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Abstract— We propose an online incremental learning ap-
proach through teleoperation which allows an operator to
partially modify a learned model, whenever it is necessary,
during task execution. Compared to conventional incremental
learning approaches, the proposed approach is applicable
for teleoperation-based teaching and it needs only partial
demonstration without any need to obstruct the task execu-
tion. Dynamic authority distribution and kinesthetic coupling
between the operator and the agent helps the operator to
correctly perceive the exact instance where modification needs
to be asserted in the agent’s behaviour online using partial
trajectory. For this, we propose a variation of the Expectation-
Maximization algorithm for updating original model through
mini batches of the modified partial trajectory. The proposed
approach reduces human workload and latency for a rhythmic
peg-in-hole teleoperation task where online partial modification
is required during the task operation.

I. INTRODUCTION

Since Ray Goertz first proposed a pantograph-based me-
chanical teleoperation system [1], there has been a lot of
progress in teleoperation. In early days, teleoperation systems
have been limited to applications where human’s physical ac-
cess is limited, which includes deep underwater, outer space,
and nuclear power plants [2]. However, the recent advance-
ments in human-computer interfaces and artificial intelli-
gence technology have broadened its application domains [3,
4] to more general areas including telerobotic surgery, treat-
ments and diagnosis [5], robotic gripping/grasping [6, 7],
search and rescue (SAR) [8], and robotic rehabilitation [9].

Teleoperation tasks often require highly trained operators
and high mental workload as the complexity of the teleoper-
ation task increases and more general applications get intro-
duced [10]. Shared teleoperation [11], which combines local
autonomy with direct teleoperation, can relieve operator’s
mental burden by shifting some of the workload, especially
related to repetitive tasks, from the operator to the local
autonomy of the slave.

There were efforts to shift repetitive tasks from a human
operator to an artificial agent by Learning from Demonstra-
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tions (LfD) through teleoperation [12, 13, 14]. Although the
LfD through teleoperation showed possibility of relieving
operator’s workload at least for repetitive tasks, a slight
change in the task or the environment requires retraining
from the beginning, which can be time consuming and
computationally expensive. The human operator in parallel
with an agent can handle these variations in a task or the
environment [15], hence avoiding task failure. But, due to
the active participation of the human operator on the control
layer with the agent, the issue of operator’s heavy mental
workload still remains prevalent.

In such a case, incremental learning using human demon-
strations helps in updating the already learned task [16,
17, 18]. In [19], the authors update the model incremen-
tally through an iterative Expectation-Maximization (EM)
algorithm, and in [20] local data points were utilized for
incrementally learning a new model at each time step in a
simulated environment. However, even for partially modify-
ing the behaviour of the initially learned agent, a completely
new full trajectory has been required and the model was up-
dated offline once the full demonstration is terminated [21].
Moreover, as can be noted in the aforementioned studies,
both the robot and the human demonstrator were physically
co-located to incrementally update the learned model [22].
While [23] allows learned model’s autonomous refinement
through shared teleoperation, but it requires multiple task
demonstrations from the human operator to assert a modifi-
cation which can be both a bit costly and cumbersome.

One of the major limitations of the conventional incre-
mental learning approaches (even though most of them
are limited to kinesthetic teaching) is that they do not
support updating the agent’s behaviour through a partial
demonstration without any obstructions. Especially, for a
partial modification in repetitive tasks, e.g. when one bolting
position out of ten is changed, model update on the fly would
provide large benefit; the task does not need to be obstructed
especially when it is highly time critical, also we can
maintain the quality of already well-trained model. However,
the impact of partial demonstration on incremental learning
has been understudied, particularly for rhythmic/repetitive
tasks. Oftentimes, a complete new demonstration is not even
needed (as only a part of the motion is needed to be updated)
or even available [13]. Although there was a research effort
to carry out an online model refinement through kinesthetic
teaching [24, 25], there have been no prior investigations
into an online model update especially through a partial
teleoperated demonstration without obstructions.

