
Planning with Selective Physics-based Simulation for Manipulation
Among Movable Objects

Muhammad Suhail Saleem1 and Maxim Likhachev1

Abstract— Use of physics-based simulation as a planning
model enables a planner to reason and generate plans that
involve non-trivial interactions with the world. For example,
grasping a milk container out of a cluttered refrigerator
may involve moving a robot manipulator in between other
objects, pushing away the ones that are movable and avoiding
interactions with certain fragile containers. A physics-based
simulator allows a planner to reason about the effects of
interactions with these objects and to generate a plan that
grasps the milk container successfully. The use of physics-based
simulation for planning however is underutilized. One of the
reasons for it being that physics-based simulations are typically
way too slow for being used within a planning loop that typically
requires tens of thousands of actions to be evaluated within a
matter of a second or two. In this work, we develop a planning
algorithm that tries to address this challenge. In particular, it
builds on the observation that only a small number of actions
actually need to be simulated using physics, and the remaining
set of actions, such as moving an arm around obstacles, can
be evaluated using a much simpler internal planning model,
e.g., a simple collision-checking model. Motivated by this, we
develop an algorithm called Planning with Selective Physics-
based Simulation that automatically discovers what should be
simulated with physics and what can utilize an internal planning
model for pick-and-place tasks.

I. INTRODUCTION

With the research focus in most domains shifting towards
real-world problems, there have been considerable efforts
in developing accurate physics-based simulators. Modern-
day simulators are capable of modeling complex multi-body
interactions faster than real-time. They play a significant role
in fields like reinforcement learning where an agent tries to
learn a policy by trying out a large number of actions in a
simulated environment. However, their impact in the field of
planning is still limited.

Most planners typically find solutions to planning prob-
lems by evaluating the effect of actions from different states
using a simple internal planning model like a collision
checker. Certain domains like manipulation among movable
objects where the robot is allowed to interact with the objects
in its environment, require more than a simple planning
model. The planner in these cases needs to reason about the
dynamics of interactions between the robot and the objects
and the object-object interactions they lead to. This ne-
cessitates the usage of physics-based simulations. However,
their usage by planners is an underexplored area owing to

This work was supported by ONR grant N00014-18-1-2775
1Muhammad Suhail Saleem and Maxim Likhachev are with the

Robotics Institute, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, USA. {msaleem2,mlikhach}
@andrew.cmu.edu

Fig. 1: Standard domestic scene where picking up any object
would require the robot to interact with other objects.

three major challenges. The first being the computational
complexity of the simulations. Computing the dynamics
of interactions is a complex task that takes substantially
longer when compared to simple collision checking. A
typical planning problem would involve tens of thousands of
action evaluations. Using the simulator to evaluate them all
would imply that the planner takes several minutes before
coming up with a valid solution. The second challenge is
fidelity, i.e. how accurately the simulator can imitate reality.
Approximations and assumptions made by the simulators to
speed up computations have an effect on its fidelity. The
third being the assumption that the physics-based simulator
is aware of the accurate model and parameters (eg. masses)
of all objects that are being simulated.

In this work we address the first challenge for the domain
of manipulation planning among movable objects through
non-prehensile maneuvers. While the simulation itself is
slow, not all actions have to be evaluated through simula-
tion. We use a simple internal collision checking model to
evaluate the majority of actions while intelligently choosing
which actions to simulate without affecting completeness
guarantees. We apply our approach to the 7 DOF manipulator
on Willow Garage’s PR2 robot for several complex and
cluttered environments. Simulation results have shown that
our technique is capable of producing bounded suboptimal
paths rather quickly despite using simulations. The utility
of the algorithm was also demonstrated through real world
experiments on the 7 DOF manipulator of UBTech’s Walker
robot.

ar
X

iv
:2

00
3.

06
74

3v
1 

 [
cs

.R
O

] 
 1

5 
M

ar
 2

02
0



II. RELATED WORK

Navigation among Movable Obstacles (NAMO) is the
class of problems where the robot is allowed to move objects
in its environment to perform its intended higher level task.
This is especially useful in manipulation planning as in a
cluttered environment the free space is extremely constrained
and in most cases there is an absence of a collision free path
from start to goal. However, NAMO is an NP-hard problem
which can not be tackled through brute force [1] [2].

