occlusions and noise. Furthermore,
parameterization of the environment state with positions in
R3 and rotations in SO(3) is not necessarily the best state
representation for every task.

Deep learning can provide task-relevant features and state
representation directly from data. However, deep learning,
and especially deep reinforcement learning (RL), requires
a significant amount of data, which is a critical challenge
for robotics [5]. For this reason, sim-to-real transfer is an
important area of research for vision-based robotic control
as simulations offer an abundance of labeled data.

Authors are with DeepMind London, UK. {raejeong, yusufaytar, dkhosid,
yuxiangzhou, kayj, thomaslampe, konstantinos, fnori}@google.com. Quali-
tative results can be found in our supplementary video: https://youtu.
be/pmLASU_MW_o

Fig. 1: First step of our method trains a state-based and
a vision-based agents in simulation. Using unlabeled real
data we then perform domain adaptation with a sequence-
based self-supervised objective, that are computable on both
simulated and real data. The simulated and real robot setups
we used are displayed at the bottom.

Pixel-based agents trained in simulation do not gener-
alize naively to the real world. However, recent sim-to-
real transfer techniques have shown significant promise in
reducing real-world sample complexity. Such techniques
either randomize the simulated environment in ways that help
with generalization [7], [8], [9], use domain adaptation [10],
or both [11]. Our work falls in the scope of unsupervised
domain adaptation techniques, i.e. methods that are able to
utilize both labeled simulated and unlabeled real data. These
have been successfully used both in computer vision [12]

ar
X

iv
:1

91
0.

09
47

0v
1

 [
cs

.R
O

]
 2

1
O

ct
 2

01
9

https://youtu.be/pmLASU_MW_o
https://youtu.be/pmLASU_MW_o

and in vision-based robot learning for manipulation [11] and
locomotion [10].

The contribution of our work is two-fold: (a) we investi-
gate the use of sequence-based self-supervision as a way to
improve sim-to-real transfer; and (b) we develop contrastive
forward dynamics (CFD), a self-supervised objective to
achieve that. We propose a two-step procedure (see Fig.
1) for such sequence-based self-supervised adaptation. In
the first step, we use the simulated environment to learn
a policy that solves the task in simulation using synthetic
images and proprioception as observations. In the second
step, we use synthetic and unlabeled real image sequences
to adapt the state representation to the real domain. Besides
the task objective on the simulated images, this step also
uses sequence-based self-supervision as a way to provide
a common objective for representation learning that applies
in both simulation and reality without the need for paired
or aligned data. Our CFD objective additionally combines
dynamics model learning with time-contrastive techniques
to better utilize the structure of sequences in real robot data.

We demonstrate the effectiveness of our approach by
training a vision-based cube stacking RL agent. Our agent
interacts with the real world with 20Hz closed-loop Cartesian
velocity control from vision which makes our method appli-
cable to a large set of manipulation tasks. The cube stacking
task also emphasizes the generality of our approach for long
horizon manipulation tasks. Most importantly, our method is
able to make better use of the available unlabeled real world
data resulting in higher stacking performance, compared to
domain randomization [13] and domain-adversarial neural
networks [14].

II. RELATED WORK

a) Manipulation: challenges and approaches: It is
well acknowledged that both planning and state estimation
become challenging when performed in cluttered environ-
ments [15]. During execution, continuously tracking the pose
of manipulated objects becomes increasingly more difficult
in presence of occlusions, often caused by the gripper itself.
Surveys reveal that pose estimation is still an essential
component in many approaches to grasping [1, fig. 3-5-7];
proposed approaches rely on some sort of supervision, either
in the form of model-based grasp quality measure [16], [17],
[18], or in the form of heuristics for grasp stability [1, fig. 18-
19], or finally in the form of labelled data for learning [1,
fig. 9].