In this paper, we propose an online incremental learn-



ing approach using mini batches of the partial teleoper-
ated demonstration to run a single round of a modified
EM algorithm to incrementally update a learned model for
rhythmic tasks. In order to provide a tool for the human
operator to supervise and partially modify a learned model
online through teleoperation, we use Dynamic Authority
Distribution (DAD) along with kinesthetic coupling between
operator and agent [26] and modify the EM for mini-
batched, localized retraining through partial demonstration.
This allows handling slight changes in the task or the
environment on the fly without any task obstructions. To the
best of authors’ knowledge, there has been no prior research
on a teleoperation-based mini-batched incremental learning
approach via DAD and kinesthetic coupling.

In addition to DAD, kinesthetic coupling helps the oper-
ator to correctly perceive the precise instance for modifying
the agent’s behaviour. Moreover with our approach, the
operator’s role is elevated to that of a supervisor, where
he/she intervenes only when a need arises to modify the
agent’s motion.

The major contributions of this work are:
• proposing a novel incremental learning approach for

partially retraining a rhythmic task on the fly with-
out any obstructions in the task execution using mini
batches of a partial teleoperated demonstration trajec-
tory,

• modifying the EM algorithm where the Expectation step
(E-step) includes the probability along the phase vari-
able in order to account for the correct assignment of the
responsibilities of the relevant Gaussian components,
and finally

• reducing human operator’s workload through supervi-
sory teleoperation using DAD and kinesthetic coupling
between human and the artificial agent.

II. GENERATING INITIAL LEARNED MODEL

This section describes how we remotely teach a robot
a task through teleoperation for generating an agent’s be-
haviour. In this work, we encode the agent’s initial behaviour
using Gaussian Mixture Model (GMM), from a single
teleoperated demonstration. A GMM with k components
is parameterized by Θ(k) = {πm,µm,Σm}km=1 where
π1, . . . , πk are mixing coefficients (priors), µ1, . . . ,µk are
mean vectors and Σ1, . . . ,Σk are covariance matrices. The
probability density function of X is said to follow the k-
component GMM if it can be written as P(X|Θ(k)) =∑k
m=1 πmN (X;µm,Σm), subject to the constraints 0 <

πm < 1 and
∑k
m=1 πm = 1. The dataset for each Degree-of-

Freedom (DOF) is created by concatenating the teleoperated
demonstration trajectory with the phase variable:

X =
(

x1, . . . , xT
)

=

(
s1 . . . sT
y1 . . . yT

)
The phase variable s is an exponentially decaying function
from 1 to 0 for a discrete motion and a linearly increasing
value with a single phase cycle from 0 to 2π for a rhythmic

motion. A single phase variable is utilized for synchroniza-
tion of multiple DOFs. The standard EM algorithm is utilized
for fitting the data [27]. EM is an iterative optimization
approach for estimating the maximum likelihood value of the
parameters of a probabilistic model with hidden variables.
In the E-step, the expected values of the incomplete terms
appearing in likelihood maximization are calculated by using
the old parameters estimate:

ht+1
i,k =

πtkN (xi;µtk,Σt
k)

K∑
l=1

πtlN (xi;µtl ,Σt
l)

where h is referred to as the responsibility term. For a rhyth-
mic motion, s is mapped in the interval [µik−π,µik +π] for
calculating valid probabilities for the kth GMM component.
These expectations are then utilized for updating the model
parameters in the Maximization step (M-step):

πt+1
k =

T∑
i=1

ht+1
i,k

T
, µt+1

k =

T∑
i=1

ht+1
i,k xi

T∑
i=1

ht+1
i,k

Σt+1
k =

T∑
i=1

ht+1
i,k (xi − µt+1

k )(xi − µt+1
k )

>

T∑
i=1

ht+1
i,k

+ εI

where εI is the regularization term for avoiding overfit-
ting/singularities. If the µt+1

k moves outside the [0, 2π] range,
it is wrapped back in the interval [0, 2π]. The EM iterations
continue until the change in log-likelihood becomes very
small.