Modelling and solving manipulation planning in clutter as
a motion planning problem is a difficult task owing to the
high dimensional search space. As the objects are movable,
their degrees of freedom become part of the search state
thereby making the problem intractable through traditional
planning techniques. Previous approaches made assumptions
like predefining contact points and the final configurations of
all movable objects [3][4][5] to help simplify the problem.
Stilman et al. assumed monotone plans [6], which implies
that if there exists a solution, it could be found by moving
every obstacle at most once. While these assumptions ease
the planning problem, they sacrifice completeness guaran-
tees.

As discussed by Dogar et al. in [7], most of the initial
approaches which aimed at rearranging clutter took an object
centric approach [8][6]. They tried to move one object at
a time while ensuring no contact was established with the
other objects. Further, they restricted their interactions with
the objects to purely prehensile maneuvers. These approaches
proved highly inefficient and slow.

One of the first steps towards the use of non-prehensile
maneuvers was taken by Mason and Lynch, who studied
the mechanics of pushing. They developed a planner which
could stably push objects [9][10]. Goyal et al predicted the
the effect of pushing through limit surfaces in [11]. More
recent works tried to generalize the problem of rearranging
clutter to non-prehensile actions [8][12][13]. Push grasping
maneuvers were introduced in [14], which were later applied
to cluttered environments to create collision free paths for the
manipulator [8].

The usage of physics-based simulations in planning is
heavily underutilized. The approach introduced in [7], uses
physics-based simulations to precompute and cache robot-
object interactions. However, they restrict object-object in-
teractions to prevent online simulations and make the prob-
lem computationally tractable. [15] and [13] interleave a
sampling-based kinodynamic motion planner with a physics-
based simulator in an online fashion. They attempt to tackle
the challenge of low fidelity in simulations, by accounting
for the pose uncertainties of the interacted objects. The focus
of our work is tangential. We aim to speed up planning when
integrated with a slow but high fidelity simulator.

III. PROBLEM FORMULATION

Our domain consists of a robot manipulator R of d ∈
N degrees of freedom and an environment consisting of n
objects (n ∈ N) represented by O = {O1, O2...On}. The
state space of the robot is represented by XR ⊂ Rd. The set

of all actions it can execute, is defined by its action space
AR. Similarly, every object Ok ∈ O has a state space XOk

⊂
R3×SO3, defined by their position (x, y, z) and orientation
(roll, pitch, yaw). Therefore, we can define the state space
of the planner S, as the Cartesian product of the spaces of the
manipulator and the objects, S = XR×XO1×XO2 ...×XOn .
A state s ∈ S is given by s = {xR, xO1 , xO2 ..xOn} where,
xR ∈ XR and xOk

∈ XOk
.

A. Interaction Constraints

We define interaction as a collision between two rigid
bodies (object-object or robot-object) that arises as a result
of the robot's actions. It has to be noted that interactions are
defined between pairs of bodies. In a case where three objects
are colliding with each other simultaneously, we account for
it as three different interactions.

The robot is allowed to interact with the objects in its
environment subject to certain conditions. These conditions
are referred to as interaction constraints. The constraints
are defined with respect to the objects in the environment
and when they are violated, they are said to be violated
with respect to the object. These constraints can be used to
determine the validity of an action a ∈ AR taken from a state
s ∈ S. They could be formulated in different ways based
on the problem we would like to address. Some examples
include:
• Disallowing interactions with certain objects Ok ∈ O.
• Disallowing interactions that cause certain objects Ok ∈
O to topple and fall over. A cup of coffee or a glass of
water are examples of objects that we would not like to
topple.

We provide a generic framework that is compatible with a
wide array of constraints.

B. Problem Statement

To determine a path π defined as a sequence of robot
states xR ∈ XR, that takes the robot from the initial state to
a goal specified in the end-effector workspace XG (usually
a pregrasp location), while minimizing a cost function (path
length) and respecting the interaction constraints.

Unlike previous approaches, our definition of goal places
no constraints on the final configuration of the objects (except
the target object, which is assumed to be fixed as the pregrasp
location is static). This implies XG represents a goal region,
XG ⊂ S. This also increases the complexity of the problem
as the search now has to reason about configurations of
objects that do not hinder the robot from reaching any
xG ∈ XG.