b) Sim-to-Real Transfer for Robotic Manipulation:
Sim-to-real transfer learning aims to bridge the gaps between
simulation and reality, which consist of differences in the
dynamics and observation models such as image rendering.
Sim-to-real transfer techniques can be grouped by the amount
and kind of real world data they use. Techniques like domain
randomization [9], [13] focus on zero-shot transfer. Others
are able to utilize real data in order to adapt to the real
world via system identification or domain adaptation. Similar
to system identification in classical control [19], recent
techniques like SimOpt [20] utilize real data to learn policies

that are robust under different transition dynamics. Unsu-
pervised domain adaptation [12] has been successfully used
for sim-to-real transfer in vision-based robotic grasping [11].
Semi-supervised domain adaptation additionally utilizes any
labeled data that might be available, as was done by [11]. In
many ways, zero-shot transfer, system identification, domain
adaptation–with or without labeled data in the real world–are
complementary groups of techniques.

c) Cube Stacking Task: Recent work on efficient multi-
task deep reinforcement learning [21] has shown the diffi-
culty of cube stacking task even in simulated environments
as the task requires several core abilities such as grasping,
lifting and precise placing. Sim-to-real method has also
been applied for cube stacking task from vision where
combination of domain randomization and imitation learning
was used to perform zero-shot sim-to-real transfer of the
cube stacking task [22]. However, the resulting policy only
obtained a success rate of 35% over 20 trials in a limited
number of configurations reconfirming the difficulty of the
cube stacking task.

d) Unsupervised Domain Adaptation: Unsupervised
domain adaptation techniques are either feature-based or
pixel-based. Pixel-based adaptation is possible by changing
the observations to match those from the real environment
with image-based GANs [23]. Feature-based adaptation is
done either by learning a transformation over fixed simulated
and real feature representations, as done by [24] or by learn-
ing a domain-invariant feature extractor, also represented by
a neural network [25], [26]. The latter has been shown to be
more effective [26], and we employ a feature-level domain
adversarial method [25] as a baseline.

e) Sequence-based Self Supervision: Sequence-based
self-supervision is commonly applied for video represen-
tation learning, particularly making use of local [27] and
global [28] temporal structures. Time-contrastive networks
(TCN) [29] utilize two temporally synchronous camera views
to learn view-independent high-level representations. By
predicting temporal distance between frames, Aytar et al.
[30] learn a representation that can handle small domain gaps
(i.e. color changes and video artifacts) for the purpose of
imitating YouTube gameplays in an Atari environment. To
the best of our knowledge, sequence-based self-supervision
for handling large visual domain gaps in sim-to-real transfer
for robotic learning have not been considered before.

III. OUR METHOD

In this section, we provide the detailed description of our
method for enabling sim-to-real transfer of visual robotic
manipulation. We propose a two stage training process. In
the first stage, state-based and vision-based agents are trained
simultaneously in simulation with domain randomization.

We then collect unlabeled robot data by executing the
vision-based agent on the real robot. In the second stage,
we perform self-supervised domain adaptation by tuning the
visual perception module with the help of sequence-based
self-supervised objectives optimized over simulation and real
world data jointly.

Our method optimizes three main loss functions: (a) LRL
is the reinforcement learning (RL) objective optimized by
the state-based and vision-based agents in simulation, (b)
LBC is the behavioral cloning loss utilized by the vision-
based agent to speed up learning by imitating the state-based
agent, and (c) LSS is the sequence-based self-supervised
objective optimized on both simulation and real robot data.
The purpose of LSS is to align the agent’s perception of real
and simulated visuals by solving a common objective using
a shared encoder.

Our system is composed of four main neural networks: (a)
an image representation encoder with parameters φ = {φi}Li
composed of L layers which embeds any visual observation
ot to a latent space as zt = φ(ot), (b) a vision-based deep
policy network with parameters θ which combines the output
of the visual encoder with the proprioceptive observations
and outputs an action, (c) a state-based policy network with
parameters τ which takes the simulation state and outputs
an action, and (d) a self-supervised objective network with
parameters ψ which takes the encoded visual observation zt
(and action at if necessary) as input and directly computes
the loss LSS . Fig. 1 presents a visual description of these
components. In the remainder of this section, we discuss
the two stages of our method and present an objective for
sequence-based self-supervision.

