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Abstract— Robotic in-hand manipulation has been a long-
standing challenge due to the complexity of modelling hand
and object in contact and of coordinating finger motion for
complex manipulation sequences. To address these challenges,
the majority of prior work has either focused on model-
based, low-level controllers or on model-free deep reinforcement
learning that each have their own limitations. We propose
a hierarchical method that relies on traditional, model-based
controllers on the low-level and learned policies on the mid-
level. The low-level controllers can robustly execute differ-
ent manipulation primitives (reposing, sliding, flipping). The
mid-level policy orchestrates these primitives. We extensively
evaluate our approach in simulation with a 3-fingered hand
that controls three degrees of freedom of elongated objects.
We show that our approach can move objects between almost
all the possible poses in the workspace while keeping them
firmly grasped. We also show that our approach is robust to
inaccuracies in the object models and to observation noise.
Finally, we show how our approach generalizes to objects of
other shapes.

I. INTRODUCTION

Dexterous Manipulation refers to the ability of changing
the pose of an object to any other pose within the workspace
of a hand [1–3]. In this paper, we are particularly concerned
with the ability of in-hand manipulation where the object
is continuously moved within the hand without dropping.
This ability is used frequently in human manipulation e.g.
when grasping a tool and re-adjusting it within the hand,
when inspecting an object, when assembling objects or
when adjusting an unstable grasp. Yet, in-hand manipulation
remains a long-standing challenge in robotics despite the
availability of multi-fingered dexterous hands such as [4–6].

Controlling dexterous manipulation can be divided into
three levels [1]: (i) High-level control for task and motion
planning as well as grasp selection, (ii) mid-level control for
smoothly coordinating and sequencing manipulation phases
towards a goal pose and (iii) low-level control that tracks the
reference signal provided by the mid-level control with e.g.
force or impedance controllers. The low-level has received
considerable attention in prior work [1, 2, 7–10]. These
methods assume some prior knowledge of the geometry and
inertia of hand and object as well as of contact locations.
They can robustly control local adjustments of the object
pose in-hand. However, mid-level control is required to
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Fig. 1: (a) The proposed two-level hierarchical architecture for in-hand
manipulation. At the low level, we have three manipulation primitives that
are executed with low-level, torque controllers. At the mid-level, we train a
policy with DRL to pick a manipulation primitive and its parameterization.
(b) Visualization of the three manipulation primitives.

sequence manipulation phases and thereby to reach more
distant object poses. Compared to low and high-level control,
mid-level control is not as well studied [1, 11].

More recently, Deep Reinforcement Learning (DRL) has
been used to learn dexterous manipulation. These are typi-
cally end-to-end approaches that do not assume a division
between the low- and mid-level [12–14]. While these ap-
proaches do not require prior knowledge of hand and object
properties, policies are learned per object instance. Also,
these works are typically demonstrated on manipulation tasks
that do not require the object to be continuously held by
the hand. For example, the palm may always be facing
upwards to prevent the object from dropping [12, 13], or
the hand is manipulating an articulated object that is rigidly
attached in the world [14]. Learning to hold the object
firmly while reposing would likely require DRL methods an
even larger amount of training episodes and a very carefully
designed reward function. Nevertheless, in many real-world
manipulation tasks this is an important ability.

We are proposing a hierarchical control structure for in-
hand manipulation of objects within the entire reachable
workspace. At the low-level, we use well-studied, compliant
torque controllers per manipulation primitive. At the mid-
level, we use DRL to learn a policy that sequences manip-
ulation primitives towards a more distant object goal pose.
Through this combination, we ensure that the object is con-
tinuously held by the hand. While the low-level controllers
require prior knowledge about hand and object properties,
we show that our framework is robust against observation
noise in the object pose and inaccuracies of kinematic and
dynamic models and thereby generalizes to object variations.