C. Assumptions

We classify interactions into two types, first order and
second order. First order interactions are defined as direct
interactions between the robot R and an object Ok ∈ O.
Second order interactions are defined as interactions between
two bodies that arises as a result of a first order interaction.
For example, an object Oi colliding with another object Oj



as a result of a robot action toppling Oi (as seen in Fig. 2).
Given these definitions, we make the following assumption:
A1) If a problem has valid solutions, there exists at least

one solution that does not cause any second order
interactions.

This is a reasonable assumption as in most practical cases
the robot can always find a sequence of actions that can
move every object individually, while ensuring no contact
with the rest of the objects. This assumption is purely from
the standpoint of theoretical properties. While our algorithm
is capable of finding solutions that cause both first order
and second order interactions, the proof of completeness as
explained in section V holds under this assumption.

Fig. 2: Simple internal collision checking model (left) vs
external physics-based simulator (right).

D. Forward Simulations

Given interaction constraints, planners reason about ac-
tions based on a model of the world. If the model is physics-
based and accounts for the dynamics of interactions and
their effects, action evaluations are referred to as external
simulations due to their requirement of an external physics
engine. However, if the model is a simple internal model that
can purely detect collisions, action evaluations are referred
to as collision checks. Collision checks can only detect
interactions between rigid bodies and not evaluate their
dynamics or their effects.

For example, when a manipulator interacts with an object
in a clutter, a first order interaction between the robot and
the object could cause it to fall over another object as shown
in Figure 2. The collision checker can only detect the first
order interaction. However, simulations can detect both the
first order interactions and the second order object-object
interactions it causes.

Evaluating an action a ∈ AR from a state s ∈ S
using either of these models, will give us the following
information:
• P (s, a) = {(x, y) : x, y ∈ O ∪ {R}, pair of bodies

interacting with each other when evaluating action a
from state s using a specific model}

• O(s, a) ⊆ O = Set of all unique objects in P (s, a)
• State s′ ∈ S reached by executing the action

It is to be noted that a single action can result in multiple
interactions making P (s, a) a set of pairs of bodies. If we
use an external physics engine, the notations are PE(s, a),
OE(s, a) and s′e(s, a) and if the simulation is through a

collision checker, the notations are PC(s, a), OC(s, a) and
s′c(s, a). Since all interactions detected through collision
checkers are detected through external simulations as well,
PC(s, a) ⊆ PE(s, a) and OC(s, a) ⊆ OE(s, a).

IV. ALGORITHM

Our approach can be divided into two major components.
The first being detailed in Algorithm 1, is a framework for
intelligently adapting any search based planner for the task of
manipulation in clutter through non-prehensile manipulation.
However, using Algorithm 1 naively with search based
planners would be highly inefficient. The second component
as discussed in Algorithm 2, is an approach that allows you
to selectively simulate actions without losing completeness
and suboptimality guarantees. This, when integrated with
Algorithm 1, speeds up planning multifold.

Algorithm 1 Get Successors Routine

1: procedure GETSUCCS(s,a)
2: PC(s, a), OC(s, a), s

′
c = collision check (s, a)

3: If OC(s, a) = ∅
4: Return s′c . valid successor
5: Else if constraint violation . collision check
6: Return invalid
7: Else if ∃Ok ∈ OC(s, a) | Ok ∈ CR

8: PE(s, a), OE(s, a), se = ext. simulation (s, a)
9: If constraint violation . ext. simulation check

10: Return invalid
11: Else
12: Return s′e . valid successor

A. Get Successors

GetSuccessors is a standard routine used in search based
planners. This routine determines the successor states s′ that
can be reached from a state s ∈ S given the action space AR

and the interaction constraints. In most domains, the goal
is to construct collision free paths. Hence, the interaction
constraint is to not interact with any object Ok ∈ O. In
these cases there are no second order interactions as the first
order interactions which cause them are disallowed. Hence,
collision checks suffice.

However, our domain allows robot-object and object-
object interactions. Collision checkers by themselves can
not be used to evaluate the validity of all actions as they
can not evaluate second order interactions. While external
simulations can, they are substantially slower. We combine
the two by using collision checkers to detect first order in-
teractions and call the external simulator only if the collision
checker has detected an interaction that does not violate the
constraints.