A. First stage: Learning in simulation

In this stage we train a state-based agent and a vision-
based agent with a shared experience replay. Our goal is to
speed up the learning process by leveraging the privileged
information in simulation through the state-based agent, and
distilling the learned skills into the vision-based agent using
a shared replay buffer. Both of the agents are trained with an
off-policy reinforcement learning objective, LRL. We use a
state of the art continuous control RL algorithm, Maximum
a Posteriori Policy Optimization (MPO) [31], which uses
an expectation-maximization-style policy optimization with
an approximate off-policy policy evaluation algorithm. As
shown in Fig. 1, the state-based agent has access to the
simulator state, which allows it to learn much faster than
the vision-based agent that uses raw pixel observations. In
essence, the state-based agent is an asymmetric behavior
policy, which provides diverse and relevant data for re-
inforcement learning of the vision-based agent. This idea
leverages the flexibility of off-policy RL, which has been
shown to improve sample complexity in a single-domain set-
ting [32]. Additionally, we also utilize the behavioral cloning
(BC) objective [33] for the vision-based agent to imitate
the state-based agent. LBC provides reliable training and
further improves sample efficiency in the learning process, as
we show in Sect. V. We additionally employ DDPGfD [34]
which injects human demonstrations to the replay buffer and
asymmetric actor-critic for our stacking experiments. Our
final objective in the first stage can be written as follows:

min
φ,θ,τ

LRL + LBC (1)

Fig. 2: Left and right pixel observations in both real and
domain randomized simulated environments.

B. Second stage: Self-supervised sim-to-real adaptation

Although our vision-based agent can perform reasonably
well when transferred to the real robot, there is still sig-
nificant room for improvement, mostly due to the large
domain gap between simulation and the real robot. Our main
objective in this stage is to mitigate the negative effects of the
domain gap by utilizing the unlabeled robot data collected
by our simulation-trained agent for domain adaptation. In
addition to well-explored domain adversarial training [25],
which we present as a strong baseline, we investigate the
use of sequence-based self-supervised objectives for sim-to-
real domain adaptation.

Modality tuning [35], freezing the higher-level weights of
a trained network and adapting only the initial layers for a
new modality (or domain), is a method shown to successfully
align multiple modalities (i.e. natural images, line drawings
and text descriptions), though it requires class labels in all
modalities. In our context, it would require rewards for the
real-world data which we do not have. Instead, we utilize a
self-supervised objective while performing modality tuning
(i.e. simulation-to-reality adaptation) which can be readily
applied both in simulation and reality. However, there is no
guarantee that this alignment learned using a LSS objective
would indeed successfully transfer the vision-based policy
from simulation to the real world. In fact, different LSS
objectives would result in different transfer performances.
Finding a suitable LSS objective for better transfer of the
learned policy is of major importance as well.

In the context of our neural network architecture, while
applying the modality tuning, we freeze the vision-based
agent’s policy network parameters θ and the encoder pa-
rameters φ except for the first layer φ1. This allows the
system to adapt its visual perception to the real world without
making major changes in the policy logic, which we expect
to be encoded in the higher layers of the neural network.
We also continue optimizing the LRL and LBC objectives
along with LSS to ensure that as φ1 is adapting itself to
solve the LSS , it also maintains good performance for the
manipulation task. In other words, φ1 is forced to adapt itself

without compromising the performance of the vision-based
agent. The final objective in the second stage is:

min
φ1,ψ

LRL + LBC + LSS (2)

Due to its wide adoption in the robotics settings, we
employ the Time-Contrastive Networks (TCN) [29] objective
for LSS in our self-supervised sim-to-real adaptation method,
though any other sequence-based self-supervised objective
can also be used here. In the next subsection we introduce
an alternative loss for LSS which makes use of domain-
specific properties of robotics, therefore potentially result in
better transferable alignment.

C. Contrastive Forward Dynamics

Time-Contrastive Networks (TCN) [29], which we use as a
baseline, and other sequence-based self-supervision methods
[30], [36], [37], mainly exploit the temporal structure of
the observations. However, with robot data we also have
physical dynamics of the real world probed by actions and
perceived through observations. In this section we describe
the contrastive forward dynamics (CFD) objective, which is
able to utilize both observations and actions by learning a
forward dynamics model in a latent space. Essentially we are
learning the latent transition dynamics of the environment
which has strong connections to the model-based optimal
control approaches [38]. Therefore we can expect that the
alignment achieved through our CFD objective potentially
better transfers the learned policy from simulation to real
world. We formally define the CFD objective below.

