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Abstract— End-to-end learning from sensory data has shown
promising results in autonomous driving. While employing
many sensors enhances world perception and should lead to
more robust and reliable behavior of autonomous vehicles,
it is challenging to train and deploy such network and at
least two problems are encountered in the considered setting.
The first one is the increase of computational complexity with
the number of sensing devices. The other is the phenomena
of network overfitting to the simplest and most informative
input. We address both challenges with a novel, carefully
tailored multi-modal experts network architecture and propose
a multi-stage training procedure. The network contains a gating
mechanism, which selects the most relevant input at each
inference time step using a mixed discrete-continuous policy.
The gating network chooses the camera input in a discrete way
from among several mutually-exclusive sensors. Alternatively,
the network chooses the LiDAR sensor, which covers the same
field of view as the camera sensors, and identifies continuously
in real-time the part of its depth map with a narrow field of
view that is useful for steering autonomously. We demonstrate
the plausibility of the proposed approach on our 1/6 scale truck
equipped with three cameras and one LiDAR.

Index Terms— Multi-modal network, experts, autonomous
driving, UGV, imitation learning, gating network, sensor se-
lection.

I. INTRODUCTION

The advancements in deep learning [1] enabled artificial
neural networks to invade a diverse set of real-life applica-
tions that need to rely on systems capable of learning, among
which autonomous driving is an important and still largely
unsolved task. Using multiple sensors improves perception
abilities, leads to a better understanding of the environment,
and consequently increases the safety and reliability of deep-
learning-based autonomous platforms (some examples in the
context of self-driving cars include [2], [3], [4]). Neverthe-
less, it is highly non-trivial to teach the autonomous vehicle
to use the information registered by different sensors po-
tentially capturing various modalities. When there exists an
overlap of information as is the case for camera and LiDAR
registrations that cover the same or partially overlapping field
of view, one needs to ensure the network is evenly trained to
use any of the available relevant inputs. Otherwise, the failure
of the sensor that the network was preferring at training
leads to significant performance degradation. This could be
avoided if instead of ignoring the information provided by
other relevant sensors, the network would adapt to them
as well. Another obstacle when using many sensors is the
explosion of computational complexity. Addition of an extra
sensor requires the expansion of the network to accommodate
an extra feature extractor and increases computational cost.
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This largely increases the inference time step and eventually
paralyzes vehicle’s real-time operation. The objective of this
work is to address the above challenges.

We propose a network that contains a feature extractor per
each sensor and a gating mechanism that activates only a
subset of feature extractors at each inference time step. The
key component of the proposed architecture is the gating
mechanism, which selects the most informative input in
real time under strict computational constraints. It therefore
efficiently switches the attention of the network among inputs
(in other words experts). In our setting, we have three
camera inputs that are mutually exclusive, i.e. they have non-
overlapping field of views (each of them covers 60 degrees),
and one LiDAR sensor that covers 180 degrees1 and therefore
has an overlapping field of view with the cameras. We
consider two schemes of input selection. The first one is the
discrete one and occurs when selecting the proper sensor.
The second one is the continuous one and occurs when
selecting a relevant part of the information delivered by a
single sensor. This is done for LiDAR, which has a very
wide field of view. The proposed concept naturally provides
a defensive mechanism against sensor failures as those will
be considered as irrelevant ones and will not contribute to the
final prediction. Moreover, wasteful computations correlated
with extracting features from sensory inputs irrelevant or
redundant for driving are avoided.

We also propose a multi-stage training procedure and show
that it is superior compared to the other end-to-end learning
techniques. We show that the end-to-end scheme does not
result in the network that has the ability to select most
relevant sensors. Note that the small gating network has its
own feature extractors which should be correlated with the
main feature extractors. The reason for the failure of the
end-to-end approach is that it does not learn this correlation.

We empirically verify our approach on our autonomous
platform equipped with three cameras and LiDAR and
provide evidence that our network correctly selects the
proper sensor and works well in the discrete and continuous
selection regimes, robustly predicts the vehicle’s steering
command, and requires significantly fewer computations than
common baselines.

This paper is organized as follows: Section II provides
a literature review, Section III describes our approach, Sec-
tion IV demonstrates experimental results, and Section V
concludes the paper.

