
Towards Practical Multi-Object Manipulation using Relational
Reinforcement Learning

Richard Li1 and Allan Jabri2 and Trevor Darrell2 and Pulkit Agrawal1

Fig. 1: We present a reinforcement learning system that can stack 6 blocks without requiring any demonstrations or task-
specific assumptions. The last two rows show zero-shot generalization results of configuring blocks into unseen configurations
of multiple towers and pyramids without additional training. See the videos here: https://richardrl.github.io/relational-rl.

Abstract— Learning robotic manipulation tasks using rein-
forcement learning with sparse rewards is currently impractical
due to the outrageous data requirements. Many practical tasks
require manipulation of multiple objects, and the complexity
of such tasks increases with the number of objects. Learning
from a curriculum of increasingly complex tasks appears to
be a natural solution, but unfortunately, does not work for
many scenarios. We hypothesize that the inability of the state-
of-the-art algorithms to effectively utilize a task curriculum
stems from the absence of inductive biases for transferring
knowledge from simpler to complex tasks. We show that
graph-based relational architectures overcome this limitation
and enable learning of complex tasks when provided with
a simple curriculum of tasks with increasing numbers of
objects. We demonstrate the utility of our framework on a
simulated block stacking task. Starting from scratch, our agent
learns to stack six blocks into a tower. Despite using step-wise
sparse rewards, our method is orders of magnitude more data-
efficient and outperforms the existing state-of-the-art method
that utilizes human demonstrations. Furthermore, the learned
policy exhibits zero-shot generalization, successfully stacking
blocks into taller towers and previously unseen configurations
such as pyramids, without any further training.

I. INTRODUCTION

The main idea in reinforcement learning is to incentivize
actions that maximize rewards. Unlike video games, where

1Richard Li and Pulkit Agrawal are at the Massachusetts Institute of
Technology, USA, {rli14, pulkitag}@mit.edu

2Allan Jabri and Trevor Darrell are at the University of California
Berkeley, {ajabri, trevor}@berkeley.edu

rewards are readily available, for manipulation tasks, a re-
ward function must be manually constructed. For example,
to pick and place a block, the rewards might be inversely
proportional to the manipulator’s distance from the block and
the block’s distance from the target location. Such rewards
that frequently provide information about the task are known
as dense rewards. Using dense rewards, an agent can get
stuck in a local minimum and never complete the desired
task. It is well known that intuitively reasonable reward
functions can often result in unexpected or undesirable
behaviors [1]. This makes reward design very challenging.

An alternative is to provide the agent with sparse rewards,
which may either be provided after the agent completes the
overall task (i.e., terminal reward) or extremely intermittently
when the agent completes critical steps (i.e., step-wise re-
wards). Sparse rewards are more straightforward to define
than dense rewards. However, because many tasks require
execution of a long sequence of actions, sparse rewards
drastically complicate the challenges of exploration and
credit-assignment. Training with sparse rewards, therefore,
either completely fails or requires massive amounts of data.

Practical reinforcement learning systems have sidestepped
the challenge of learning from sparse rewards by either using
(a) human demonstrations, (b) sim2real transfer, (c) careful
environmental instrumentation to simplify the task or (d)
meticulous reward shaping. Using these ideas, RL has been
applied to wide variety of robotic tasks such as stacking
blocks in a tower [2], [3], [4], opening doors [5], flipping

ar
X

iv
:1

91
2.

11
03

2v
1 

 [
cs

.R
O

] 
 2

3 
D

ec
 2

01
9

https://richardrl.github.io/relational-rl


pan-cakes [6], hitting a ball, orienting a cube [7] and other
dexterous manipulation tasks [8].

Developing data-efficient algorithms that can learn from
sparse rewards will alleviate the need for demonstrations and
painful reward design. It will consequently open up many
application areas, where RL cannot be applied today. Past
works have improved learning efficiency of RL algorithms
using better optimization methods [9], [10], [11], combin-
ing model-based and model-free learning [12], hierarchical
learning [13], and design of better exploration methods [14],
[15], [16], [17], [18]. A few recent works used the compo-
sitional task structure to improve the data efficiency of RL
algorithms [19], [20], [21].

In the related field of supervised deep learning, transfer
of knowledge by pre-training on a source task followed
by finetuning on a target task [22], [23], [24] has been
very successful in reducing the data requirements. However,
in the context of RL, learning from multiple tasks and
transferring this knowledge to reduce data requirements for
a new task remains an open challenge [25], [26], [27], [28].
One potential reason for lack of transfer is that learning from
a new task exacerbates the already existing problem of credit
assignment. The inability to assign credit, in turn, increases
the variance in the gradients and consequently results in
learning failure [29]. One solution is to pace the agent’s
learning, where it only gets a new task when it has mastered
previous tasks (i.e., curriculum learning [30]).