We define three manipulation primitives: reposing, sliding,
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and flipping, as shown in Fig. 2. Reposing, or in-grasp
manipulation [15], refers to moving the object while keeping
the same contact configuration. Sliding and flipping change
the contact point of one finger by either sliding it along the
surface or moving it to a different side of the object. Different
contact configurations have different ranges of poses that the
object can reach. We train a policy with DRL to first reach
a feasible contact configuration of the object and then select
among these three manipulation primitives to repose the
object to the goal pose. We perform an extensive evaluation
of our approach in a simulated environment consisting of
a three-fingered hand that can change the 3DoF pose (2D
position and orientation) of pole-shaped objects. We also
show that the overall hierarchical approach is suitable for
other object shapes.

Compared to a graph search-based approach [16] and an
end-to-end baseline, our method has a significantly higher
success rate of reaching a target object pose for a pole,
especially when they are far from the initial poses and
complex finger coordination is required.

II. RELATED WORK

A. Model-based Approaches to Dexterous Manipulation

Traditional approaches towards dexterous manipulation
typically assume known kinematics, dynamics and contact
models. They devise controllers that execute primitives such
as reposing/in-grasp manipulation, finger sliding or finger
gaiting. Rus [7, 9] developed different methods of rotating
an object in a plane, involving a force-direction closure
grasp. Okada [17], Kerr and Roth [18] applied sliding and
rolling of robot fingers to manipulate objects of various
shapes using inverse kinematics. A typical challenge for
model-based approaches is to reach more distant object poses
that requires longer manipulation sequences which switch
between different primitives. To address this and plan a
sequence of primitives, early work by [19] proposed a finger
gaiting scheme based on geometrical modeling. Mordatch
et al. [20] developed a trajectory optimization method that
uses a contact-invariant cost. Fan et al. [21] developed a
two-staged planner that first plans finger gaits and then
uses a controller to move the object. However, neither of
these methods has been demonstrated to be robust to noise
and inaccurate models. Odhner and Dollar [22], Calli and
Dollar [23] propose a method to roll or slide objects in-
hand. Their method uses model-predictive control within a
visual-servoing scheme. The authors specifically focus on
underactuated hands with a low DoF while we consider high-
DOF, fully-actuated hands. Platt et al. [24] define several
conceptual states to describe the space of grasp configura-
tions and explore the manipulation behavior in the context
of a Markov Decision Process. Simpkins and Todorov [25]
developed a hierarchical control scheme that can plan ideal
forces and torques. Cruciani et al. [16], Murooka et al.
[26] formulated the manipulation problem as a graph and
generated the manipulation sequence by searching for a
path in that graph. These approaches typically make strong
assumptions like sticky contacts with infinite friction [25],

fully-known, deterministic transition models [16, 26] and a
finite state space [24], which make them less likely to cope
with real world challenges.

B. Model-Free Approaches to Dexterous Manipulation

Different from traditional methods, model-free approaches
towards dexterous manipulation use limited or no prior
knowledge of the gripper or object. They learn to control the
object through reinforcement learning typically without dis-
tinguishing between the low and mid-level. These end-to-end
learning approaches learn a mapping between observations of
the object and control commands of the robot hand. Kumar
et al. [12] developed a sample-efficient method for training
an anthropomorphic hand to rotate a cylinder. At the core,
they optimize linear-gaussian controllers via iterative-LQR.
Andrychowicz et al. [13] train object-specific DRL policies
for in-hand reposing. Van Hoof et al. [27] train a policy that
uses tactile sensory data as input. The robot learns to roll and
reorient cylindrical objects on a table. The policy is robust
to changes in the size and weight of the objects. However,
neither work requires the robot to robustly hold the object
while manipulating it as the object is typically supported by
either the upward-facing palm of the hand, a table or it is an
articulated object fixed to the environment.

Furthermore, model-free DRL has a high sample complex-
ity. To address this, [14, 28] combined imitation learning
and reinforcement learning. However, the considered tasks
are also constructed such that the object does not need to be
grasped continuously and does not easily drop outside the
reach of the hand. Learning a policy from scratch that firmly
holds an object during in-hand manipulation may require
excruciatingly high number of episodes and carefully tuned
reward function.

C. Combining Deep Reinforcement Learning With Models

We propose a hybrid framework to combine the ad-
vantages of both, traditional model-based and more recent
model-free approaches. To this end, Silver et al. [29], Johan-
nink et al. [30] propose to learn residual policies that add
corrective joint-commands to an existing controller. Thereby
they account for model inaccuracies and noise. Our method
is hierarchical in structure where the DRL policy selects
manipulation primitives to be executed by the low-level
controller, as opposed to being compositional, where the
policy and controller output are summed.