1The LiDAR covers 360 degrees, however we use only the front-facing
part (180 degrees) as we only consider driving forward.
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II. RELATED WORK

This paper considers an end-to-end imitation learning
framework for steering autonomous driving platforms that
take raw sensor inputs and predict the steering command.
We consider deep learning framework since it allows for the
automatic extraction of data features that are furthermore
useful for a particular learning task and potentially more
scalable to real-life systems. Alternative non-deep learning
techniques for multi-sensor data fusion for autonomous driv-
ing were investigated in [5], [6], [7], [8]. The functional
mapping between inputs and outputs in the end-to-end setting
was realized in past works using fully-connected networks
trained on synthetic data [9] or convolutional neural networks
(CNNs) trained on real recorded data without [10], [11], [12]
and with [3], [11] augmentation. All of the above mentioned
works rely only on a single camera sensor at inference.
The conditional imitation learning approach [13] relies on
a single camera and uses camera images and navigation
commands to steer the vehicle through road intersections in
desired directions. This work was further extended [14] to
use both camera images and maps to generate a probability
distribution over possible steering commands. Finally, [15]
proposes a reconfigurable network that uses images captured
from three front-facing cameras as inputs to navigate the
autonomous driving car in an indoor environment. There are
only a few works proposing end-to-end learning frameworks
accommodating multiple sensing modalities such as LiDARs
and cameras [16], [17], [18], [19]. Our work concerns
precisely such setting and engages the gating mechanism for
relevant sensor selection unlike existing approaches.

The gating mechanism was explored in the literature in
various settings and applications. The first system incorporat-
ing this mechanism [20] was the modular version of a multi-
layer supervised network, where many separate networks
(experts) were operating on the same input but they were
handling different learning sub-tasks. The gating mechanism
has often been used as an enabling technique for scaling
algorithms to large data sets and has been flexible enough
to adapt to different learning systems, including those with
experts realized as SVMs [21] or neural networks [22],
[23], [24], [25] and those where experts were hierarchically-
structured [26]. The works on conditional computation [22],
[23], [24] explore the notion that irrelevant or redundant
experts need not be activated at all when forming a pre-
diction. Sparsely-gated mixture-of-experts [25] realizes an
extreme version of this concept, where a large number of
experts is used, but only a very small subset is activated
at each inference time step. None of the gating schemes
discussed above was applied to autonomous driving, but
they were explored in the context of more traditional AI
problems such as language modeling, machine translation,
or image classification. Our work falls into the category of
conditional computations schemes, but as opposed to existing
methods experts do not share the same input. Finally, gating
mechanism was also used for sensor fusion [27], [17] in
autonomous driving, where all experts are active. These
approaches therefore are not concerned with constraints on

the computational budget since they allow wasteful feature
extractions from irrelevant or redundant sensors. Our work
fundamentally differs from these works as in our case such
experts are identified at each inference time step and are
deactivated, which leads to computational savings.

III. MULTI-MODAL EXPERTS NETWORK

A. Network architecture

Fig. 1. The architecture of the proposed network. There are two highlighted
sections: Camera Modality at the top, and LiDAR Modality at the bottom. In
the Camera Modality, there are three inputs, each from a different camera,
followed by the corresponding feature extractors (Camera Experts). In the
LiDAR Modality, the single input from the LiDAR is used. All the camera
inputs and the entire LiDAR input are passed to the Main Gating Network
that decides which input contains the most relevant information for driving
at the moment and activates the corresponding expert. If LiDAR is selected,
its input is first processed by the LiDAR Gating Network that decides which
part of the input will be cropped and used for further processing. The
cropped LiDAR input is passed to the LiDAR feature extractor (expert).
Finally, the output of the LiDAR Gating Network is concatenated with the
output of the LiDAR expert. The output of the Main Gating Network is
concatenated to the output of the active expert and passed to the final Fully-
Connected Network (FC) that forms the prediction of the steering command.

The proposed multi-modal experts network is illustrated
in Fig. 1. The network is designed to handle inputs coming
from three cameras and one LiDAR. Thus the network has
four inputs in total coming from two sensory modalities.
We will refer to those inputs as x = [x1,x2,x3,x4], where
x1,x2,x3 are the camera inputs and x4 is the LiDAR input.
The final prediction ŷ of the multi-modal experts network
can be therefore expressed in the following way:

gM
i = GM(x)i, i = 1,2,3,4 (1)
vi = Ei(xi), i = 1,2,3 (2)

x′4 = GL(x4)� x4, (3)

v4 =
[
E4(x′4),G

L(x4)
]
, (4)

ŷ = F

([
4

∑
i=1

gM
i vi, GM(x)

])
, (5)