Assume we are given a dataset of sequences where each
sequence s = {(ot, at)}Tt is of length T . ot denotes observa-
tions and at denotes the actions at time t. Any observation
ot is embedded into a latent space as zt = φ(ot) through the
encoder network φ. Given a transition (zt, at, zt+1) in the
latent space, the forward dynamics model predicts the next
latent state as ẑt+1 = f(zt, at) where f is the prediction
network. Instead of learning f by minimizing the prediction
error ||ẑt+1 − zt+1||, which has a trivial solution achieved
by setting the latents to zero, we minimize a contrastive
prediction loss. A contrastive loss [39], [40] takes pairs of
examples as input and predicts whether the two elements in
the pair are from the same class or not. It can also be im-
plemented as a multi-class classification objective comparing
one positive pair and multiple negative pairs [41], creating an
embedding space by pushing representations from the same
“class” together and ones from different “classes” apart. In
our context, (ẑi, zi) is our positive pair and any other non-
matching pairs (ẑi, zk) where k 6= i are the negative pairs.
With CFD, we solve such a multi-class classification problem
by minimizing the cross-entropy loss for any given latent
observation zi and its prediction ẑi as follows:

min
φ,f

{
− log

e−||ẑi−zi||

e−||ẑi−zi|| +
∑
k 6=i e

−||ẑi−zk||

}
(3)

Fig. 3: Rollouts of the multi-step future predictions in the
learned latent space. For instance, ẑt+2 and ˆ̂zt+2 are one and
two step predictions of zt+2, respectively. In our experiments,
we use 5 step prediction for a trajectory length of 32.

In practice, while forming the negative pairs we pick
all the other latent observations in the same mini-batch,
which also contains observations from the same sequence.
To further enforce the prediction quality, we perform multi-
step future predictions by continuously applying the forward
dynamics model. These longer horizon predictions optimize
the same objective given in Eq. 3 where ẑi is replaced with
any multi-step prediction of zi. Fig. 3 illustrates how multi-
step predictions are obtained using a single forward dynamics
model.

IV. SIMULATED AND REAL ENVIRONMENTS AND TASKS

The primary manipulation task we have used in this work
is vision-based stacking of one cube on top of another.
However, as this is a particularly hard task to solve [21]
from pixels from scratch with off-the-shelf RL algorithms,
we studied the ablation effects of different components of our
proposed RL framework on the easier problem of vision-
based lifting instead. As lifting is an easier task, and a
required skill towards achieving stacking, we focused on the
latter for the rest of our experimental analysis in simulation
and for all our real world evaluations.

Fig. 1 shows our real robot setup, which is composed of
a 7-DoF Sawyer robotic arm, a basket and two cubes. The
agent receives the front left and right 64× 64 RGB camera
images as observations, shown in Fig. 2. The two cameras are
positioned in a way that can help disambiguate 3D positions
of the arm and the objects. In addition to these images, our
observations also consist of the pose of the cameras, end-
effector position and angle, and the gripper finger angle. The
action space of the agent is 4D Cartesian velocity control of
the end effector, with an additional action for actuating the
gripper. The real environment is modelled in simulation using
the MuJoCo [42] simulator. Fig 1 also shows the simulated
version of our environment. Unless mentioned otherwise,
all of our policies are trained in simulation with domain
randomization and a shaped reward functions.

The shaped reward function for lifting is a combination
of reaching, touching and lifting rewards. Let dgripper be
the Euclidean distance of a target object from the pinch

Training Method Task Success
Domain Randomization 46.0 %

End-to-End DANN 50.0 %
SSDA with TCN 38.0 %
DANN 50.0 %

Two-Stage SSDA with TCN (Ours) 54.0 %
SSDA with CFD (Ours) 62.0 %

TABLE I: Sim-to-real transfer performance for vision-based
cube stacking agent with unsupervised domain adaptation
using DANN, self-supervised domain adaptation (SSDA)
using TCN and CFD for the end-to-end and two-stage
methods.