It turns out that in RL settings, curriculum learning is also
not straightforward. To better understand why it is the case,
consider solving the problem of stacking multiple blocks
into a tower using a curriculum of stacking an increasing
number of blocks. Suppose the agent has mastered the skill
of stacking two blocks. The introduction of the third block
preserves the task structure but changes the distribution of the
agent’s input. In the absence of appropriate inductive biases
to deal with changes in inputs, the agent resorts to treating
the new data distribution as a new learning problem and is
unable to leverage its knowledge from past tasks efficiently.

One well-known method to tackle changing data distri-
bution is training with data-augmentation. In RL settings,
this idea has translated into domain randomization [31].
In the running example, training with randomization in-
volves sampling a random number of blocks from a uniform
distribution in every episode. However, because, in most
episodes, the agent would be tasked to stack multiple blocks,
learning in such a situation remains very challenging. This
consideration suggests that the major hindrance in learning
from a curriculum may not be in the design of the curriculum,
but the inability of learning systems to transfer knowledge
across the different tasks in the curriculum.

In this work, we show that training a policy represented
by a attention based graph neural network (GNN) overcomes
the challenges associated with curriculum learning in multi-
object manipulation tasks. Our agent learns to stack six
or more blocks from scratch (see Figure 1). We use a
simple curriculum strategy, which increases the number of
blocks when the agent masters a target task with a fewer

number of blocks. The attention-based GNN complements
the curriculum by providing the appropriate inductive bias
to transfer knowledge between tasks with a different number
of objects. To the best of our knowledge, ours is the first
work to solve the problem of stacking six or more blocks
using RL and without requiring any expert demonstrations.
Our method is orders of magnitude more efficient than the
previous state-of-the-art method relying on human-provided
demonstrations [4].

Furthermore, our system can build towers that are taller
than the training time. It also succeeds at placing blocks
in different configurations such as pyramids without any
additional training (i.e., zero-shot generalization). While we
present results on the task of stacking blocks in various
arrangements, the approach developed in this work does
not make any task-specific assumption and is therefore
applicable to a wide range of tasks involving manipulation
of multiple objects.

II. RELATED WORK

Our work is broadly related to techniques for scaling
reinforcement learning algorithms to more complex robotic
manipulation settings, as well as the use of relational and
curricular inductive biases in machine learning.
Relational Inductive Bias: The use of relational inductive
biases has a long history in reinforcement learning [32],
[33], [34], and more broadly in logic and machine learning
[35]. Recently, there has been great interest in the use of
Graph Neural Networks (GNNs) for representing graph data
structures, which are especially suitable for object-oriented
environments [36], [37], [38], [39], [40], [41]. In the context
of RL, a key motivation for relational representation is
to support a varying number of objects as inputs and to
explicitly model relationships between objects. In the past,
GNNs have been studied in context of learning and trans-
ferring policies for locomotion across agents with variable
morphologies [20], [21].

Closest to our work is past research combining GNNs
with policy learning for manipulation tasks. However these
works either rely on tens or hundreds of thousands of
expert demonstrations [42], [43] or exclusively show results
on video games[19]. Furthermore, while these works have
considered GNNs to improve efficiency of solving a single
task, we combine GNNs with learning from a curriculum of
increasingly complex tasks to solve long-horizon manipula-
tion problems that cannot be solved directly using current
methods.
Curriculum Learning: Curriculum learning addresses the
effect of data sampling strategies on learning, under the
presumption that proper sampling of tasks can allow for more
sample efficient learning and avoidance of local minima [44].
In particular, prior work has shown that ordering tasks by
heuristic measures of difficulty can be effective [45], [46].
A line of work has studied automatic discovery of curricula
based on learning progress [47], adversarial self-play [18],
[48], or backtracking [49]. So far, these methods have not
yielded curricula capable of automatically discovering tasks



of the complexity we consider. In this paper, our contribution
is not in proposing a new algorithm or heuristic for choos-
ing the task curricula, but to demonstrate the graph-based
representations can make use of a curriculum for learning
complex tasks.
Block Stacking: Prior work on block stacking either heavily
relied on human demonstrations [4], [50], or required signif-
icant reward engineering [3], [51], and/or carefully designed
curriculum [3] of reaching, picking and placing blocks. Such
design of curriculum and reward functions are hard problems
with no known principled solutions. The work of [2] stacked
blocks using a low-cost robot. However, they assumed the
blocks were already picked and used a dense reward function.
Other lines of work [52], [53] achieved impressive results
on stacking objects, but relied on extensive human-defined
knowledge of detecting keypoints or assuming access to
physics simulation. In contrast, we present a simple but
effective method for stacking blocks using RL that makes
minimal assumptions about task structure or the environment.
Hierarchical Reinforcement Learning (HRL) aims to
address the scaling and generalization problem in RL by
decomposing problems into smaller subproblems. Examples
of HRL frameworks include the “options" framework [13],
feudal learning [54], [55] and the MaxQ framework [56]. A
key unsolved challenge is joint end-to-end learning of mul-
tiple levels of control, while avoiding degenerate solutions
that lack hierarchical abstraction. Most successful instanti-
ations of hierarchical RL make use of domain knowledge
to construct a hierarchy [57]. To our knowledge, no HRL
algorithms have been successful at stacking tasks of the
complexity we consider [58].