Now for retrieving yi for a given si value, Gaussian
Mixture Regression (GMR) [28] is utilized, where yi is the
GMR output. In GMR, input and output variables for each
component are represented separately:

µk =

[
µIk
µOk

]
,Σk =

[
ΣI
k ΣIO

k

ΣOI
k ΣO

k

]
For a given input variable xI , the expected value of xO is
calculated as:

E(xO|xI) =

K∑
k=1

hkx̂k

with hk =
πkN (xI ;µIk,ΣI

k)∑K
l=1 πlN (xI ;µIl ,ΣI

l )

x̂k = µOk + ΣOI
k (ΣI

k)
−1

(xI − µIk)

III. MINI-BATCHED INCREMENTAL LEARNING
THROUGH TELEOPERATION

This section describes our proposed online incremental
learning method through teleoperation. In order to modify
an already learned agent’s behaviour using mini batches of a
partial trajectory on the fly, we have implemented a modified
version of DAD method with kinesthetic coupling.



A. Dynamic Authority Distribution Between Human and
Agent

This subsection explains the vital tool for human operator
to modify a learned motion partially whenever it is required,
by allowing human to take control from agent temporarily
to define a partial demonstration through supervisory teleop-
eration. For this, we modify DAD [26] in a novel human-
agent teleoperation setting. In DAD, control authority over
the slave is dynamically distributed.

In this paper, the DAD asserts that the human drives the
authority flow in case he/she wants to take authority or give
it back to the agent. To identify the intention of human, we
introduce a one-way energy-monitoring concept, observing
inflows and outflows of energy from the operator. For each
time interval ∆T , we monitor:

Eopi (k) =

k∑
n=1

~F opi (n)~V opi (n)∆T

∆Eopi (k) = Eopi (k − 1)− Eopi (k)

where ~F opi , ~V opi are the force and velocity values of the
master device respectively, i is the axis of motion, Eopi (k)
is the cumulative energy and ∆Eopi (k) is the energy at time
step k. At each k, ∆Eopi (k) determines whether the operator
is generating energy or not. Whenever the operator starts
generating energy, this translates to the physical sense, that
the human wants to gain control in order to modify the cur-
rent region of agent’s motion through a partial demonstration.
Alternatively, when the operator’s energy starts reducing, this
translates to his/her intention to give up authority over slave,
thereby indicating the end of the modification:

ni =


ni + 0.01 if∆Eopi > 0

ni − 0.01 if∆Eopi < 0

ni otherwise

To update the operator’s authority based on the aforemen-
tioned energy-monitoring, adaptation law in [26] is applied:

γi = 0.5 + 0.4× tanh(ni) (1)

where γi is the operator’s dominance in the ith axis. Equa-
tion (1) keeps γi within (0.1, 0.9) for a fast converging and
slowly returning control transition between human and agent.
The desired control input to the slave ~Vsd having DAD is:

~Vsd = Wγ
~Vop + (I −Wγ)~VAgent

where Wγ = diag{γx, γy, γz}, ~Vop and ~VAgent represent
velocities of operator and agent, respectively (see Fig. 1).

B. Kinesthetic Coupling

This subsection explains the role of kinesthetic coupling.
In order to modify the agent’s original behaviour on the
fly, the operator needs to understand the agent’s intended
motion correctly and to perceive the right instance to assert
and assent control. For this, not only visual but also haptic
feedback is essential. In our DAD, when the human operator
is controlling the slave, then the interaction force from the

Fig. 1: DAD and kinesthetic coupling between human and
agent. The black, blue and yellow arrows depict the flow of
control, the feedback and kinesthetic coupling forces for the
human, respectively. The red dotted line represents DAD.

slave is fully felt by the human. But when the human is
simply following the agent’s behaviour by yielding to its
force, then the agent’s coupling force is felt by the human
and there is no significant interaction force felt by the human.
This is shown in (2). This way, operator is able to assess
how much force to assert to gain control of the slave when
sharing control with the agent. In other words, the operator’s
dominance, Wγ is directly proportional to the interaction
force from the slave and inversely proportional to the agent’s
kinesthetic coupling force:

~Fop = ~F cop + ~F sop = (~VAgent − ~Vop)(I −Wγ) + ~FsWγ (2)

where the interaction force, ~Fs, is fed back to operator
as ~F sop (see Fig. 1). ~F cop is the kinesthetic coupling force
that gives human substantial hints about agent’s motion to
allow him/her to modify the task precisely in regions where
intended, without distorting the whole motion.

C. Modified EM Algorithm for Partial Demonstration

This subsection describes our modified EM algorithm,
in order to retrain the learned model based on the partial
information of trajectory provided by the human whenever
the dominance goes beyond a prescribed threshold (0.7).