Method Task Success
SSDA without Task Objective 12.0 %
SSDA with Task Objective (Ours) 62.0 %

TABLE II: Cube stacking performance on the real system for
two-stage self-supervised domain adaptation (SSDA) with
CFD optimized with and without the task objective.

site of the end effector, and ht, ho be the target height and
object height from the ground in meters. Our reach reward
is defined as rreach = 1(dgripper < 0.01), where 1 is the
indicator function. In practice we use reward shaping with
the Gaussian tolerance reward function as defined in the
DeepMind Control Suite [43], with bounds [0, 0.01] and a
margin of 0.25. Our touch reward rtouch = 1contact is binary
and provided by our simulator upon contact with the object.
Our lift reward is rlift = 1(|ht − ho| < 0.1 ∧ ho < 0.01)
and the final shaped version we use during training:
rlift shaped = rreach +

1+rtouch

2 + rlift. As before,
in practice the distance |ht − ho| is passed through
the same tolerance function as above, with bounds
[0, 0.1] and a margin of 15. For stacking we now
have a top and a bottom target objects with positions
xt,xb. If the cubes are in contact and on top of each
other, the reward is 1. Otherwise, we have additional
shaping to aid with training. More specifically, if
ho(xt) ≤ 0.025m we revert to a normalized lift reward
for the top object rstack =

rlift shaped(xt)
5 . Otherwise,

rstack = 2+rreach(xb)+1(ho(xt)>ho(xb)∨||xt−xb||2<0.07)
5 , to

account for bringing the cubes closer to each other. In
practice we set rreach(xb) = 1 if it’s greater than 0.75.

In the real world, the cubes are fitted with AR tags that are
only used for the purposes of fair and consistent evaluation
of our resulting policies: the 3D poses of the cubes are
never available to an RL agent during training or testing.
At the beginning of every episode, the cubes are placed
in a random position by a hand-crafted controller. All real
world evaluations referred to in the rest of the section are on
the stacking task and consist of 50 episodes. A real world
episode is considered a success if the green cube is on top
of the yellow cube at any point throughout the episode.
Episodes are of length 200 with 20Hz control rate for both
simulated and real environments.

Fig. 4: Cube stacking performance in simulation for two-
stage self-supervised domain adaptation (SSDA) with CFD
jointly optimized with and without the task objective.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we discuss the details of our experiments,
and attempt to answer the following questions: (a) Can
sequence-based self-supervision be used as a common auxil-
iary objective for simulated and real data without degrading
task performance in simulation? (b) Does doing so improve
final task performance in the real world? (c) How does using
sequence-based self supervision for visual domain align-
ment between simulation and reality compare with domain-
adversarial adaptation? (d) Is the use of actions in such a self-
supervised loss important for bridging the sim-to-real domain
gap? (e) What is the performance difference of modality
tuning in our two-stage approach versus a one-stage end-to-
end approach? and (f) What are the effects of the different
components of our RL framework in solving manipulation
tasks from scratch, i.e. without the shared replay buffer or
behavior cloning, in simulation?

A. Self-Supervised Sim-to-Real Adaptation

We evaluated the following methods on our vision-based
cube stacking task: domain randomization [44], unsupervised
domain adaptation with a domain adversarial (DANN) [14]
loss, and self-supervised domain adaptation (SSDA) with
two sequence-based self-supervised objectives: the time-
contrastive networks (TCN) [29] loss, and the contrastive
forward dynamics (CFD) loss we proposed in Sect. III-C. We
ablate two different training methods for domain adaptation,
end-to-end and two-stage. The end-to-end training method
simply optimize Eq. 2 from Sect. III-B with respect to all
parameters, without the two-stage procedure described in
Sect. III-B. This means that all of the losses are jointly
optimized without freezing any part of the neural network.
Two-stage training procedure is described in Sect. III and
employs modality tuning [35].

Table I shows the quantitative results from evaluating
task success on the real robot. These experiments show

Fig. 5: Ablation of techniques used in conjunction with RL
for cube lifting task in simulation. The plot shows the average
return for the lifting task with and without shared replay
buffer and behavior cloning (BC). RL from state and RL
from vision are trained only with the RL objective.

that DANN improves on top of the domain randomization
baseline by a small margin. However, end-to-end adaptation
with the TCN loss results in degradation of performance.
This is likely due to insufficient sharing of the encoder be-
tween the self-supervised objective using simulated data and
real data. On the other hand, the two-stage self-supervised
domain adaptation with TCN significantly improves over the
end-to-end variant and domain randomization baselines. This
reconfirms that modality tuning used in the two-stage training
method results in significantly better sharing of the encoder.
Finally, the two-stage self-supervised adaptation with our
CFD objective, which utilizes both the temporal structure
of the observations and the actions, performs significantly
better when compared to all other methods, yielding a 62 %
task success.

