
Sufficiently Accurate Model Learning
Clark Zhang1, Arbaaz Khan1, Santiago Paternain2, Alejandro Ribeiro2

Abstract—Modeling how a robot interacts with the envi-
ronment around it is an important prerequisite for designing
control and planning algorithms. In fact, the performance of
controllers and planners is highly dependent on the quality of
the model. One popular approach is to learn data driven models
in order to compensate for inaccurate physical measurements
and to adapt to systems that evolve over time. In this paper, we
investigate a method to regularize model learning techniques to
provide better error characteristics for traditional control and
planning algorithms. This work proposes learning “Sufficiently
Accurate” models of dynamics using a primal-dual method that
can explicitly enforce constraints on the error in pre-defined
parts of the state-space. The result of this method is that the
error characteristics of the learned model is more predictable
and can be better utilized by planning and control algorithms.
The characteristics of Sufficiently Accurate models are analyzed
through experiments on a simulated ball paddle system.

Index Terms—Model Learning, Planning, Control

I. INTRODUCTION

One of the fundamental problems in robotics is the design
of controllers and planners for complex dynamical systems.
These algorithms rely on models of robots that are derived
from physical laws using measured physical constants. These
measurements may not be accurate, since the robot and its
environment may change over time, resulting in a degradation
of performance of the control and planning algorithms. Recent
works address these errors in estimation by using data driven
models to adapt an initial analytic model [1], [2].

One popular method of using data in control and planning
systems is to learn the control inputs directly whether through
reinforcement-learning algorithms [3] [4], imitation learning
[5] [6], or other means. This may work for specific tasks,
but can have difficulty adapting to different tasks or task
parameters such as different control constraints. Learning a
model of the system is therefore more flexible and can be
used with a variety of existing algorithms.

Many modern controllers and planners rely on solving
optimization problems such as iLQR [7], CHOMP [8], and
TrajOpt [9]. These methods require differentiable forward
dynamics models that have well behaved gradients in addition
to being accurate. This paper formulates the model learning
problem as a constrained optimization problem that seeks to
provide such algorithms with predictable errors that enable
them to perform well in a variety of scenarios.

Learning a model is fundamentally different from learning a
controller in that the controller is an end in itself but a model is
useful as an intermediate step to learn a controller. Therefore,

1Authors are with the GRASP Lab and the 2Electrical and Systems
Engineering Department, University of Pennsylvania, USA. {clarkz, arbaazk,
spater, aribeiro}@seas.upenn.edu

Fig. 1. Optimizing a sufficiently accurate model: The solid line represents
the true trajectory of the ball, while the dotted lines represent predicted
trajectories. The paddle actions, a, are optimized with gradient descent on a
defined loss function. For the task of bouncing the ball consistently, a model
that guarantees prediction error within some bound ε may be sufficient.

learning a model with arbitrary accuracy is not necessary.
Rather, we want to learn a model that is sufficiently accurate
for controller design. This paper formulates the problem of
learning a model as a constrained optimization problem in
which the required accuracy of the model is imposed as a set
of constraints (Section III). The constraints that are imposed
in the model accuracy are intended to ensure that the model
is sufficiently accurate for a variety of control tasks. An
additional advantage derived from our problem formulation
is that the accuracy constraints that are imposed in model
learning allow for trading off the accuracy of the model in
different parts of the state space. For example, in Fig. 1 we
consider the problem of determining the dynamical trajectories
followed by a ball that is hit by a paddle in order to design
a controller that would allow us to keep the ball in the air by
repeatedly hitting it when the vertical position crosses a certain
threshold. We argue that for this problem it is advantageous to
learn models that predict with an accuracy dependent on the
velocity of the ball.

A. Contributions

This paper proposes a constraint-based formulation for
learning and controlling dynamical systems. The contributions
of this paper are: (i) a novel constrained objective function
for model learning with neural networks and the adjoining
constrained optimization problem for learning the controller,
and (ii) a primal-dual method to solve both these problems that
has small duality gap. The method is evaluated on a simulated
ball bouncing task with varying task parameters and injected
errors.

ar
X

iv
:1

90
2.