For example, let the interaction constraints be to not
cause any first-order or second-order interactions with certain
fixed objects F ⊆ O. Any action that leads to first-order
interactions with fixed objects Ok ∈ F is invalid and any
action that does not lead to any first-order interactions is



Algorithm 2 Planning with Selective Simulation

1: procedure TRACK(path)
2: P = ∅
3: s = s0 . s0 ∈ S is the start state
4: for every action a ∈ path do
5: PE(s, a), OE(s, a), s

′
e = ext. simulation (s, a)

6: P = P ∪ PE(s, a)
7: If Interaction constraint was violated at Ov ∈ O
8: CR = CR∪ RELEVANTOBJECT(P,Ov)
9: Return failure

10: s = s′e
11: Return success
12: procedure RELEVANTOBJECT(P,Ov)
13: sstart = Ov

14: Queue = ∅
15: Insert sstart into Queue
16: loop . Tree search
17: remove s the front element in Queue
18: If (s /∈ CR)
19: Return s
20: explored[s] = true
21: for every (s,Ok) ∈ P where Ok ∈ O do
22: If (not explored[Ok])
23: Insert Ok into Queue
24: procedure MAIN()
25: CR = ∅; . CR declared globally
26: loop
27: Add all Ok ∈ CR to ext. simulator
28: Add all Ok ∈ CR to collision checker
29: path = PLAN()
30: If path exists
31: If CR 6= O
32: Add all Ok ∈ O to ext. simulator
33: If TRACK(path) is success
34: Return path
35: Else
36: Return path . Returned path will be valid as
37: Else all objects were considered
38: Return no solution exists

trivially valid. The external simulator need not be queried
in these cases. The external simulator can be queried only
when the collision checker detects a first-order interaction
with movable objects Ok /∈ F . The simulator is then used to
determine the validity of the action by evaluating the second
order interactions the action causes.

Algorithm 1 presents a generic routine applicable to a
range of constraints. Information about the interaction con-
straints could be leveraged to further optimise the calls to the
simulator. CR in Algorithm 1 represents the set of relevant
objects considered by the planner. If we are to plan in the
presence of all objects, CR = O. In the following subsections
we formally introduce the concept of relevant objects and
discuss an effective method to compute CR, to reduce the
number of simulation queries.

B. Relevant Object Based Selective Simulation
Since a clutter contains a large number of objects, a

significantly high number of action evaluations lead to valid
first-order interactions and have to be externally simulated.
Further, as defined previously, the state space of the problem
is given by S = XR × XO1

... × XOn
. This implies that

the search space is extremely large for a cluttered scene.
These problems introduce the requirement for intelligent
optimizations.

While there are several objects in a cluttered scene, only
a few impact our plan. Planning by only considering these
objects is sufficient to generate a valid path. We refer to these
objects as relevant objects, while the rest of the objects are
referred to as irrelevant objects. Considering only relevant
objects while planning implies that instead of simulating
actions that result in first-order interactions with any object,
we selectively simulate actions that result in interactions
only with the relevant objects. This significantly reduces
the number of simulator queries as in most practical cases
the number of relevant objects is much lesser than the total
number of objects in the scene. However, the identification
of these objects is a non-trivial task.

The idea of doing a search in a low dimensional space
except in places where the low dimensional search fails was
introduced by Gochev et al. [16]. This technique speeds
up search considerably, especially for high dimensions. We
extend this idea to our domain by identifying the relevant
objects in a recursive manner as outlined in Algorithm 2.

Let Ssel represent the search space for our approach and
πsel be the plan generated by a search in this space. CR

is the set of identified relevant objects which are included
in the planning process, CR = {cR1 , cR2 ..cRm}, cRk

∈ O,
m ≤ n . This implies the set of irrelevant objects CI , is
given by CI = O\CR. Ssel is a projection of S onto a
lower dimensional space. A state ssel ∈ Ssel is given by
ssel = {xR, xcR1

, xcR2
..xcRm

}. The low dimensional state
ssel, maps to a set of states in the high dimensional space S,
corresponding to all possible configurations of all irrelevant
objects Ok ∈ CI for a specific configuration of the robot and
the relevant objects Ok ∈ CR. This many-to-one mapping
from S to Ssel is represented by λ.