In the first equation, GM(x)i denotes ith output of the Main
Gating Network, where at each time instant, all GM(x)is are
equal to 0 except one, which is equal to 1. Therefore, gM

i
encodes the information of the selection of the Main Gating
Network, which can been seen as an indicator showing which
sensor carries the most relevant information for driving at
any given moment. In our setting, the data captured by the
sensors are spatially redundant with each other. In order to
minimize the amount of required computations to steer a
vehicle, we assume that only one expert, that is chosen by
the Main Gating Network, will actually be activated. The
extension to the case where multiple sensors are used is



easy to achieve. Concretely, if we want to keep k experts,
the output of the Main Gating Network should be modified
accordingly, e.g. if one wants to use 2 out of 4 sensors
and use weights for each input, one should zero-out the
smallest and the second smallest weights. E1,E2,E3 are
feature extractors of camera images (Camera Experts) and E4
is the feature extractor of LiDAR image (LiDAR Expert). If
one of the cameras is selected, we can get feature vector
vi from the output of the Camera Expert in Equation 2.
Equation 3 and 4 show the process of obtaining LiDAR
feature vector when the LiDAR expert is picked. In Equation
3, GL presents the LiDAR Gating Network and its output
GL(·) ∈ [−1,1] such that −1 corresponds to the leftmost
60 degree LiDAR image, 1 corresponds to the rightmost
60 degree LiDAR image, and internal values of the [−1,1]
interval correspond to the proportionally shifted 60-degree
image window. The � denotes the cropping operation and the
selected 60 degree image x′4 is used for further processing.
In Equation 4, the output of the LiDAR gating network
is concatenated with the LiDAR feature vector E4(x′4) to
form the LiDAR feature vector v4. Finally, in Equation 5,
the resulting feature vector is formed by concatenating the
feature vector coming out from the chosen expert and the
output of the Main Gating Network. F is the action of the
final fully-connected network and transforms the features
into the final prediction label. This construction ensures that
the resulting feature vector encodes the information extracted
from the selected input as well as the identity of the selected
sensor, and in case this sensor is LiDAR also the information
about the part of the input that was used.

B. Training procedure

We propose a carefully tailored procedure for training the
multi-modal experts network. The training procedure is de-
signed to enable efficient and robust learning of the behavior
of the gating mechanism from the training data, which do not
carry any information about the identity of the most relevant
sensor at any given moment in time. The network training
procedure that we propose consists of three main steps. In
the first step, we train the network equipped with the gating
mechanism to predict the steering command based on the
LiDAR input. Thus the network effectively learns which part
of the LiDAR input is relevant (continuous sensor selection).
In the second step, we train another network, also equipped
with the gating mechanism, to predict the steering command
from either one of the cameras or LiDAR input. Thus the
network effectively learns to choose between sensors and
modalities (discrete sensor selection). In the third step, we
incorporate the LiDAR network trained in the first step into
the multi-modal network trained in the second step and fine-
tune everything to simultaneously choose the proper sensor
(learned in step 2) and the relevant part of the LiDAR input
(learned in step 1), if its modality was chosen.

Moreover, for the purpose of training the gating networks
(either the LiDAR Gating Network from the first step or the
Main Gating Network from the second step) realizing the
gating mechanism, we consider two sub-steps:

Fig. 2. The architecture of the network used in the 1.1 step of the training
procedure. There are 5 experts: leftmost, left, center, right, and rightmost.

• We train the entire network (all feature extractors and
the gating mechanism that uses those extractors) to
predict the steering command. The by-products of this
training are the labels for the gating network that
indicate relevant sensors for driving. Since the gating
network in this step uses the same feature extractors as
the main network it is able to learn sensor relevance
without explicit labels. (Point 1.1 explains this for the
LiDAR Gating Network and point 2.1 explains this for
the Main Gating Network.)

• We train a separate computationally-constrained archi-
tecture of the gating network (thus we effectively reduce
the size of the gating network) using labels that were
inferred in the previous stage. (Point 1.2 explains this
for the LiDAR Gating Network and point 2.2 explains
this for the Main Gating Network.)

We next describe the training procedure in details.
1) First Step: Continuous sensor selection
1.1 Obtaining labels for the gating mechanism
We train the network with the architecture given in Fig. 2.

Its input is formed by splitting the LiDAR input into five
partially overlapping segments (they overlap one-half), each
covering 60 degree field of view. Each segment is processed
by the corresponding expert. The feature vectors obtained
from the experts are processed by the fully-connected net-
work that realizes a function of the gating mechanism.
Therefore, the experts and the mentioned fully-connected
network form a gating network. Finally, the feature vec-
tors are scaled by the outputs of the gating network and
passed to another fully-connected network that predicts the
steering command. We train this entire model in an end-to-
end fashion. We designed a cost function comprising three
carefully selected terms to ensure desired performance of
the gating behavior. The first term is the prediction loss
measuring the discrepancy between the true and predicted
steering command and to ensure the final output of the
network can successfully steer the robot.