As mentioned earlier, existing EM approaches for incre-
mental learning require a complete new demonstration for
updating the learned agent’s parameters. EM is an iterative
process which is computationally expensive. That is why
existing EM-based approaches have been applied only for
discrete tasks. In addition to these limitations of existing
retraining approaches, there can also be numerical instability
issues in encoding while using partial data. In conventional
LfD, the GMM components are usually concentrated around
the initial demonstration and it is possible that during the
incremental learning, the new data points coming through
the partial trajectory are far away from the already learned
GMM. Since Gaussians are exponentially decaying func-
tions, there’s a possibility that for the new data points
they have almost equal or near to zero probability density
function (pdf) values for all Gaussians. This could lead to an
equal responsibility assignment for new data points (modified
trajectory) in the conventional incremental learning setting.



For our incremental learning algorithm, we propose a
variation of the EM algorithm for taking partial teleoperated
demonstration to update learned model parameters without
any interruptions during task execution. Firstly, we only
execute a single iteration of our modified EM algorithm
for each small batch of newly recorded partial data points.
Due to the single iteration of the proposed EM, we can
perform the model updates in an online manner, while the
system continues its operation. Secondly, we propose a
modified responsibility term calculation in the E-step, where
the probability along the input variable (phase variable) is
also added in the responsibility term. Hence, the modified
E-step considers the sum of 2 Gaussian distributions. This
additional term - pdf value for the input variable xIi in (3)
- helps in assigning the new data points to the relevant
Gaussian components, which is closest in terms of the
phase variable, and can also help to deal with the case of
significantly deviated new demonstrations:

E-step

ht+1
i,k =

πtk
(
N (xi;µtk,Σt

k) +N (xIi ;µ
I,t
k ,ΣI,t

k )
)

K∑
l=1

πtl
(
N (xi;µtl ,Σt

l) +N (xIi ;µ
I,t
l ,ΣI,t

l )
) (3)

where N (xIi ;µ
I,t
k ,ΣI,t

k ) is the pdf of the phase variable s.
In the M-step, the model parameters are updated using

the subsets of the new data points. We only update means
and covariances of the learned model, since priors cannot be
updated given only partial spatial information of the whole
trajectory. The model parameters are updated by utilizing a
weighted combination of the original model parameters and
the additional information conveyed by the new data points:

M-step

µt+1
k =

T∑
i=1

ht+1
i,k xi + αµtk

T∑
i=1

ht+1
i,k + α

Σt+1
k =

T∑
i=1

ht+1
i,k (xi − µt+1

k )(xi − µt+1
k )

>
+ αΣt

k

T∑
i=1

ht+1
i,k + α

+ εI

where α is the mixing weight for the original model.

IV. EXPERIMENTS

For the experimental evaluation of our proposed approach,
the setup consists of a 3-DOF SensAble PHANToM Omni as
a master device and a 3-DOF PHANToM Premium 1.5A as
a slave device. The pair of master and slave devices run on
the same computer and are operated at a control frequency of
1kHz. A web-camera streams the visual feedback from the
slave environment to the human operator, as illustrated in Fig.
2. The camera position and the lack of depth information in
the two dimensional camera images introduce a perspective
distortion which inhibits a clear visual perception for the

(a) Slave: Original task

(b) Slave: Modified task (c) Master: Modified task

Fig. 2: (a) Slave side for the original task setting. The
behaviour of the learned agent constitutes insertion into the
four holes of the rig, from 1 through 4. (b) Slave side for
the modified task setting with the first hole blocked and (c)
master side for the modified task.

operator. Herein, the y-axis motion is DAD enabled for incre-
mental modification on the fly, whereas the rest of the DOFs
are fully controlled by the agent. The proposed incremental
learning approach through teleoperation can scale to arbitrary
number of DOFs, but for simplicity we show here the results
for only one DOF (that is, for y-axis). The haptic feedback
from the kinesthetic coupling between the human operator
and the agent increases the awareness for the human about
the agent’s intended motion. An aluminum plate with 4 holes
is placed under the slave to serve as the task rig for the peg-
in-hole task. Two task settings, original and modified tasks
(see Fig. 2) are considered for evaluating the performance of
our proposed mini-batched incremental learning method:

Fig. 3: Top: Teleoperated demonstration of y-axis for original
task. Middle: Learned model along with its reproduced
trajectory. Bottom: Behaviour of updated models after each
incremental learning round for each batch of the new data
points. The green and orange trajectories are the behaviours
after the first and second increments and the red one indicates
the behaviour after the last increment of the original model.