III. METHOD

We propose a method to perform in-hand manipulation of
objects with a fully-actuated hand, i.e. moving an object from
pose X0 to the target pose Xg . Specifically, we consider
the challenging problem where the object has to be held
continuously to be prevented from dropping out of reach.
We model the manipulation state with (X,C) where X is
the object pose relative to the hand, and C is the contact
configuration of the fingers relative to the object frame. Our
approach is based on the insight that this manipulation state
space has a specific structure (see Figure 2). In that space,



Fig. 2: A schematic of the object pose space {X}, contact configurations
C, grasp postures G and motion primitives. Each contact configuration C
covers a range of object poses X into which the object can be moved by the
hand via Reposing. Different Cs may have some overlapping areas in object
pose space such that Sliding or Flipping can be used to transfer between
them. The in-hand manipulation process can be considered as finding a path
between two points in {X}, while different motion primitives are needed
to move within or between Cs.

one object pose can be realized by multiple contact config-
urations. One contact configuration can move the object to
a range of poses. However, some object pose changes may
require changing the contact configuration by either sliding
on the object or flipping one finger to the other side of the
object. Moreover, flipping results in a different grasp posture
G where one finger makes new contact with a different side
of the object. For this example task, we only assume hard-
finger contacts [31] at the fingertips and precision grasps.
To navigate the structure in this manipulation state space,
we design three manipulation primitives that either repose
the object without changing the contact configuration, that
slide a finger on the object or flip a finger to another side
of the object. The last two primitives change the contact
configuration and thereby the reachable object poses.

In this section, we give details on the low-level controllers
that implement these three manipulation primitives and on
the mid-level policies that learned to select from these
primitives to move the object from the current to the goal
state. This hierarchical approach allows the robot to navigate
the complex manipulation state space and is visualized in
Figure 1 (a). While the overall idea is agnostic to the specific
manipulation task, we use pole manipulation as a running ex-
ample and show later how the idea generalizes to differently
shaped objects. Throughout, we assume full observability of
the system state and prior knowledge of inertia parameters of
the hand and object. In the real-world, the object and hand
could be visually tracked [32]. Furthermore, having access
to approximate dynamic and geometric models of hand and
object is a weak assumption and we show how our method
is robust to observation noise and model-inaccuracies.

A. Low-level controller

We implement each motion primitive with a low-level,
torque controller. Torque control is inherently more robust to
uncertainty by providing compliance. This is empirically ev-
idenced by controllers developed for locomotion and multi-
contact control [25, 33, 34].

The low-level controller receives intermediate target object
poses Xd or contact configurations Cd from the mid-level

controller. By modelling the dynamics of the hand and object,
the controllers can compute the necessary joint torques to
achieve Xd or Cd. Following [35], we express the dynamics
of the hand when making contact at each fingertip as:

Mhnd(q)q̈ + V (q, q̇) + JTλ = τ , (1)

where Mhnd(q) is the mass matrix of the hand, V computes
the centrifugal and Coriolis terms, q ∈ Rn is a vector
containing the n joint angles of the hand, J is the stacked
Jacobian for each finger tip, λ contains the contact force and
moment applied at each contact, and τ ∈ Rn is the torque
applied at each joint. Similarly, we express the dynamics of
the object as:

Mobj(X)ν̇obj −Gλ = g, (2)

where Mobj(X) is the mass matrix of the object, νobj is the
twist of object, G is the grasp matrix, which relates contact
forces to a wrench on the object. g contains the external
forces applied on the object, including gravity. Then, by
plugging Eq. 2 into Eq. 1, we have

Mhnd(q)q̈ + V (q, q̇) + JTG−1(Mobj(X)ν̇obj − g) = τ .
(3)

Note that this system has multiple solutions, and has to
adhere to additional constraints on the contact force. The
normal force λN has to be larger than 0, and the shear force
has to be smaller than µλN to prevent slipping, where µ
is the friction coefficient. To address these constraints, we
compute the null space of G, denoted as N (G), so that for
any λ0 ∈ N (G), we have Gλ0 = 0. We choose some
λ0 with a sufficient normal force component such that for
λ = λp+λ0, where λp is a particular solution in Eq. 2, the
sheer force component stays within the friction cone, thus
avoiding unintended sliding on the contact surface. We use
λ as the target contact force per contact point in Eq. 2, which
ensures that the hand holds the object firmly during motion
and in the presence of some external perturbations.