Lprediction = ‖y− ŷ‖2
2 .

To ensure that the output of the gating network is sparse
so that the most informative input can easily stand out, we
introduced the second term that we refer to as sparsity loss:

Lsparsity = ∑
i
−gi log(gi),

where gis are the outputs of the gating network. The outputs
of the gating network are obtained after a softmax layer,



where gi =
exp(oi)

∑
n
i=1 exp(oi)

(oi is the input to the softmax layer),
thus ∑i gi = 1. In this stage we allow more than one gi
to be non-zero. The final term of the loss is the negative
entropy computed with respect to the distribution of the
gating network outputs. It is given as

Lnentropy = ∑
i

pi log(pi),

where pi =
1
B ∑

B
j=1 gi, j, where gi, j is the ith output of jth

gating network observation in one batch and B is the training
batch size. Minimizing this term prevents the output of the
gating network from collapsing and favoring a small and
fixed subset of experts over the entire data batch, while
zeroing out the rest.

The objective function has therefore the following form:

L = Lprediction +αLsparsity +βLnentropy, (6)

where α and β are the hyper-parameters controlling the
importance of sparsity and negative entropy terms. We aim at
minimizing this objective. In the result, we obtain the trained
gating network that we then use for generating labels for the
desired gating mechanism.

1.2 Training the LiDAR Gating Network
We train a separate LiDAR Gating Network that using

knowledge distillation [28]. This one predicts which part
of the LiDAR input is the most relevant for driving. We
train the LiDAR Gating Network using the gating mechanism
obtained in the previous training step as the teacher network.
Specifically, the labels gL for training the new gating mech-
anism are calculated as gL = ∑i gL

i ri, where gL
i are outputs

of the reference gating mechanism obtained in the first step
of the training procedure and ri = [−1.0,−0.5,0.0,0.5,1.0]
are the values of the gL corresponding to the segments of
the LiDAR image described before.

1.3 Fine-tuning
In the third sub-step of the training procedure, we train

the network with the architecture depicted in Fig. 3. Here
we are using the LiDAR Gating Network obtained in the
previous step of training and we keep its weights fixed.
The network uses LiDAR input which first is processed by
the LiDAR Gating Network. Based on the LiDAR Gating
Network output, part of the input is cropped. In particular, we
crop a segment covering 60 degree field of view. The segment
range is calculated as cl = 60ogL − 30o;cr = 60ogL + 30o,
where cl and cr are the left and right edges of the cropped
segment respectively and gL is the output of the LiDAR
Gating Network that is in the range [−1,1]. Next, the cropped
segment is processed by the feature extractor (expert). The
output of the LiDAR Gating Network and the obtained
feature vector are concatenated together and fed to the fully-
connected layer, which produces the steering command. At
the end of this step, we obtain a functional network with the
single LiDAR input for the autonomous driving and we refer
to this network as “LiDAR with gating” network.

2) Second Step: Discrete Sensor Selection
2.1 Obtaining labels for the gating mechanism

Fig. 3. The architecture of the neural network used in the 1.3 step of the
training procedure. The dashed box indicates the LiDAR Gating Net is fixed
during training.

Fig. 4. The architecture of the neural network used in the 2.1 step of the
training procedure. In the Camera Modality, there are three inputs, each from
different camera, followed by the corresponding feature extractors (Camera
Experts). In the LiDAR Modality, the single input from the LiDAR is used
and processed by feature extractor of the entire LiDAR image (LiDAR full
Expert).

First, we train the network with the architecture depicted
in Fig. 4. The architecture uses three inputs from camera
modality and one input from LiDAR modality and is capable
of handling sensor fusion. The feature vectors obtained from
three camera experts and one LiDAR full expert (feature
extractor of the entire LiDAR input) are also used by the
gating network as feature extractors, thus it can be seen that
the additional fully connected layers realize the functionality
that we call the gating mechanism (selecting relevant inputs).
Finally, the feature vectors are scaled by the outputs of the
gating network and passed to another fully-connected net-
work that predicts the steering command. We train this entire
model in an end-to-end fashion using the same objective
function as the one introduced in the 1.1 sub-step.