III. EXPERIMENTAL SETUP

Figure 1 shows our simulated robotic environment
consisting of a 7-DoF Fetch robot arm equipped with
a two-fingered parallel jaw gripper based on OpenAI’s
FetchPickAndPlace [59]. MuJoCo physics engine [60] was
used for simulations. The robot is tasked to manipulate 1-9
blocks kept on a table. Each block is a cube with sides of
5cm. The robot’s action space is 4D, consisting of relative
change in 3D position of its end-effector and a scalar value
representing the distance between two fingers of the gripper.
Observations: The agent observes gripper features Xee,
including gripper velocity and position, and features rep-
resenting N blocks. The block features are denoted by
Xf : xf1 , x

f
2 , ..x

f
N , where N ∈ [1, 9] and xfi is the feature

representation of the ith block. Each block is represented by
a 15-D vector consisting of 3D position (xpi ), 3D orientation
expressed as Euler angles, 3D position relative to the gripper,
3D cartesian velocity and 3D angular velocity. The goal is
expressed as set of 3D block positions, Xg : xg1, x

g
2, ..x

g
N .

The overall input to the agent is therefore {Xee, Xf , Xg}.
At the start of every episode, the initial block positions are
randomly initialized on the table and the goal positions are
sampled using a pre-determined distribution. The maximum
length of every episode is 50 ∗ N steps, where N is the
number of blocks.

Reward: We use a step-wise sparse reward function where
the robot is only rewarded when it places the ith block within
a distance of δ from its desired goal location. The overall
reward for placing N blocks is given by:

∑
i 1‖xp

i−x
g
i ‖<δ .

We noticed that with this reward function, the robot learns to
hold the top two blocks in its gripper instead of placing them
and moving its hand away. To discourage this behavior, we
added an additional term 1grip_away in the reward function
to encourage the robot to move its hand away from the
tower. This additional penalty was only provided when the
hand was at a distance greater than 2δ from a “fully-
stacked" tower. The overall reward is therefore given by,
rt =

∑
i 1‖xi−gi‖<δ − 1grip_away. Following [59], we set

δ = 5cm, the size of each block.

IV. PRELIMINARIES

A. Reinforcement Learning

A typical RL agent acts within an environment E, mod-
eled by a discrete-time Markov Decision Process (MDP)
described by state space S, action space A, transition function
T, reward function r(s, a), and discounting factor γ. The
aim of the agent is to maximize the expected cumulative
reward along states s1:T caused by a sequence of actions
a1:T−1, by learning a suitable policy at = π(st), i.e.
maxπ Ea∼π,s∼T[

∑T
t=1 γ

(t−1)r(st, at)].
A relatively efficient class of policy search algorithms

is off-policy reinforcement learning. Q-learning [61] is a
well known choice for off-policy learning, wherein the aim
is to model the Q-function, i.e. Q(st, at) = r(st, at) +∑T
i=t+1 γ

t+1−ir(si, ai). In principle, the optimal Q-function
is found by solving the Bellman equation [62]. In practice,
we approximate the Q-function with a function approximator
(i.e. a neural network) parameterized by θ by minimiz-
ing the Bellman error E(θ) = 1

2‖Qθ(st+1, at+1) − (rt +
γmaxat Qθc(st, at))‖2, where θc is an optimization constant
that represents the weights of a slowly-updated "target"
network.

B. Goal-Conditioned RL

While the above formulation is appropriate for a single
goal, for solving multiple tasks, it is necessary to provide a
task description as input [63], [23], [64]. Goal conditioned
policies are expressed as at = π(st, sg), where sg represents
the goal state. The learning problem is expressed as:

max
π

Esg∼ρ(sg),a∼π,s∼T[
T∑
i=t

γ(t−i)r(st, at, sg)] (1)

where goal sg is sampled from a goal distribution ρ(sg).

C. Graph Neural Networks (GNN)

The central computation in a GNN is message passing
between 1-hop vertices of a graph, performed by a graph-
to-graph module. This module takes as input a variable-
size vertex set v = {~vi}Nv

i=1 and outputs an updated set
v′ = {~v′i}

Nv
i=1, where Nv is the number of vertices in the

input graph. ~vi,~v′i denote feature vectors of the ith node



before and after a round of message passing. In each message
passing round, each vertex sends a message to every other
vertex. In attention-based GNNs, the incoming messages are
weighted by a scalar coefficient (computed by attention)
according to their relevance to the receiving vertex. The new
feature representation of the vertex is the weighted sum of
incoming messages. Message passing is typically performed
multiple times. After message passing, the entire graph is
represented as a fixed-sized embedding by pooling features
across all vertices.