Reposing: The objective of this manipulation primitive is
to change the object pose X while maintaining the contact
configuration C. Under this assumption, there is no slip at
the fingertips, which means that the twists of the fingertips
are the same as of contact points on the objects. This yields
Jq̇ = νftips = νcontact = GTνobj . Considering the
definition of the Jacobian νftips = Jq̇, we differentiate it
and obtain ν̇ftips = J̇ q̇+Jq̈. Substituting this into (3), we
obtain:

(Mhnd(q)J−1 + JTG−1MobjG
−T )ν̇ftips+

(V (q, q̇)−Mhnd(q)J−1J̇ q̇)− JTG−1g = τ .
(4)

Given a target object state (Xd, Ẋd, Ẍd), we can com-
pute a desired fingertip acceleration ν̇ftips using a PID
controller: uftips = Ẍd +Kd(Ẋd − Ẋ) +Kp(Xd −X).
The error dynamics of this controller are exponentially stable
with suitable gain matrices. Substituting uftips for ν̇ftips in
Eq. 4 gives the appropriate actuation torque.

Sliding: The objective of this primitive action is to change
the contact configuration C by sliding one finger on the



Reposing +∆Xx, −∆Xx, +∆Xy , −∆Xy , +∆Xθ , −∆Xθ

Sliding +∆C1, −∆C1, +∆C2, −∆C2, +∆C3, −∆C3

Flipping Flip either left or right finger to the other side
TABLE I: Discretization of manipulation primitives into 14 possible actions.

object surface while keeping the other finger contacts fixed.
Given a target contact configuration Cd, we compute the
desired joint angles qd using inverse kinematics. We then
use inverse dynamic to compute the joint torque

τ = Mhnd(q)ujoint+V (q, q̇)+JTG−1(Mobj(X)ν̇obj−g),
(5)

where the control input is ujoint = −Kdq̇ +Kp(qd − q).
Flipping: The objective of this primitive action is to move

one finger off the object surface to a new contact position
while using the other fingers to hold the object. This is also
referred to as finger gaiting [15] or pivoting [3]. Compared
to the sliding action, this action is more useful when the
new contact configuration Ct+1 is far from the current one
Ct. Specifically, when manipulating a pole-shaped object,
we apply the flipping motion when moving a finger from
one side of the pole to the other side. The flipping process
can be divided into breaking contact while re-balancing the
object and making new contact on the moving object. The
flipping primitive can be triggered as a whole by the mid-
level controller (as shown in Section IV-C and IV-D) or
broken into two motion primitives for more complex objects
and triggered separately (as shown in Section IV-E).

B. Mid-level Controller

In our hierarchical structure for in-hand manipulation, we
use DRL to learn a policy that can decide the next motion
primitive and its parameters, as shown in Figure 1(a), so
that the hand can move the object to the goal pose Xg .
Given the current state S, the policy selects an action A
from a discrete set. Each action in that set corresponds to
a motion primitive with a specific choice of parameters.
Table I lists all the possible actions for moving an object in
a plane, i.e. changing its 2D position and orientation. Here,
the parameters are either the motion direction of the object
or contact or which finger to flip. The motion magnitude ∆
is fixed. Given A, the lower level uses the aforementioned
controllers to reach the provided intermediate target object
pose or contact configuration. The agent receives a reward
when it reaches the final goal.