We also evaluated the importance of jointly optimizing
the RL and BC objectives in Eq. 2 for the two-stage self-
supervised domain adaptation. As one can see in Table II,
only optimizing LSS without the task objective significantly
reduces the performance. Fig. 4 further shows how the task
performance in simulation degrades when optimizing only
the self-supervised objective. In essence, by only optimizing
the self-supervised loss, the network catastrophically for-
gets [45] how to solve the manipulation task.

B. Ablations for different components of our RL framework

In order to assess the necessity and efficacy of the different
components of our framework, described in Sect. III-A,
we provide ablation experimental results. Specifically we
examined the effects of the state-based agent that share a
replay buffer with the vision-based agent, and the addition of
an auxiliary behavior cloning objective for the vision-based
agent to imitate the state-based agent. Fig. 5 shows these
effects on the cube lifting task. A vision-based agent trained
with MPO [31], the state-of-the-art continuous control RL

Fig. 6: Simulation performance on our vision-based stacking
task of our RL framework with and without behavior cloning
(BC). Using BC results in faster training that maintains
stability with the addition of auxiliary adaptation objectives.

method at the core of our framework, struggles with solving
this task, contrary to an MPO agent with access to the full
state information. By sharing the replay buffer between the
state-based agent and the vision-based agent, one can see that
the vision-based agent is able to solve lifting in a reasonable
amount of time. The addition of the behavior cloning (BC)
objective further improves the speed and stability of training.

Fig. 6 shows the even more profound effect our BC
objective has on learning our vision-based cube stacking task.
Furthermore, one can also observe the stability of the method
persists even when jointly training, end-to-end, with the TCN
loss, or the DANN loss with real world data.

VI. CONCLUSION

In this work, we have presented our self-supervised do-
main adaptation method, which uses unlabeled real robot
data to improve sim-to-real transfer learning. Our method
is able to perform domain adaptation for sim-to-real trans-
fer learning of cube stacking from visual observations. In
addition to our domain adaptation method, we developed
contrastive forward dynamics (CFD), which combines dy-
namics model learning with time-contrastive techniques to
better utilize the structure available in unlabeled robot data.
We demonstrate that using our CFD objective for adaptation
yields a clear improvement over domain randomization, other
self-supervised adaptation techniques and domain adversarial
methods.

Through our experiments, we discovered that optimizing
only the first visual layers of the policy network in com-
bination with jointly optimizing the reinforcement learning,
behavior cloning and self-supervised loss was necessary for
a successful application of self-supervised learning for sim-
to-real transfer for robotic manipulation. Finally, the use
of sequence-based self-supervised loss by leveraging the
dynamical structure in the robotic system ultimately resulted
in the best domain adaptation for our manipulation task.

REFERENCES

[1] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis-a survey,” IEEE Transactions on Robotics, 2014.

[2] U. Viereck, A. t. Pas, K. Saenko, and R. Platt, “Learning a visuomotor
controller for real world robotic grasping using easily simulated depth
images,” CoRL, 2017.

[3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in RSS, 2017.

[4] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” CoRR, vol. abs/1603.02199, 2016.

[5] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” CoRR, vol. abs/1806.10293, 2018.

[6] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[7] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” CoRR,
vol. abs/1710.06537, 2017.

[8] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” CoRR, vol. abs/1812.07252, 2018.

[9] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz,
B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert,
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba, “Learning dexterous in-hand manipula-
tion,” CoRR, vol. abs/1808.00177, 2018.

[10] G. J. Stein and N. Roy, “Genesis-rt: Generating synthetic images
for training secondary real-world tasks,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
7151–7158.

[11] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” CoRR, vol. abs/1709.07857, 2017.

[12] G. Csurka, “Domain adaptation for visual applications: A comprehen-
sive survey,” arxiv:1702.05374, 2017.

[13] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” CoRR, vol. abs/1703.06907, 2017.