Mathematically, let the feature representation of the ith

vertex at timestep t be~vit. In every message passing round,
each vertex generates a query~qti , key~kti and a message~mt

i

using independently-parameterized functions ~qti = φtq(~v
t
i),

~kti = φtk(~vi), and~mt
i = φtm(~vti). Each vertex in the graph

receives a message from all the vertices and computes it’s
feature representation, ~vt+1

i =
∑
j wij~m

t
j , where wij are

the attention weights and are computed as follows: wij =

softmax

(
V T tanh(~qi +~kj)

)
.

V. METHOD

We present a simple, but effective method for solving long-
horizon, sparse reward tasks using reinforcement learning.
Our core contribution is to equip the RL agent with inductive
biases of relational reasoning in order to enable learning
from a curriculum of tasks of increasing complexity. We use
Soft-Actor Critic (SAC; [10]) as our base learning algorithm
because it is more robust to choice of hyperparameters and
random seeds as compared to alternative off-policy learners
such as DDPG [65]. To use the same policy for multiple
tasks, we modified SAC to be goal-conditioned [63], [23],
[64]. For better sample efficiency, we also incorporated the
idea of goal re-labelling via hindsight experience replay
(HER; [64]). Details of SAC and HER can be found in
the respective papers and are not directly relevant to our
work. While we use SAC + HER for policy learning, our
contributions are not specific to these algorithms and are
applicable to any policy learning method.

We represent both the actor and critic in SAC using the
graph neural network architecture described in Section IV-C.
The various components of the GNN (φtq, φ

t
m, φ

t
k) use 64D

linear layers. We use separate weights for each round of
message passing and terminate the message passing after 3
rounds. We use a residual connection and layer normalization
between the output of message passing round t and the input
of message passing round t+1 to ease optimization. We call
this agent architecture ReNN. We compare the performance
of ReNN against the baseline system that constructs the actor
and critic using four layers of 256D fully connected layers
(referred to as MLP in rest of the paper).
Training Curriculum: We trained the robot to stack mul-
tiple blocks using three different curricula of tasks:
• Direct: The robot was directly tasked to learn a policy

to stack six blocks starting from scratch.
• Uniform: At every episode, the number of blocks was

uniformly sampled between 1 and 6.

Fig. 2: Comparing task performance measured as the mean
number of blocks stacked per timestep during training. We
report the mean and standard deviation across multiple work-
ers and/or seeds. The performance of relational (ReNN) and
the usual multi-layer (MLP) architectures are reported when
they are subjected to different training curricula described
in Section V. Both ReNN and MLP fail to stack blocks,
when the robot was directly trained for stacking 6 blocks
(MLP−Direct, ReNN−Direct). Only ReNN trained with
sequential curriculum (ReNN − Sequential) succeeds at
stacking six blocks.

• Sequential: The robot was tasked to first pick and place
a single block at goal positions that were uniformly
and randomly chosen to be on the table or in the
air. The robot then had to pick and place 2 blocks,
where goal position of one block was sampled on the
table and the goal position for the second block was
sampled using the process described above. Thereafter,
the robot was tasked with stacking blocks in a single
tower configuration starting with 2 blocks. After the
robot perfected stacking (N-1) blocks, it was given
N blocks to stack. N was sequentially increased from
3 to 6. The transition points in this curriculum were
manually chosen based on the success rates on stacking.

A. Testing Details

We evaluated the generalization of the policy trained for
stacking a single tower by evaluating its performance on the
following tests (see Appendix for visuals):

• Single Tower: A single point was uniformly sampled
on the table to serve as the base of a block tower. The
goal positions of the blocks corresponded to translation
along the z-axis from the base.

• Multiple Towers: Few points (k ∈ {2, 3}) were sam-
pled on the table to serve as the base location of multiple
towers. Each block was randomly assigned to a tower
to produce towers of approximately equal height.



(a) (b) (c)

Fig. 3: Quantitative evaluation of zero-shot generalization results of policies trained to stack i blocks in a single tower. These
policies were evaluated, without any further training, on (a) single (but taller) tower (shown in shades of red); (b) multiple
towers; (c) pyramid configurations. Details of these testing setups can be found in Section V-A. The results show that robot
is capable of zero-shot generalization to many of these tasks.

• Pyramid: A uniformly sampled point on the table
served as a corner point for pyramid configuration. Fig-
ure A.1 shows different Multiple Towers and Pyramid
goal configurations for varying number of blocks.

We report performance of ReNN- Sequential (referred to as
ReNN in later text) across three seeds. For other methods we
report performance on a single seed. Success rate is reported
as accuracy of completing a task averaged over 100 episodes.
An episode is counted as successful when each block is
within its goal position at the final time step.

VI. RESULTS

TABLE I: Comparing the performance of our method against
the previous state-of-the art [4] that makes use of human
demonstrations on the block stacking task. Each entry,
p% (s), denotes accuracy of p% after s number of environ-
ment steps. Our method is both more sample efficient and
outperforms prior work.