2.2 Training the Main Gating Network
As a result of the 2.1 step of training, we obtain the trained

gating network that serves as a reference delivering labels for
training the Main Gating Network from Fig. 1. The latter
network realizes the gating mechanism showing which input
(one of three camera inputs or LiDAR input) is most relevant
for driving. Note that we used the same training strategy in
the 1.2 step of training. To be more specific, the labels gM

i
for training the Main Gating Network are calculated as

j = argmaxgM
i , (7)

gM
j = 1, (8)∧

i 6= j

gM
i = 0, (9)

where gM
i are the outputs of the reference gating mechanism

obtained in the previous step of the training procedure. In
this case, the Main Gating Network is trained to select one,
the most relevant input for driving.

3) Third Step: Training the Multi-Modal Experts Network
In the final step of the training procedure, we train our

proposed multi-modal experts network depicted in Fig. 1. In



LiDAR modality, we use part of the network architecture
in the first step but without final fully-connected layer to
process LiDAR information. In this way, if the LiDAR expert
is selected, the computation can be further optimized. Here
we keep the weights of the LiDAR Gating Network obtained
in the first step and the Main Gating Network obtained in the
second step fixed. Thus, in this step, we train all the experts
and the final fully-connected layer that produces the steering
command. In the result, we obtain the final network that
identifies the most relevant input for predicting the steering
command and activates only the corresponding expert at each
inference time step.

IV. EXPERIMENTS

A. Hardware Overview

Fig. 5. The block diagram of the
autonomous platform used in the ex-
periments.

The block diagram of
the autonomous platform
that we used for data col-
lection and system testing
is shown in Fig. 5. The
platform is based on the
Traxxas X-Maxx remote
control truck and equipped
with Drive PX2 that per-
forms computations. We
incorporated the following
sensors on the platform:

• three SEKONIX AR0231 GMSL cameras that are
facing the front of the platform and covering non-
overlapping views. Each camera has 60 degrees hor-
izontal field of view. The center camera is oriented
straight. The side cameras are mounted at angles to
allow capturing front side views.

• single Velodyne VLP-16 LiDAR with 16 lasers that
cover a 30 degree vertical field of view and 360 degree
horizontal field of view.

Controlling the actuators of the autonomous platform was
done using Micro Maestro 6-Channel USB Servo Controller.
When collecting the data, the wireless game-pad was used to
drive the platform. The platform was controlled by an expe-
rienced human driver to ensure it drives in the center of the
path without hitting the walls of the corridors or obstacles.
The captured steering commands were used as ground truth
for training and evaluation. The steering commands together
with the corresponding cameras and LiDAR inputs captured
by the sensors were saved on the Drive PX2 local storage.
At testing, the platform runs in real time and is steered with
the commands predicted by the deep learning gating-based
system. The speed is dictated by the operator of the platform.

B. Data Pre-processing

The SEKONIX AR0231 GMSL cameras have resolution
1920× 1208. We scale down the images captured by the
cameras to the size 192×120. We use three channels (RGB)
for each camera.

The LiDAR captures data in the form of a point cloud,
which we convert into a depth map. We utilize only the front-
facing 180 degrees field of view of the LiDAR input as the
car is only required to drive forward. The resulting depth map
has size 450×16. We use two channels, one for distance and
one for reflectivity. The exemplary images from cameras and
LiDAR are shown in Fig. 1 in camera and LiDAR modality
respectively.

The values of recorded steering commands are normalized
to the range [-1,1], where −1,0,1 corresponds to driving
maximally left, straight, and maximally right respectively.
The data are time-synchronized by dropping redundant
frames and are recorded at a rate of 5 examples per second.
We collected 43,812 training examples in total. Each sample
is represented by three images from the cameras, one depth
map from LiDAR, and the corresponding steering command.
We group the steering commands of all training examples
X into 7 categories X1:7: |X1| = 7297 for y ∈ [−1,−0.67);
|X2| = 2094 for y ∈ [−0.67,−0.33); |X3| = 9706 for y ∈
[−0.33,0.00); |X4| = 15127 for y = 0.00; |X5| = 1555 for
y∈ (0.00,0.33]; |X6|= 2915 for y∈ (0.33,0.67]; |X7|= 5118
for y ∈ (0.67,1]. In each training epoch, we sample 10,000
examples uniformly at random from each category to balance
the data set. We also collected the test data containing 2,384
examples. The train and test data sets were collected in
different parts of the same building. All reported results in
the next sections were obtained on the test data set.