Fig. 4: Top: Operator’s dominance. The dashed horizontal line indicates the defined threshold (0.7) for acquiring new data
points for incremental learning. Bottom: Operator’s, agent’s and slave’s motion trajectories in red, green and blue colours,
respectively, for the consecutive cycles of motion. Gray regions 1, 2 and 3 indicate the regions of interest for task modification.
Dashed vertical lines indicate the boundary of consecutive cycles of the peg-in-hole task.

1) Original Task: One execution cycle of the agent’s
original behaviour constitutes insertion of the slave end-
effector into four holes of the rig in clockwise direction,
while starting and ending above the same hole (see Fig. 2a).
The task repeats itself after each execution cycle (since it is
rhythmic). Agent learns this four-hole insertion task first.

2) Modified Task: In order to introduce a slight modi-
fication in the learned agent's original behaviour, the task
setting is changed to three holes, with the first hole in the
original task blocked (Fig. 2b, 2c). Now the operator has to
intervene to take authority of the y-axis on the fly to restrain
the insertion into the first hole to incrementally modify this
region of agent’s behaviour.

A. Results
For encoding the original behaviour of the agent, a human

operator performs a single teleoperated demonstration of the
peg-in-hole task. The position of the slave’s end-effector is
utilized as an input to the learning algorithm. The y-axis
of the teleoperated demonstration is shown in Fig. 3 (top).
The fitted GMM (original model) along with the reproduced
motion for the same axis is also shown in Fig. 3 (middle).

Fig. 4 shows the result of consecutive motion cycles of the
human, agent and the slave device. The three gray regions of
interest, where the human has to modify the original model’s
behaviour to account for the first hole’s blockage, are marked
as 1, 2 and 3, while the end and start of the adjacent motion
cycles are marked with dashed vertical lines. In the first
cycle, before the blockage is introduced, the human operator
has minimal effect on the slave's motion, as can be seen by
his/her dominance value in Fig. 4. Thus the slave follows the
agent's original motion during the first cycle. Before the end
of the first cycle, the first hole is blocked (modified task).
Now at the start of the second cycle, within region 2, the
operator asserts force against the agent to intervene and raises
the end-effector above the first hole (see Fig. 2c). This results
in an increase in the human’s energy and hence an increase

in the operator’s dominance in this region. Now this prohibits
the insertion of slave into that hole while this partially
modified behaviour is learned by the agent on the fly through
our proposed incremental learning method. Whenever the
human operator’s dominance crosses a predefined threshold
(marked with the dashed horizontal line in Fig. 4), the spatial
data points along with their corresponding phase variable
values are utilized and fed into the incremental learning
algorithm in mini batches. Hence, each batch of the non-
contiguous modified data points is passed for performing
a single round of our proposed EM. In our experiments,
we’ve set the batch size to 3000 data points while α and
the dominance threshold have been set heuristically to 10
and 0.7, respectively. Investigating optimal values for these
metaparameters has been left for future research.

Table I shows how updating GMM parameters using
one batch of 3000 data points compares temporally to the
conventional approach of full demonstration (demo.) based
model update. In the table, Total time is the time taken
since modified data points are recorded, up until the model
parameters are updated. Idle time is the time taken by the
respective EM algorithms to run their course. As can be
seen, the proposed EM algorithm updates the model using
a single batch of the partial demonstration during the same
control loop (0.001 second), while for the full demonstration,
the conventional EM takes 194 iterations before updating
the model, thereby keeping the system continue with the
originally learned behaviour until then.

During the incremental learning phase in the second cycle,
agent’s erratic behaviour can be observed in region 2. This
is because of the multiple updates of the model parameters
for each subset of 3000 data points recorded whenever
the dominance threshold is surpassed. The same erratic
behaviour is not followed by the slave, since the human
has high control authority (dominance threshold surpassed)
during that period, and hence the effect on the slave device.