Task Single Tower 4 Single Tower 5 Single Tower 6
Nair‘17 [4] 91% (850M) 50% (1000M) 32% (2300M)

Ours 93%±4% (23M) 84%±6% (27M) 75%±4% (30M)

Figure 2 shows that ReNN trained with the sequential
curriculum (green line; section V) succeeds at stacking six
blocks into a tower. Standard MLP architectures or ReNN
trained to directly stack 6 blocks without the curriculum
fail. Our experiments revealed that training with uniform
curriculum was also insufficient. These results show that both
ReNN and the sequential training are critical for success.
To the best of our knowledge, ours is the first paper to
show that is is possible to train a RL agent to stack six or
more blocks in a tower after starting from scratch, without
requiring expert demonstrations.

We report quantitative performance of our method and
baselines in Table I. Our method achieves a success rate
of 75% at stacking 6 blocks in 30 million timesteps. In
comparison, the existing state-of-art method [4], that makes
use of human demonstrations and resets, achieves only a
success rate of 32% after over 2.3 billion timesteps. While
the base learning algorithm used by [4] is DDPG + HER,
in comparison to SAC + HER used by us, the orders of

magnitude difference in performance cannot be attributed to
the choice of using SAC instead of DDPG. We attempted
to replicate results of [4] using SAC. However, we were
unsuccessful at training SAC with behavior cloning due to
the challenge in weighing the entropy term in SAC against
the behavior cloning loss.

Careful analysis of Figure 2 reveals that there are several
dips in performance as the training progresses. Many of the
significant dips correspond to increase in task complexity to
stack N+1 blocks, after stacking N blocks. In most cases,
the dip in performance is overcome after little additional
experience. The only notable exception is the performance
dip at 9M steps that corresponds to transitioning from 1
to 2 blocks. This was the first time the agent observed
multiple objects. Additionally, We found that SAC converged
faster, albeit with higher variance when it’s exploration was
augmented to take a random action with probability of 0.1.

A. Zero-shot Generalization

It is desirable to learn policies that are not only adept at
the task they were trained on, but can be re-purposed for new
and related tasks. If our ReNN architecture indeed provides a
good inductive bias, then it should be possible solve different
block configuration tasks with high-accuracy. To test this,
we evaluated the performance of the learned policy, without
any fine-tuning on previously unseen block configurations
(i.e. zero-shot generalization) described in Section V-A. The
results of this analysis are summarized in Figure 3.
Single Tower Evaluation: Figure 3 shows that a policy
learned to stack N blocks generalizes to stacking N + 1
blocks without any training. The performance on stacking
N + k blocks, where k > 1 drops significantly. One
possible explanation is that it becomes progressively harder
to stabilize larger number of blocks in a tower and the robot
needs to substantially refine its strategy to stack more blocks.
An analysis of failure modes is presented in Appendix B.
Multiple Towers Evaluation: The previous experiments
tested generalization to a larger number of blocks, but on the
same task. To test if the learned policy generalizes to new
tasks, we evaluated the performance on stacking multiple
towers instead of a single tower. Results in Figure 3(b) show
that the agent trained for stacking a single tower of N blocks



Fig. 4: Analysis of internal representation used by our system to solve the task of stacking six blocks into a single tower.
The first row shows the key step of this task. The second row, shows for each of these key frames, a 6× 6 matrix, whose
(i, j)th entry represents the influence of feature representation of jth block on the ith block after three message passing
rounds. The labelled index along the y-axis and x-axis correspond to the object ID. Object IDs 1 - 6 correspond to green,
yellow, blue, pink, red, and black blocks in order. The attention map reveals that our agent pays attention to the sub-set of
blocks relevant to solving the sub-problem (stacking one block) at hand. We speculate that such an attention map suggests
that the agent has internally learnt to decompose the complex block stacking task into simpler sub-problems.

can successfully stack multiple towers N + k blocks. The
performance again drops for k > 2. However, generalization
to k ≥ 2 is better on the multiple towers task as compared
to the single tower task. This suggest that while ReNN can
generalize to a larger number of blocks than seen during
training time, stacking a taller single tower without additional
training is hard due to the difficulty of stabilizing a taller
stack of blocks.

Pyramid Evaluation: To stress test our system further, we
evaluated its performance on placing blocks in a pyramid
configuration (see Figure A.1). Note that the robot never
saw pyramids during training. Stacking blocks in pyramid
is different than a tower, because now blocks may need to
be balanced on two supporting blocks instead of only being
stacked vertically. Figure 3(c) shows that our system is able
to generalize and manipulate larger number of blocks than
seen in training into pyramid configurations. Interestingly,
the agent trained on Single Tower 4 performs better on the
difficult Pyramid 5 and Pyramid 6 tasks than the agent trained
on Single Tower 6. One possible explanation is that the agent
trained on taller tower overfits to stacking blocks vertically,
and is less able to stack blocks at an horizontal offset, which
is useful for the pyramid task.