λ : S → Ssel (1)
We initially assume that no object in the environment is

relevant, ie. CR = ∅ and CI = O. Ssel for this planning
iteration is equivalent to the state space of the robot XR.
As the search space is extremely limited and the external
simulator is never queried as CR = ∅ (Algorithm 1), πsel
will be generated substantially quickly. Since none of the
objects were included in the planning process, πsel feasible
in Ssel does not imply it is feasible in S. Hence, to test the
validity of πsel in S, we add all objects Ok ∈ O to the
external simulator (line 32) and track the path (lines 1-11).
If no interaction constraints were violated when tracking the
path, it implies πsel is valid in S. However, if the constraints
were violated, πsel is invalid in S.

A plan πsel produced by a search in Ssel will ensure the
following. In the absence of irrelevant objects Ok ∈ CI ,



Fig. 3: The first image presents a planning scene where the object highlighted in green is forbidden from being interacted
with. The next three images represent three planning iterations. Color coding of the objects are as follows. Red: Irrelevant,
Blue: Relevant, Black: Irrelevant but identified as relevant for the next planning iteration. The plan generated in each of
these iterations has been highlighted in red.

• No first order interaction between the robot R and the
identified relevant objects CR, violates the constraints.

• No second order interactions between the identified
relevant objects CR, violates the constraints.

Thus, for πsel to be invalid in S, there should have been
interactions with the irrelevant objects Ok ∈ CI that were
not accounted for during planning. This implies there exists
at least one object Ok ∈ CI which is relevant and yet to
be added to CR. This object is then identified and added to
CR in the next iteration of planning. Now CR = Ok, CI =
O\Ok, and Ssel = XR ×XOk

. This process is continued in
a recursive fashion until the returned path πsel is valid in S.

As and when we identify more relevant objects we adap-
tively increase the set of objects we reason about. The
action space AR is defined with respect to the robot and is
independent of the search space. This means thatAR remains
unaltered as we increase the search space every planning
iteration. Further, it also means that the path πsel requires
no additional processing to be executed in S.

C. Relevant Object Identification

For example, let a scene consist of n objects
{O1, O2, ...On}. The interaction constraint for the problem
is to not cause any interactions with O1. For a particular
planning iteration let CR = {O1, O2}. While tracking πsel
generated in this iteration, let a robot action a ∈ AR cause
an irrelevant object O3 to fall over O2 which in turn interacts
with O1. Although O2 was the object that interacted with O1,
the irrelevant object O3 caused this interaction. Including O3

in the planning process would have prevented the violation.
The goal of this routine is to identify the irrelevant object

Ok /∈ CR that caused the constraint violation while tracking
πsel. For this purpose we construct a tree Tobj and do a
Breadth First search over it (lines 16-23). Let Ov ∈ O
represent the object with respect to which the constraint was
violated. The tree Tobj is defined by its:
• Nodes: Ok ∈ O
• Edges: Interactions that occurred while tracking πsel
• Root Node: Ov

This means the nodes at depth d = 1 represent objects that
had directly interacted with Ov . If no object Ok /∈ CR is
at depth d = 1, we search the second level to identify if
any of the relevant objects in the first level had interacted
with an irrelevant object. Thus, we continue the search until

we identify the first irrelevant object Ok /∈ CR (line 18).
Although, the objects at depth d = 1 were the ones that had
directly interacted with Ov , as explained above, Ok was the
cause of it. Ok is identified as relevant and added to the next
iteration of planning (line 8).

D. Planning Algorithm

Since our algorithm can be integrated with most search
based planners, we have not outlined any specific planning
routine in Algorithm 2. Instead, we have a generic call to a
planner in line 29, where Algorithm 1 would be used instead
of the regular Get Successors routine.

While other algorithms can be used, we have empirically
found that our adaptation of the Lazy Weighted A* (LWA*)
search introduced in [17] maximizes performance. Details of
the search have been mentioned below while the evaluation
of the performance can be found in the next section.

Lazy Weighted A* is a variant of Weighted A* (WA*) that
was developed for problems where the evaluation of the true
cost of some actions is far more expensive than the others.
They fully evaluate the cost of these actions only when the
planner intends to use them. An underestimate of the original
cost of the action is used to add the successor to OPEN .
Only when the successor is being expanded by the search do
they compute the true cost of reaching it. Based on this true
cost the successor is reinserted into the search.

We use the same logic to limit the number of calls to the
external simulator. For our case the cost of the edge is known,
instead the validity of the edge has to be determined. Only
when the state is being expanded do we call the external
simulator to determine the validity of the action leading to
it. If it is valid, we expand the state. If not, we remove the
state from the search and expand the next one.