Fig. 5: Overall workload index of a modified peg-in-hole
task with: Teleoperation without incremental learning, incre-
mental learning without kinesthetic coupling, compared with
the proposed incremental learning with kinesthetic coupling.
Error bars indicate the minimum and maximum values.

Once the agent is modified, the human gives back his/her
authority to the agent, letting agent again control the rest
of the motion execution. Now, if we observe the agent’s
behaviour in region 3, the insertion into the first hole is
inhibited (through elevation), as it can be easily compared
with the original behaviour in region 1 during the first cycle.

The behaviour of the generated models after each mini-
batched update can be visualized in Fig. 3 (bottom). The
effect of the first model update using the first batch of new
3000 data points is shown in green while the transition
from green to red shows the behaviour of subsequent model
updates that happened during the second cycle. It is clearly
visible that the incremental learning only affects the agent's
behaviour locally in the region of modification, while keep-
ing the other parts of the behaviour intact, thereby ensuring
the desired partial modification of the original model using
mini batches.

B. Workload Index

In order to show the advantage of using our proposed
incremental learning approach through partial teleoperated
demonstration, we experimentally compare and analyze its
performance against other settings to evaluate it for ease of
task execution.

For this purpose, nine engineering students, both male
and female, ages ranging from 22 to 32, participated in
performing 3 cycles of each of the three types of experi-
ments: Human-agent shared teleoperation without incremen-
tal learning [15, 10] with DAD and kinesthetic coupling,
human-agent supervisory teleoperation with the proposed
incremental learning without kinesthetic coupling (~F cop = 0
in (2)), and human-agent supervisory teleoperation with the

TABLE I: Latency comparison - full demonstration vs. mini-
batched incremental learning

Total time (sec) EM iteration(s) Idle time (sec)
Full demo. 46.692 194 24.592
Mini-batch 3.000 1 0.001

proposed incremental learning and kinesthetic coupling (our
proposed approach). The NASA-TLX subjective assessment
in terms of the overall workload [29] is shown in Fig. 5 for
each of the three above-mentioned experimental settings. The
proposed approach ranked subjectively to have the lowest
index of workload. The subjects reported that they felt
complete ease at having to only intervene once for a small
region of the task to merely modify it in case of a slight task
change. Also, they felt more at ease to just supervise over
the agent with minimal interference. For the case of human-
agent shared teleoperation without our proposed incremental
learning, subjects commented on the difficulty of operation
since they had to assert force and operate manually during
each cycle of the motion, in order to account for a slight
change in the original task. It is important to mention that
the role of kinesthetic coupling during incremental learning
made a large difference in the subjective study. For the
proposed incremental learning approach without kinesthetic
coupling between the human and the agent, the subjects had
difficulty in modifying the task, as compared to our proposed
approach with kinesthetic coupling. Subjects reported that
there were no movement hints from the agent when they
needed to exchange authority on the fly, therefore they had
to assert unnecessarily large forces for taking authority. Also,
for giving back authority to the agent, the subjects had
to rely only on visual feedback of the slave in order to
deduce the agent’s intended motion, which mostly resulted in
abrupt jerks and oscillations. Hence, this confirms that our
proposed incremental learning approach through teleopera-
tion having kinesthetic coupling reduces operator’s workload
while ensuring intuitive and precise modification of a learned
behaviour online.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an online incremental
learning approach through a partial teleoperated demon-
stration. The proposed method allows an operator to par-
tially modify the learned model online without stopping
the rhythmic task execution. DAD between human and
agent helps the operator to supervise the agent’s motion
and intervene dynamically only when a partial change in
the original behaviour is needed, given a slight change of
the task. The proposed variation of EM for incremental
learning enables mini-batched model updating on the fly.
Results show significantly reduced operator’s workload and
latency for the proposed mini-batched approach. The appli-
cation of the presented approach can be expanded to many
other useful areas, for example, where a repetitive motion
of an industrial manipulator requires partial modifications
during its execution without stopping the task. Therefore,
this approach can potentially save both time and cost which
would be incurred in case of a downtime retraining. Although
we did not find our proposed approach very sensitive to
the choice of metaparameters empirically, automatic tuning
of the metaparameters could be investigated to find an
optimized combination of them as an extension of the current
work in the future.
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