Emergent Strategies: The accompanying videos (https://
richardrl.github.io/relational-rl) show that our agent automat-
ically learns to push other blocks to grasp a particular block,
grasps two blocks at a time and places them one by one
to save time and other complex behaviors. These strategies
emerge automatically as a consequence of optimizing a
sparse reward function.

To the best of our knowledge, ours is the first work that
reports such zero-shot generalization on the block stacking
task using RL. At the same time, we acknowledge, there is
substantial room for improving the zero-shot results and the
stacking performance. Some future directions are described
in Section VII.

B. Analyzing the learned representations

In order to gain insights into why ReNN leads to faster
convergence and better generalization, we visualized the at-
tention patterns as the robot stacked six blocks (see Figure 4).
The first row shows the key steps in tower stacking. Each
column in second row is a 6 × 6 matrix (E). Each entry
in the matrix, eij represents the normalized relevance score
of the ith block on the features of the jth block (see wij
defined in Section IV-C) computed by the final layer. It
can be seen that maximum attention is to paid to the block
that is to be placed and the attention on existing blocks in
the stack decreases from the top-most to bottom-most block.
Such attention pattern suggests that our system has learned
to focus on the blocks most relevant to current block being
placed. This is interesting because it suggests that ReNN has
learned to decompose a complex problem into simpler sub-
problems. We hypothesize that such decomposition is the
reason why our system can learn from a task curricula and
exhibits zero-shot generalization.

VII. DISCUSSION

We have presented a framework for learning long-horizon,
sparse reward tasks using deep reinforcement learning, re-
lational graph architecture and curriculum learning. While
we are orders of magnitude more sample efficient than the
the existing state-of-the-art, our method would still require
a few dozen robots (corresponding to our 35 workers) and
several days (assuming each action takes .25 seconds) of
real world training to achieve a comparable environment step
complexity. And while block stacking is representative of
long-horizon, multi-object manipulation tasks, it is important
to scale our method to tasks involving more complicated
object geometries and more granular manipulation.

In the current work, the curriculum is manually designed
and based on the principle that smaller sets of objects are
easier to learn to manipulate than larger sets of objects.
However, more complicated and effective curricula could

https://richardrl.github.io/relational-rl
https://richardrl.github.io/relational-rl


exist along axes of variation beyond just the object cardi-
nality, and discovering these curricula automatically is an
interesting direction for future research. One point of concern
with relational architectures is that the computation time
is quadratic in the number of entities. Developing compu-
tationally efficient methods is therefore important to scale
these methods to environments with much larger numbers of
objects. Finally, while we have presented results from state
observation, in the future we would like to scale our system
to work from visual and other sensory observations.

VIII. ACKNOWLEDGEMENTS

We acknowledge support from US Department of Defense,
DARPA’s Machine Common Sense Grant and the BAIR and
BDD industrial consortia. We thank Amazon Web Services
(AWS) for their generous support in the form of cloud cred-
its. We’d like to thank Vitchyr Pong, Kristian Hartikainen,
Ashvin Nair and other members of the BAIR lab and the
Improbable AI lab for helpful discussions during this project.

REFERENCES

[1] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan,
“Inverse reward design,” in Advances in neural information processing
systems, 2017, pp. 6765–6774.

[2] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,”
Robotics Science and Systems, pp. 57–64, 2011.

[3] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[4] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Overcoming exploration in reinforcement learning
with demonstrations,” CoRR, vol. abs/1709.10089, 2017. [Online].
Available: http://arxiv.org/abs/1709.10089

[5] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[6] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill co-
ordination with em-based reinforcement learning,” in 2010 IEEE/RSJ
international conference on intelligent robots and systems. IEEE,
2010, pp. 3232–3237.

[7] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
et al., “Learning dexterous in-hand manipulation,” arXiv preprint
arXiv:1808.00177, 2018.

[8] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[9] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with
a stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online].
Available: http://arxiv.org/abs/1801.01290

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” JMLR, 2016.

[13] R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[14] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic mo-
tivation (1990–2010),” IEEE Transactions on Autonomous Mental
Development, 2010.

[15] M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer, “Exploration in
model-based reinforcement learning by empirically estimating learning
progress,” in NIPS, 2012.

[16] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology
of computational approaches,” Frontiers in neurorobotics, 2009.

[17] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 16–17.

[18] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam,
and R. Fergus, “Intrinsic motivation and automatic curricula via
asymmetric self-play,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=SkT5Yg-RZ

[19] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart, et al., “Deep re-
inforcement learning with relational inductive biases,” International
Conference on Learning Representations, 2019.

[20] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning
structured policy with graph neural networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=S1sqHMZCb

[21] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. A. Efros, “Learning to
control self- assembling morphologies: A study of generalization via
modularity,” in arXiv preprint arXiv:1902.05546, 2019.

[22] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in International conference on machine learning,
2014, pp. 647–655.

[23] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” NIPS,
2016.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[25] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfit-
ting in deep reinforcement learning,” arXiv preprint arXiv:1804.06893,
2018.