V. THEORETICAL PROPERTIES

Theorem 5.1: An action a ∈ AR that is valid from a high
dimensional state s ∈ S and does not result in second order
interactions, is always valid from λ(s) ∈ Ssel.
Let a ∈ AR be an action that does not result in second order
interactions when executed from a high dimensional state
s ∈ S. Let the set of interactions that arise as a result of
the action from s, be PE(s, a) and the set of interactions
that arise from its lower dimensional projection λ(s), be
PE(λ(s), a). Then we can write, PE(λ(s), a) ⊆ PE(s, a).



TABLE I: Performance comparison between the Selective
Simulation and Non-Selective Simulation approach. Number
of objects in the scene = 12, number of fixed objects = 2.

Selective Simulation Non-Selective
Search Search

Metric Lazy WA* WA* Lazy WA* WA*
Success Rate 0.92 0.88 0.40 0.35
Planning Time (s) 3.23 5.38 62.342 98.26

This is because the objects we consider in Ssel is a subset
of the objects considered in S. Thus, if such an action is
valid in the higher dimensional state it will always be valid
in its lower dimensional projection.

Theorem 5.2: Assuming A1, if the search in Ssel returns
no valid solution, there exists no valid solution in S

From A1, we know there always exists at least one solution
that does not result in second order interactions. A solution
in S will be present in Ssel if the actions resulting in the
path are not invalidated in Ssel. According to Theorem 5.1,
all actions that are valid in S and do not result in second
order interactions are valid in Ssel. The search in Ssel is
guaranteed to find the path that does not lead to second
order interactions as such actions are never invalidated in
Ssel. Hence, if the search returns no solutions it implies no
valid solutions exist for the problem. Thus, the algorithm is
complete under assumption A1.

VI. EXPERIMENTAL ANALYSIS

We evaluated the performance of our algorithm in simula-
tion on a 7 DOF PR2 manipulator. Bullet Physics Engine [18]
was used for external simulations and a custom built collision
checker was used for the simpler internal evaluations. We
evaluated the performance of our Selective Physics-based
Simulation algorithm with Weighted A* search [19] and
Lazy Weighted A* search [17]. To demonstrate the effect of
selective simulation, this was benchmarked against the same
planning algorithms searching without selective simulations.

The experiments were conducted for cluttered tabletop
scenes consisting of several household objects as shown in
Figure 1. The robot’s goal was to reach an (x, y, z, r, p, y)
pose specified in its end-effector workspace. The interaction
constraint was to not cause any first order or second order
interactions with specific fixed objects in the scene. The
heuristic used was obtained by a 3-D Breadth-First search
initialized at the (x, y, z) coordinates of the goal considering
only the immovable objects in the environment. This will
be an underestimate of the true cost of transition, making
the heuristic admissible. The maximum time available for
the planners was two minutes. If a planner could not find
a solution within this time, we recorded it as a failure. The
results presented in Table 1 and Figure 5 are average statistics
for 60 experiments. The configurations of all the objects in
the scene and the goal pose were randomly generated for
each experiment.

From Table 1 it is clear that our selective simulation tech-
nique in combination with our adaptation of Lazy Weighted

Selective

Lazy Selective

Non-Selective

Lazy Non-Selective

12 14 16 18
Total Number of Objects

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s 

R
at

e

(a)

0 2 4 6
Number of FixedObjects

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s 

R
at

e

(b)

Fig. 4: (a) Success rate vs total number of objects. Number
of fixed objects in the scene = 3 (b) Success rate vs number
of fixed objects. Total number of objects in the scene = 12.

A* considerably outperforms the Non-Selective search. We
have a much higher success rate with significantly faster
planning times. Selective simulation has sped up planning
by more than 20 times. This makes the usage of physics
based models with planners feasible, opening up a range of
possibilities with respect to the domains that can be explored.