[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-Adversarial Training
of Neural Networks,” arXiv e-prints, May 2015.

[15] A. Billard and D. Kragic, “Trends and challenges in robot manipula-
tion,” Science, vol. 364, no. 6446, p. eaat8414, 2019.

[16] V.-D. Nguyen, “Constructing Force-Closure Grasps,” IJRR, 1988.
[17] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”

IJRR, 2012.
[18] S. Makita and W. Wan, “A Survey of Robotic Caging and its

Applications,” Advanced Robotics, vol. 0, no. 0, pp. 1–15, 2017.
[19] S. Kolev and E. Todorov, “Physically consistent state estimation and

system identification for contacts,” in 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids), Nov 2015, pp.
1036–1043.

[20] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. D. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting
simulation randomization with real world experience,” CoRR, vol.
abs/1810.05687, 2018.

[21] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele,
V. Mnih, N. Heess, and J. T. Springenberg, “Learning by playing
solving sparse reward tasks from scratch,” in International Conference
on Machine Learning, 2018, pp. 4341–4350.

[22] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tun-
yasuvunakool, J. Kramr, R. Hadsell, N. de Freitas, and N. Heess,
“Reinforcement and imitation learning for diverse visuomotor skills,”
in Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsyl-
vania, June 2018.

[23] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adver-
sarial networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 3722–3731.

[24] R. Caseiro, J. F. Henriques, P. Martins, and J. Batista, “Beyond
the shortest path: Unsupervised Domain Adaptation by Sampling
Subspaces Along the Spline Flow,” in CVPR, 2015.

[25] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[26] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” in NIPS, 2016.

[27] B. Fernando, H. Bilen, E. Gavves, and S. Gould, “Self-supervised
video representation learning with odd-one-out networks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3636–3645.

[28] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman, “Learning and
using the arrow of time,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8052–8060.

[29] P. Sermanet, C. Lynch, J. Hsu, and S. Levine, “Time-contrastive net-
works: Self-supervised learning from multi-view observation,” CoRR,
vol. abs/1704.06888, 2017.

[30] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas,
“Playing hard exploration games by watching youtube,” in Advances
in Neural Information Processing Systems, 2018, pp. 2930–2941.

[31] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. A. Riedmiller, “Maximum a posteriori policy optimisation,”
CoRR, vol. abs/1806.06920, 2018.

[32] D. Schwab, J. T. Springenberg, M. F. Martins, T. Lampe, M. Ne-
unert, A. Abdolmaleki, T. Hertweck, R. Hafner, F. Nori, and M. A.
Riedmiller, “Simultaneously learning vision and feature-based control
policies for real-world ball-in-a-cup,” CoRR, vol. abs/1902.04706,
2019.

[33] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” CoRR, vol. abs/1709.10089, 2017.

[34] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” CoRR, vol. abs/1707.08817, 2017.

[35] Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and A. Torralba,
“Cross-modal scene networks,” IEEE transactions on pattern analysis
and machine intelligence, 2017.

[36] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn: un-
supervised learning using temporal order verification,” in European
Conference on Computer Vision. Springer, 2016, pp. 527–544.

[37] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[38] L. Grne and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms. Springer Publishing Company, Incorporated, 2013.

[39] S. Chopra, R. Hadsell, Y. LeCun, et al., “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR (1),
2005, pp. 539–546.

[40] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2. IEEE, 2006, pp. 1735–1742.

[41] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Advances in Neural Information Processing Systems,
2016, pp. 1857–1865.

[42] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[43] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Bud-
den, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and M. A.
Riedmiller, “Deepmind control suite,” ArXiv, vol. abs/1801.00690,
2018.

[44] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without
a single real image.” in RSS, 2017.

[45] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 114
13, pp. 3521–3526, 2016.

	I Introduction
	II Related Work
	III Our Method
	III-A First stage: Learning in simulation
	III-B Second stage: Self-supervised sim-to-real adaptation
	III-C Contrastive Forward Dynamics

	IV Simulated and Real Environments and Tasks
	V Experimental Results and Discussion
	V-A Self-Supervised Sim-to-Real Adaptation
	V-B Ablations for different components of our RL framework

	VI Conclusion
	References