[26] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quan-
tifying generalization in reinforcement learning,” arXiv preprint
arXiv:1812.02341, 2018.

[27] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. To-
gelius, and S. Risi, “Illuminating generalization in deep reinforce-
ment learning through procedural level generation,” arXiv preprint
arXiv:1806.10729, 2018.

[28] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[29] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine,
“Divide-and-conquer reinforcement learning,” arXiv preprint
arXiv:1711.09874, 2017.

[30] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 41–48.

[31] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[32] L. P. Kaelbling, T. Oates, N. Hernandez, and S. Finney, “Learning in
worlds with objects,” in Working Notes of the AAAI Stanford Spring
Symposium on Learning Grounded Representations, 2001, pp. 31–36.

[33] S. Džeroski, L. De Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning, vol. 43, no. 1, p. 7–52, Apr 2001.

[34] M. Van Otterlo, “Relational representations in reinforcement learning:
Review and open problems,” in Proceedings of the ICML, vol. 2, 2002.

[35] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall Press, 2009.

[36] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and
locally connected networks on graphs,” in International Conference on
Learning Representations (ICLR2014), CBLS, April 2014, 2014.

[37] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 3844–3852.

http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1801.01290
https://openreview.net/forum?id=SkT5Yg-RZ
https://openreview.net/forum?id=SkT5Yg-RZ
https://openreview.net/forum?id=S1sqHMZCb


[Online]. Available: http://papers.nips.cc/paper/6081-convolutional-
neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[39] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn:
Deep learning on spatio-temporal graphs,” CoRR, vol. abs/1511.05298,
2015. [Online]. Available: http://arxiv.org/abs/1511.05298

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[41] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. kavukcuoglu,
“Interaction networks for learning about objects, relations and
physics,” in Proceedings of the 30th International Conference
on Neural Information Processing Systems, ser. NIPS’16. USA:
Curran Associates Inc., 2016, pp. 4509–4517. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3157382.3157601

[42] Y. Duan, M. Andrychowicz, B. Stadie, O. Jonathan Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation
learning,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 1087–1098. [Online]. Available: http://papers.nips.cc/paper/6709-
one-shot-imitation-learning.pdf

[43] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and
J. Wu, “Reasoning about physical interactions with object-oriented
prediction and planning,” in International Conference on Learning
Representations, 2019.

[44] J. L. Elman, “Learning and development in neural networks: the
importance of starting small,” Cognition, vol. 48, no. 1, p. 71–99,
1993.

[45] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ser. ICML ’09. New York, NY, USA: ACM,
2009, pp. 41–48. [Online]. Available: http://doi.acm.org/10.1145/
1553374.1553380

[46] W. Zaremba and I. Sutskever, “Learning to execute,” CoRR, vol.
abs/1410.4615, 2014. [Online]. Available: http://arxiv.org/abs/1410.
4615

[47] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and
K. Kavukcuoglu, “Automated curriculum learning for neural
networks,” CoRR, vol. abs/1704.03003, 2017. [Online]. Available:
http://arxiv.org/abs/1704.03003

[48] D. Held, X. Geng, C. Florensa, and P. Abbeel, “Automatic
goal generation for reinforcement learning agents,” CoRR, vol.
abs/1705.06366, 2017. [Online]. Available: http://arxiv.org/abs/1705.
06366

[49] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel,
“Reverse curriculum generation for reinforcement learning,” arXiv
preprint arXiv:1707.05300, 2017.

[50] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Advances in neural information processing systems, 2017, pp.
1087–1098.

[51] I. Popov, N. Heess, T. P. Lillicrap, R. Hafner, G. Barth-
Maron, M. Vecerik, T. Lampe, T. Erez, Y. Tassa, and
M. Riedmiller, “Data-efficient deep reinforcement learning
for dexterous manipulation,” 2018. [Online]. Available: https:
//openreview.net/forum?id=SJdCUMZAW

[52] O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters, “A kernel-
based approach to learning contact distributions for robot manipulation
tasks,” Autonomous Robots, vol. 42, no. 3, pp. 581–600, 2018.

[53] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[54] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” CoRR, vol. abs/1703.01161, 2017. [Online].
Available: http://arxiv.org/abs/1703.01161

[55] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in
Advances in neural information processing systems, 1993, pp. 271–
278.

[56] T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning,” in In Proceedings of the Fifteenth International Conference
on Machine Learning. Morgan Kaufmann, 1998, pp. 118–126.

[57] P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
CoRR, vol. abs/1609.05140, 2016. [Online]. Available: http://arxiv.
org/abs/1609.05140

[58] A. Pashevich, D. Hafner, J. Davidson, R. Sukthankar, and C. Schmid,
“Modulated policy hierarchies,” CoRR, vol. abs/1812.00025, 2018.
[Online]. Available: http://arxiv.org/abs/1812.00025

[59] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker,
G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, et al.,
“Multi-goal reinforcement learning: Challenging robotics environ-
ments and request for research,” arXiv preprint arXiv:1802.09464,
2018.