C. Training Details and Evaluation

We use ADAM optimizer in all steps of the training pro-
cedure. Hyperparameters are tuned by grid search to ensure
best performance. In the 1.1 step, we use the learning rate
equal to 0.001 and the following hyper-parameters for the
objective function: α = 0.001,β = 0.0016. The performance
of the gating mechanism obtained in the 1.1 step of the
training procedure is reported in Fig. 6(a)(top). In the 1.2
step, we train the LiDAR Gating Network using knowledge
distillation. The loss terms consist of distillation loss and
student loss. The distillation loss is measured as the KL
divergence loss between soft labels of the teacher network
and soft predictions of the student model. The student loss
is defined as the mean square error (MSE) between the
predicted labels and the labels produced by the reference
gating mechanism. In this step, the learning rate was set to
0.001, the distillation temperature is set to 2 and the weight
on the distillation loss is 0.9. In the 1.3 step, the learning rate
was set to 0.001 and the test performance of the network is
shown in Fig. 6(a)(bottom). The network clearly can learn
to predict the correct steering command and properly selects
most relevant part of the LiDAR input at given time instant.

In the 2.1 step of the training process, we use the learn-
ing rate of 0.0001. The hyper-parameters of the objective
function are α = 0.002 and β = 0 (this is because there is
no shared information between any two different inputs). In
this step, we assume that at most one sensor will encounter a
sensor failure. Thus, we separately train different instances of
the same network with architecture depicted in Fig. 4, where



Fig. 6. Top: The output of the gating network obtained from the 1.1 step of
the training procedure indicating the relevance of each expert for predicting
the steering command. The corresponding network architecture is shown in
Fig. 2. Bottom: The comparison between the actual and predicted steering
command. The network (shown in Fig. 3) obtained from the 1.3 step of the
training procedure is used for prediction. In red we show the output of the
LiDAR Gating Network. Only the first 250 test frames are shown here due
to the space limitation.

Fig. 7. Top: The outputs of the individual gating network obtained in
the 2.1 step of training procedure when the inputs are (1)-(5). The network
architecture is shown in Fig. 4. Bottom: The comparison between the actual
and predicted steering commands for the 5th network. Results of the other
networks are similar.
Fig. 8. The test performance of the final network (shown in Fig. 1) when
the inputs are (1)-(5). The curves show the comparisons between the actual
steering command and predicted steering command. The color-shaded areas
indicate the selection of the Main Gating Network.

for each instance we disable different sensors. We consider
the following cases: (1) LiDAR is enabled and at most one
of the camera inputs is disabled (2) LiDAR is disabled and
all the camera inputs are enabled (3) Left part of LiDAR is
disabled and all the camera inputs are enabled (4) Center part
of LiDAR is disabled and all the camera inputs are enabled
(5) Right part of LiDAR is disabled and all the camera
inputs are enabled. The test performance of the resulting five
networks is depicted in Fig. 8. Clearly, the gating network
can successfully select the most relevant sensor. For example,
when LiDAR sensor is enabled the gating network always
selects the LiDAR expert as the best sensor for driving.
Otherwise, when the LiDAR sensor is disabled, the gating
network chooses the most relevant camera. This is intuitive
as LiDAR input is more informative compared with RGB
camera image and the information from the side sensors will
be more important when the car makes turns.

In the 2.2 step of the training procedure, the distillation

TABLE I
PERFORMANCE OF THE

MAIN GATING NETWORK

WITH DIFFERENT INPUTS

DISABLED
Case Accuracy(%)
(1) 100
(2) 93.41
(3) 97.69
(4) 94.33
(5) 96.98

TABLE II
PERFORMANCE OF SEVERAL

MULTI-MODAL NETWORKS WITH

DIFFERENT INPUTS DISABLED
Case Test MSE loss(Ours/BL/NG/SD)
(1) 0.020/ 0.026/ 0.023/ 0.023
(2) 0.033/ 0.026/ 0.023/ 0.045
(3) 0.026/ 0.026/ 0.022/ 0.038
(4) 0.029/ 0.025/ 0.022/ 0.024
(5) 0.024/ 0.025/ 0.022/ 0.026

Avg. 0.026/ 0.026/ 0.022/ 0.031
TABLE III

PERFORMANCE AND COMPUTATIONAL COMPLEXITY COMPARISON OF

DIFFERENT NETWORKS.(*INDICATES THE MULTI-MODAL MODEL)
Method Network Name Test MSE loss FLOPs

End-to-end
training

LiDAR only 0.020 52.23M
Single Camera 0.048 50.58M
Three Cameras 0.036 151.48M
*Baseline(BL) see Table II 204.69M

*NetGated(NG) see Table II 204.90M
*Sensor Dropout(SD) see Table II 204.69M

Multi-step
training

LiDAR with gating 0.023 28.15M
*Ours see Table II 35.71M

chosen sensor: LiDAR
*Ours see Table II 58.15M

chosen sensor: camera

loss is the same and the student loss is the cross-entropy loss
between the predicted labels and the labels produced by the
reference gating mechanism. In this step we use the ADAM
optimizer with the learning rate set to 0.001. The distillation
temperature is set to 4 and the weight on the distillation loss
is 0.9. We train the Main Gating Network using all the five
gating networks obtained in the previous step as reference.
The performance of the obtained Main Gating Network is
reported in Table I. The network achieves high performance
accuracies of choosing the correct sensor.