Further, as shown in Figure 4a our algorithm’s perfor-
mance remains almost constant as the total number of objects
in the scene increases. This is because the number of relevant
objects does not scale with the total number of objects in
the scene. However, the performance of non-selective search
goes down significantly as higher number of actions have to
be simulated with an increase in the number of objects. This
is an important property that again demonstrates the utility
of our algorithm in the real world, as in most domestic cases
the total number of objects in the scene are on the higher
side. Figure 4b presents the effect of the number of fixed
objects on the success rates of the planners. For a constant
number of objects in the scene if we increase the number
of fixed objects, the performance of our algorithm increases
owing to the reduction in the dimensionality of the problem.
However, increasing the fixed objects also invalidates a lot
more actions. This implies that in the non-selective case more
actions have to be simulated to find a valid path.

The utility of the algorithm was also demonstrated through
real world experiments on the 7 DOF manipulator of
UBTechs Walker robot. A video of the real-world experi-
ments and the simulation results can be found here.

VII. CONCLUSION

In this paper we present a technique for intelligently
integrating physics based simulators into search-based plan-
ners for the domain of manipulation among movable objects
through non-prehensile maneuvers. Our approach selectively
simulates actions by identifying relevant objects in the en-
vironment. This significantly speeds up planning without
sacrificing completeness and suboptimality guarantees. We
plan on extending this idea to domains that go beyond pick-
and-place tasks, like utilizing tools. Further, we would like to
address the occasional inaccuracies in simulation modelling
by learning from real robot experiences.

https://youtu.be/OmUEgUzGizY


REFERENCES

[1] G. T. Wilfong, “Motion planning in the presence of movable obsta-
cles,” Ann. Math. Artif. Intell., vol. 3, no. 1, pp. 131–150, 1991.

[2] E. D. Demaine, M. L. Demaine, and J. O’Rourke, “Pushpush and push-
1 are np-hard in 2d,” in Proceedings of the 12th Canadian Conference
on Computational Geometry, 2000.

[3] J. Ota, “Rearrangement of multiple movable objects: Integration of
global and local planning methodology,” in Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2004,
no. 2, 2004, pp. 1962–1967.

[4] R. Alami, J.-P. Laumond, and T. Simon, “Two manipulation planning
algorithms,” Algorithmic Foundation of Robotics, pp. 109–125, 01
1995.

[5] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[6] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in 2007 IEEE International
Conference on Robotics and Automation, ICRA 2007. IEEE, 2007,
pp. 3327–3332.

[7] M. R. Dogar, K. Hsiao, M. T. Ciocarlie, and S. S. Srinivasa, “Physics-
based grasp planning through clutter,” in Robotics: Science and
Systems VIII, 2012.

[8] M. R. Dogar and S. S. Srinivasa, “A framework for push-grasping in
clutter,” in Robotics: Science and Systems VII, 2011.

[9] M. T. Mason, Mechanics of Robotic Manipulation. MIT Press, 2001.
[10] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, control-

lability, and planning,” I. J. Robotics Res., vol. 15, no. 6, pp. 533–556,
1996.

[11] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry
friction Part 1. Limit surface and moment function,” Wear, vol. 143,
no. 2, pp. 307–330, 1991.

[12] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-
prehensile manipulation under clutter and uncertainty,” Auton. Robots,
vol. 33, no. 3, pp. 217–236, 2012.

[13] J. E. King, “Robust rearrangement planning using nonprehensile
interaction,” Ph.D. dissertation, 2016.

[14] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2010, pp. 2123–2130.

[15] Muhayyuddin, M. Moll, L. E. Kavraki, and J. Rosell, “Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 712–719, 2018.

[16] K. Gochev, B. J. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path planning with adaptive dimensionality,” in Proceedings of the
Fourth Annual Symposium on Combinatorial Search, SOCS 2011.
AAAI Press, 2011.

[17] B. J. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm
manipulations with n-arm robots,” in Proceedings of the Eighth Annual
Symposium on Combinatorial Search, SOCS 2015. AAAI Press, 2015,
pp. 226–227.

[18] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016–2019.

[19] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artif.
Intell., vol. 1, no. 3, pp. 193–204, 1970.


	I INTRODUCTION
	II RELATED WORK
	III PROBLEM FORMULATION
	III-A Interaction Constraints
	III-B Problem Statement
	III-C Assumptions
	III-D Forward Simulations

	IV ALGORITHM
	IV-A Get Successors
	IV-B Relevant Object Based Selective Simulation
	IV-C Relevant Object Identification
	IV-D Planning Algorithm

	V THEORETICAL PROPERTIES
	VI EXPERIMENTAL ANALYSIS
	VII Conclusion
	References