Note that some actions will only be successful in specific
contact configurations. For example, flipping one finger can
only succeed when the two other fingers are opposing each
other, so that they can keep the object in relative balance
when the flipping finger is released. Therefore, flipping can
be successfully attempted much less frequently than reposing
and sliding. Nevertheless, the policy has to discover the
conditions for a successful flip through trial and error. To
address this, we assign a positive reward specifically for a
successful and useful flipping action, and a small negative
reward for failures. A flipping motion is useful if the new
configuration C makes it easier for the object to move
towards the goal. Specifically, flipping can be used to give

the hand more freedom to re-orient the object. Thus, if
after flipping the normal direction of the flipped finger is
aligned with the direction of Xθ

g−X
θ
t , we consider the flip

to be ‘useful’. The flipping reward also encourages contact
configurations that can make a successful flipping motion
when necessary. Another major cause for failure is losing
contact, which commonly happens when the target pose
is outside the workspace limits. To filter out those invalid
primitive choices, we design a feasibility filter that rejects
actions at states that are not feasible according to inverse
kinematics, which also returns a negative reward to the DRL
network. This filter is optional, but useful for pruning actions
from the policy’s output without changing the environment
and forcing the policy to pick feasible actions. This approach
is similar to training a policy restricted to legal actions, as
done in DQN [36] or AlphaGo [37]. It is not straightforward
to include such a filter in an end-to-end framework that
directly outputs joint torques without a notion of workspace
limits.

IV. EXPERIMENTS

In this section, we report experimental results regarding
the following questions: (i) How well does our approach
perform in-hand manipulation tasks? (ii) How robust is
our model in the presence of observation noise and model
inaccuracies on, for instance, object dimensions and weight?
And (iii) does our approach generalize to objects of different
shapes? We compare to an end-to-end and search-based
baseline. Our hypothesis is that our approach is especially
advantageous for object goal poses that require complex
manipulation sequences.

We implemented our approach in PyBullet [38] in which
a three-fingered hand has to move an object within a 2D
vertical plane from one pose to a goal pose. Downward
gravity is present. Therefore, the object has 3DoF (2D
position and 1D orientation) and has to be held during
manipulation to not drop. Each finger is fully-actuated and
has 2DoF. For the first two experiments, we use a pole-
shaped object of 50cm length and 2cm width. For the third
experiment, we use a cube.

A. Details on Training Mid-Level Policies and Baseline

We train the proposed mid-level policy using Proximal
Policy Optimization (PPO) [39] with 16 parallel environ-
ments. The observation includes joint angles q and velocities
q̇, current object pose Xt and the goal pose Xg . The reward
function is as follows

rt =


+5 if the object reaches the goal at time t,
−0.01 if the action is invalid at time t,
+1 if flipping is useful and successful.

An episode is considered successful if the object reaches a
pose close to the goal, with a translational error less than 1cm
and rotational error less than 5.7◦ (0.1 rad). Since the hand
should always firmly grasp the object, we consider dropping
the object a failure case. This happens when there is no



Succ. Rate Drop Rate Avg. Time (s)
Ours-Easy 95.4%±0.7% 3.8%±0.7% 7.1±0.2
Ours-Mid 94.6%±0.4% 3.7%±1.3% 8.9±0.6
Ours-Hard 79.3%±0.6% 15.7%±1.4% 13.4±0.3
DDPG-Easy 72.5%±13.5% 19.3%±14.2% 1.82±0.1
DDPG-Mid 61.7%±6.6% 26.8%±10.2% 1.97±0.1
DDPG-Hard 11.1%±6.8% 84.0%±10.8% 2.35±0.1
Search-Easy 91.4% 5.2% 8.1
Search-Mid 79.8% 13.6% 8.1
Search-Hard 54.4% 34.8% 8.25

TABLE II: Success rate (with standard deviation) for 500 episodes of
manipulating a pole averaged over 3 random seeds. Dropping is a common
failure case when the hand loses necessary contact to keep the object
grasped. Average time represents the real-world time to complete a suc-
cessful manipulation sequence. Experiments are conducted in three groups
with an increasing level of difficulty.

contact on one of the sides of the object. It is also a failure
if the hand does not reach the goal within a time limit.

We test the effectiveness and robustness of our method
in comparison to an end-to-end policy trained using Deep
Deterministic Policy Gradient (DDPG) [40]. This policy
operates in the same simulation environment and directly
outputs joint torques without encoding any structural priors
in the form of traditional controllers or the dynamics of
the system. We chose DDPG as it has been shown to work
well for continuous control tasks, and for complex dexterous
manipulation [14, 28]. The reward function is sparse with
+5 when reaching the goal otherwise 0. Both policies are
represented by 3 fully connected layers with 256 units.