In the third step of the training procedure, we train the
final multi-modal experts network. We use the pre-trained
experts from previous steps and set the learning rate to be
0.0001. In particular, we use the pre-trained LiDAR expert
obtained from the first step and pre-trained camera experts
obtained in the second step in the case where LiDAR was
disabled. Finally, we use all five settings of enabled/disabled
sensors, to fine-tune the entire network in an end-to-end
fashion. In particular, we lock the gating networks (will not
update the parameters) and train the whole network. The test
results of the obtained final network are shown in Fig. 8 and
Table II, where the test performance is measured as the mean
squared error(MSE) between the predicted and the reference
steering command. The obtained network correctly chooses
the useful sensor for driving and accurately predicts the
steering command. Finally, we compare the test performance
of our model with several different approaches. The first
three methods listed in Table III describe models that use
inputs from single modality. They are constructed by one
or more feature extractors followed by a fully-connected
layer to make the final prediction. The baseline model is
obtained by concatenating the features from all of the experts
without any gating mechanism. It is trained end-to-end.
NetGated and Sensor Dropout were introduced in [17] and
[19] respectively. We followed the setups described in their



Fig. 9. The snapshots of the video captured by four sensors when driving
autonomously. The platform in each case was turning left with different
inputs disabled. We present four cases: (1) all sensors are enabled, (2) the
center camera is disabled, (3) the entire LiDAR sensor is disabled, (4) the
left part of the LiDAR sensor is disabled. The red frame indicates the input
selected by the Main Gating Network.
original papers to train the networks. Also note that our
approach is orthogonal to the existing network compression
methods [29], [30], [31], [32] since compression schemes
are applicable to our approach and can lead to further
computational reductions. To make fair comparisons, each
network uses the same feature extractor architectures and
the gating networks are designed to require significantly less
computations than feature extractors, they are all described in
the Appendix. We compare MSE between the predicted and
actual steering command and the amount of computations,
i.e. the number of floating-point operations (FLOPs) needed
to perform a single inference. For the multisensory models,
their performances are measured in five different scenarios
when one of the sensors is disabled. The results are captured
in Table III. The proposed network achieves comparable per-
formance to the baseline model and outperforms the majority
of the competitive methods in terms of test loss except for
NetGated. However, both the baseline and NetGated require
significantly more computations and they do not have the
ability to interpret the importance of each sensor at any
given moment. Meanwhile, our method uses almost the same
amount of computations as the single modality networks.
Therefore multi-modal experts network is superior over other
sensor fusion techniques as it can make accurate predictions
and handle sensor failures better while at the same time is
computationally much more efficient. We tested our proposed
network on the autonomous platform and used the predicted
steering angles to steer the vehicle in an indoor environment.
The snapshots of the test video are shown in Fig. 9.

D. Ablation Analysis

1) Can we use end-to-end training scheme to train the
Multi-modal Experts Network?: Note that the small gating
network has its own feature extractors which should be
correlated with the main feature extractors. Training our
system with the end-to-end approach is not practical since it
fails to learn these correlations, i.e. there is no mechanism
to enforce correlation among mentioned feature extractors.
Thus we propose a multi-step training method to first train
the gating network and then fine-tune the experts based
on the behaviors of the gating network. To further support
this statement, we performed an experiment where we com-
pare our performance with an end-to-end trained scheme

Fig. 10. Ablation studies: the test results of individual gating network after
2.1 step of training when (a) The Main Gating Network is trained end-to-
end together with the experts. (b) The gating mechanism is trained without
the sparsity loss.

(Fig. 10(a)) and demonstrate that simple end-to-end training
approach does not work well for our setting.