[60] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control.” in IROS. IEEE, 2012, pp.
5026–5033. [Online]. Available: http://dblp.uni-trier.de/db/conf/iros/
iros2012.html#TodorovET12

[61] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[62] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[63] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in International Conference on Machine
Learning, 2015, pp. 1312–1320.

[64] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 5048–5058. [Online]. Available:
http://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf

[65] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” ICLR, 2016.

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf
http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf
http://arxiv.org/abs/1511.05298
http://arxiv.org/abs/1706.03762
http://dl.acm.org/citation.cfm?id=3157382.3157601
http://papers.nips.cc/paper/6709-one-shot-imitation-learning.pdf
http://papers.nips.cc/paper/6709-one-shot-imitation-learning.pdf
http://doi.acm.org/10.1145/1553374.1553380
http://doi.acm.org/10.1145/1553374.1553380
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1705.06366
https://openreview.net/forum?id=SJdCUMZAW
https://openreview.net/forum?id=SJdCUMZAW
http://arxiv.org/abs/1703.01161
http://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1812.00025
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://incompleteideas.net/book/the-book-2nd.html
http://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf


APPENDIX

In this section, we provide additional details regarding the
experimental setup and results.

A. Hyperparameter Tables

TABLE A.1: Experiment Hyperparameters.

Parameter Setting
Number of workers 35

Replay buffer max size 1E5
Optimizer Adam

Learning rate 3E-4
Epsilon for uniform action sampling .1

Discount factor .98
Batch size 256

HER fraction of re-labelled goals .8
SAC target entropy 4

TABLE A.2: ReNN Architecture Hyperparameters.

Parameter Setting
Embedding dimension 64

Number of graph modules 3
Graph module weight sharing False

Post-readout MLP hidden layers 3
Input normalization Shared mean/stddev for each block
Activation function Leaky ReLU

Activation function (attention) tanh

B. Successful Configurations for Goal Types

To visualize different goal types, we show frames from
successful trajectories on Pyramid and Multiple Towers goal
types in Figure A.1.

C. Failure Modes

We quantified the major failure modes of our system. They
are as following:

Oscillation: The agent oscillates its end-effector without
progressing towards the goal. Often, this happens when the
target block is very close to the base of the tower. In this
scenario, picking up the block risks toppling the tower. We
hypothesize that in order to reduce this risk, the agent simply
oscillates its end-effector.

Insufficient recovery time: After 6 blocks have been
stacked into a tower, the tower topples. The agent restarts
stacking but is unable to stack all the blocks within the
maximum time length of the episode.

Blocks fall off during stacking: While stacking a tower
of 6 blocks, the agent knocks one or more blocks off the
table. Because the blocks are no longer on the table, the
agent does not succeed.

Blocks fall off after stacking: The agent succeeds in
stacking a tower of 6 blocks, but the tower topples and
block(s) fall off the table.

These failures have been visualized in Figure A.2 and
the videos can be watched at: https://richardrl.github.io/
relational-rl.

(a)

(b)

Fig. A.1: Visualizing goal configurations for (a) Pyramid 4
to Pyramid 7 and (b) Multiple Towers 4 to Multiple Towers
9.

Fig. A.2: Fraction of failures per failure type for a policy
trained on Single Tower 6 and evaluated on target tasks
Single Tower 6 and Single Tower 7.

D. Message Passing Rounds Ablation

We compare the effect of different numbers of message
passing rounds on convergence speed and accuracy. See
Figure A.3 and Table A.3. A single message passing round
converges faster in the earlier stages of the curriculum, but
performs drastically worse when transferring the policy that
learned to stack 5 blocks to stacking 6 blocks. It is likely that

https://richardrl.github.io/relational-rl
https://richardrl.github.io/relational-rl


larger numbers of blocks require more rounds of message
passing to accurately propagate information about multi-
block stability.

Fig. A.3: Comparison of learning curves for ReNN - Sequen-
tial with 3 and 1 messaging passing round(s) in the graph
neural network.

TABLE A.3: Success rates and convergence steps for one
and three rounds of message passing in the graph neural
network.

Rounds Single Tower 4 Single Tower 5 Single Tower 6
1 90% (23M) 77% (26M) 40% (55M)
3 93%±4% (23M) 84%±6% (27M) 75%±4% (30M)


	I INTRODUCTION
	II Related Work
	III Experimental Setup
	IV Preliminaries
	IV-A Reinforcement Learning
	IV-B Goal-Conditioned RL
	IV-C Graph Neural Networks (GNN)

	V Method
	V-A Testing Details

	VI Results
	VI-A Zero-shot Generalization
	VI-B Analyzing the learned representations

	VII Discussion
	VIII Acknowledgements
	References
	Appendix
	A Hyperparameter Tables
	B Successful Configurations for Goal Types
	C Failure Modes
	D Message Passing Rounds Ablation