We also compare to a search-based baseline [16]. For this,
we build a graph by discretizing the feasible object poses
X and contact configurations C. To trade-off computational
complexity and precision, we empirically choose a grid
resolution of 2cm and 0.2rad for X and 5cm for C. The
grid cells form the nodes in the graph. The edges between
neighboring nodes correspond to the manipulation primitive
that connects them. In-hand manipulation is then equivalent
to finding a path from the current pose to the goal pose using
Dijkstra’s algorithm [41].

B. Dataset

To train our model on reachable goals, we collect a
comprehensive dataset of the object’s initial poses X0 and
goal poses Xg . We divide the dataset of (X0,Xg) pairs into
three groups: Easy, Medium, and Hard Goals. In the Easy
Goal group, X0 and Xg are in the range of the same contact
configuration C. Therefore, the goal can be reached by only
using reposing. The Medium Goal group contains pairs X0

and Xg that are within the same grasp posture G. Only
sliding and reposing may be required to reach the goal pose.
The Hard Goal group includes pairs of arbitrary (X0,Xg)
pairs, some of which require flipping to be successful.

C. Reaching Desired Object Poses

We evaluate the performance of our method on the task of
moving the object to desired goal poses and compare to an
end-to-end and search-based baseline. We report results in
Table II. Our method has a consistently higher success and
lower dropping rate. The gap to the baselines is especially
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Fig. 3: Snapshots of some example episodes when manipulating the pole
to the goal pose. The goal pose is indicated in red and the initial contact
points are indicated in blue. The upper episode shows the medium goal and
the lower episode shows the hard goal.

high for the hard goals. In fact, the end-to-end method fails
almost all cases when flipping is required. The results indi-
cate that our hierarchical method has significant advantages
when a complex manipulation sequence is required.

An advantage of the end-to-end method is that the re-
sulting policies yield much faster manipulation sequences as
can be seen in the supplementary video. The agent learns to
exploit the fast dynamics of the object and frequently pushes
it so that it is flying towards the goal pose. However, these
dynamic manipulation behaviors will hardly be robust when
implemented on a real robotic hand and just as in simulation
will likely result in the object being dropped frequently.
Since our method uses pre-defined motion primitives for
manipulation, it does not learn these fast behaviors. However,
it will drop the object less often. In the next section,
we also show that the overall approach is more robust as
the traditional, compliant torque controllers can cope with
some observation noise, external perturbations and modelling
errors. We expect this robustness to translate to the real world
as well. Another advantage of the end-to-end method is that
it can flexibly choose the contact points on the hand and
exploit other links of the fingers for manipulation than just
the tips. While our method does this to some extend, we aim
to explicitly add more manipulation primitives and possible
contact points on the finger links.

Also the search-based baseline cannot achieve as high of
a success rate and as low of a drop rate compared to our
approach. A major disadvantage of the search-based method
is that its computational complexity grows in O(n6) with an
increasing resolution of X and C. For example, the number
of nodes can grow to 109 with a 1cm position resolution and
0.1rad angle resolution for the medium goal tasks. However,
a lower resolution results in a lower accuracy and therefore
in a lower planning performance. For example, the flipping
primitive is hard to put in a low-resolution graph because
this primitive is conditioned on the two fingers that remain
in contact oppose each other.

One limitation of our method is the fixed step size of
the manipulation sequence. It may be too small in the early
stages of motion, and too large when being already close to
the goal. In future work, we will explore continuous mid-
level controllers or adaptive step sizes.



Training & Testing Trained Obj. Heavier Lighter Thicker Thinner Longer Shorter
Without noise εx,y,θ 94.4% 94.4% 95.8% 91.8% 94.2% 91.8% 95.2%

With noise εx,y,θ 93.2% 92.4% 94.6% 94.4% 91% 89.2% 92.6%

TABLE III: Success rate for inaccurate object models (geometry and dynamics) and/or observation noise. Experiments are done with the medium goal
group. The first row shows results for the model that is trained and tested without observation noise. The second row reports results for the model that is
trained and tested with observation noise.