2) The effectiveness of Lsparsity and Lnentropy: To show
the effectiveness of the two losses, we performed controlled
experiments. We set both α and β to zero when training
the network with the gating mechanism in sub-steps 1.1 and
2.1. We show the test results obtained from the step 1.1 in
Fig. 6(b). When comparing this figure with Fig. 6(a), we
can see that without Lsparsity, the network is less confident
when selecting experts and without Lnentropy the selection
is limited to a group of the following experts: left, center,
and rightmost expert (see Fig. 2 for explanation of the
experts). This limitation therefore causes the LiDAR Gating
Network to ignore the leftmost part of the LiDAR input.
Furthermore, training without the sparsity loss (shown in
Fig. 10(b)) demonstrate that the outputs of the gating network
for each expert are closer to each other than when the loss
is introduced (see Fig. 7). In other words, the Main Gating
Network has less confidence in making the selection. The
intuition is that without the sparsity loss, the experts tend to
be cooperative instead of competitive with each other when
predicting the steering angles.

V. CONCLUSION

This paper focuses on the autonomous driving problem
with multiple sensing modalities, such as cameras and Li-
DAR. We consider the problem of efficient usage of multi-
modal sensory resources with the goal of building a network
that activates the processing of the data from only the
relevant sensors. We show how to combine the discrete and
continuous selection of relevant information. Our approach
shows superiority over existing common baselines: it handles
sensor failures, has high predictive power, and is efficient
(runs in real time). In addition, by visualizing the output of
the gating network, it becomes easy to see which part of the
input is the most important for the driving task at any given
moment.



APPENDIX
TABLE IV

NETWORK ARCHITECTURE

LiDAR Expert:
The first 4 conv layers are followed by a 2x2 maxpooling with a stride of

2. An 1x2 maxpooling with a stride of (1,2) follows the conv5 layer.
Layer name output size Parameters

conv1 16×16×148 k=3×5, s=(1,1), p=(1,1), BN, ReLU
conv2 32×8×72 k=3×5, s=(1,1), p=(1,1), BN, ReLU
conv3 64×4×34 k=3×5, s=(1,1), p=(1,1), BN, ReLU
conv4 96×2×16 k=3×4, s=(1,1), p=(1,1), BN, ReLU
conv5 128×1×8 k=3×3, s=(1,1), p=(1,1), BN, ReLU

vectorize 512

LiDAR Gating Network/ LiDAR feature extractor in Main Gating
Network:

A 2x2 maxpooling with a stride of 2 follows the conv2 and conv3 layer.
Layer name output size Parameters

conv1 16×10×18 k=1×1, s=(2,27), p=(2,6), BN, ReLU
conv2 32×8×6 k=5×7, s=(1,3), p=(1,2), BN, ReLU
conv3 64×4×2 k=3×4, s=(1,1), p=(1,1), BN, ReLU

vectorize 128

Camera Expert:
The conv1,2,4,5,6 layers are followed by a 2x2 maxpooling with a stride

of 2. A 3x3 maxpooling with a stride of 2 follows the conv3 layer.
Layer name output size Parameters

conv1 16×60×96 k=4×4, s=(2,2), p=(1,1), BN, ReLU
conv2 32×30×48 k=3×3, s=(1,1), p=(1,1), BN, ReLU
conv3 64×16×24 k=2×3, s=(1,1), p=(1,1), BN, ReLU
conv4 96×8×12 k=3×3, s=(1,1), p=(1,1), BN, ReLU
conv5 128×4×6 k=3×3, s=(1,1), p=(1,1), BN, ReLU
conv6 256×2×4 k=3×2, s=(1,1), p=(1,1), BN, ReLU

vectorize 512

Camera feature extractor in Main Gating Network:
The conv2,3 layers are followed by a 2x2 maxpooling with a stride of 2.

Layer name output size Parameters
conv1 16×13×20 k=1×1, s=(10,10), p=(1,1), BN, ReLU
conv2 32×6×10 k=5×4, s=(2,2), p=(1,1), BN, ReLU
conv3 64×2×4 k=4×4, s=(1,1), p=(1,1), BN, ReLU

vectorize 128

LiDAR full expert in LiDAR only network:
The first four conv layers are followed by a 2x2 maxpooling with a stride
of 2. An 1x2 maxpooling with a stride of (1,2) follows the conv5 layer.

Layer name output size Parameters
conv1 16×16×222 k=3×10, s=(1,2), p=(1,1), BN, ReLU
conv2 32×8×106 k=3×8, s=(1,1), p=(1,1), BN, ReLU
conv3 64×4×50 k=3×6, s=(1,1), p=(1,1), BN, ReLU
conv4 96×2×24 k=3×4, s=(1,1), p=(1,1), BN, ReLU
conv5 128×1×12 k=3×3, s=(1,1), p=(1,1), BN, ReLU
linear 512 768×512
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