D. Robustness Analysis

In this section, we evaluate the robustness of our method
in the presence of observation noise and inaccurate models
of the object’s geometry and inertia properties. Different
from end-to-end models (which typically train one policy per
object), traditional controllers require some prior knowledge
on the robot hand and object. In the real world, object pose
estimation may be noisy and the object and hand models may
be inaccurate. A successful manipulation method should be
robust to these real-world effects.

We evaluate the robustness of our method by adding
observation noise to the object pose Xt and by changing
the geometry and inertia parameters of the object from the
training conditions. We designed the dynamic controller and
trained the DRL mid-level controller as described in Sec-
tion IV-C (Trained Obj.), and test it on poles that are heavier
or lighter (1.1x/0.9x mass), thicker or thinner (1.5x/0.5x
width), and longer or shorter (1.1x/0.9x length). In the second
experiment, we add uniformly distributed observation noise
to the object pose Xt with error bounds of [−0.5, 0.5] (cm)
in translation and [−2.86, 2.86] (deg) in rotation. In Table III,
we report the success rate of 500 evaluation trials on each of
these perturbations. The result shows that our method is very
robust to the inaccuracy of the object model as the perfor-
mance is almost the same. When there is observation noise
in the system, the success rate drops a few percentage points
but the system still performs well. Observation noise leads
to error in the computed contact configurations and thereby
adds noise to the low-level dynamic controllers. However,
two factors make our approach robust to this. First, the mid-
level controller takes state feedback into account at every
step and is therefore able to react to unexpected changes.
Second, torque control is inherently robust to uncertainty
due to compliance. For some cases when one finger makes
pre-mature contact, the torque will be achieved earlier than
expected and the finger will compliantly give in.

E. Manipulating a cube

Lastly, we test whether the overall approach of combin-
ing learned policies with the three available manipulation
primitives generalizes to objects that are not pole-shaped.
We consider a cube (Fig. 4) as an example. Compared to
poles, the cube is shorter (side length of 10cm) and has 4
edges instead of 2, and therefore has more grasp postures
G. Ideally, the mid-level controller should learn how to
choose the motion primitives and parameters, especially for
flipping. But for the sake of faster training for this proof
of concept with a small object, we disable sliding since
it has a limited benefit on expanding the range of object

0 sec 12 sec 45 sec 55 sec

0 sec 4 sec 10 sec 18 sec
Gravity

Fig. 4: Examples for manipulating a small cube. The goal pose is indicated
in red.

poses. We also decompose flipping into two stages: releasing
and landing. In the experiment, we choose one initial object
pose X0, and sample any reachable pose X in the range
as the goal pose. On a test set of 500 episodes, our method
achieves a success rate of 71.4%, and a dropping rate of
20.8%. The average running time is 7.8s. The results show
that our overall approach can be generalized to objects of
varying shapes. When inspecting the manipulation behaviour
(see supplementary video), we find that releasing is often
used because it is easy to balance a short object with two
fingers. The mid-level controller learned to use the two-
fingered primitives to manipulate the cube in most of the
cases, because those two finger configurations cover a larger
range of object poses X , and they can balance the small
cube well.

V. CONCLUSION

We proposed a hierarchical approach to robotic in-hand
manipulation, and evaluated our method in simulation with
a 3-fingered hand that moves a pole-shaped object in a
plane. For the low-level control, our method uses model-
based, torque controllers that require some prior knowledge
on geometry and inertia of hand and object. They control a
set of manipulation primitives. We proposed to learn a mid-
level controller with DRL to generate a sequence of these
primitives for reaching a distant object goal pose. Using this
hierarchical architecture, that it significantly outperformed an
end-to-end and search-based baseline while also dropping
the object less often. In particular, our approach is better
for more distant object goal poses that require complex
manipulation sequences. We also showed that our method
is robust to observation noise and inaccuracies of the object
models in geometry and inertia properties. We also showed
how the overall approach can be generalized to objects
with different shapes. As future work, we aim to extend
the number of manipulation primitives and possible contact
points. We also aim to test the approach on a dexterous hand,
first in simulation and then in the real world.
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