06
86

2v
2

 [
cs

.L
G

]
 2

 M
ar

 2
02

0

II. RELATED WORK

The idea of learning a model from data and using it to
control systems is not new. PILCO [10] learns a probabilis-
tic forward model with Gaussian Process Regression and is
later extended to Bayesian Neural Networks [11]. Guided
Policy Search [12], [13] uses a Gaussian Mixture Model as a
probabilistic dynamics model. Both formulate an optimization
problem with the task of maximizing an expected reward.
This allows a policy to be trained by backpropagating through
the forward model. [14] and [15] both learn neural network
models. The latter then formulates a convex optimization
problem by linearizing the neural network. However, it is
has been observed that linearizing highly nonlinear systems
often performs poorly [16]. The aforementioned methods learn
models with an objective function similar to

min
θ

E ‖φθ(s, a)− f(s, a)‖ (1)

where f(s, a) represents the true model dynamics and φθ(s, a)
is the learned model. [17] designs a specific neural network
architecture for their forward model which uses a normalized
objective. However, there are slack terms introduced to avoid
numerical instability caused by dividing with small numbers.
[18] presents a way to differentiate through the controller so
that a model can be learned end to end. This method requires
that the policy has converged to a fixed point which can be
hard to achieve in complicated systems.

Learning models is also of great interest in reinforcement
learning where a forward model can increase sample effi-
ciency [12], [19]. In addition, it has been found that learning
forward and inverse models can provide additional rewards to
help train a reinforcement learning agent [20]. [21] introduced
a policy search method for reinforcement learning that can
impose expectation constraints on states and actions.

There has also been some work in multi task learning to
obtain task agnostic policies. One way to do this is with meta
learning algorithms such as MAML [22] or [23] which learn
policies that can be adapted to different task parameters. [4],
[24] learn policies that include a goal as an input to encourage
the policy to generalize across different goals. These methods
work for small numbers of task parameters but have difficulty
scaling up as each additional parameter added to a policy will
decrease the sample efficiency of the algorithm.

III. CONSTRAINED MODEL LEARNING

In this work, we consider a discrete forward dynamic model.
Formally, let S and A denote the state and action spaces
respectively. Then, the dynamic model is defined by a function
f : S ×A → S whose inputs are the state and action at time
n, denoted by sn ∈ S and an ∈ A, and whose output is the
state at time n+ 1

sn+1 = f(sn, an). (2)

We denote φθ : S ×A → S as the neural network approxima-
tion of the true model, where θ ∈ RN represents the network
parameters. The classical approach to model learning consists

of finding the parameters θ that minimize the expectation of
a loss function l : S ×A× RN → R, this is

min
θ

E(s,a)∼Dl(s, a, φθ), (3)

where D denotes the sampling distribution over the state-
action space. Note that D is not influenced by θ and is simply
a training distribution. This simple objective does not allow
any control over how errors are distributed. To address this
limitation, we formulate the problem of learning a model
as a constrained optimization problem in which the required
accuracy of the model is imposed as a set of constraints.
The constraints that are imposed in the model accuracy are
intended to ensure that the model is sufficiently accurate,
making it suitable for a variety of control tasks. To that end, we
consider m ∈ N subsets, Ki ⊆ S×A with i = 1, . . . ,m, of the
state-action space and constraints hi : S×A×RN → R, where
each component of the constraint is imposed on a different
region of the space-action space. With these definitions, we
propose the following optimization problem

P ∗θ = min
θ

E(s,a)∼Dl(s, a, φθ)IK0
(s, a) (4)

s.t. E(s,a)∼Dhi(s, a, θ)IKi
(s, a) ≤ εi ∀i . . .m,

where IKi(s, a) with i = 0, . . . ,m are indicator functions
taking the value 1 if (s, a) ∈ Ki and 0 otherwise. For
simplicity we define gi(s, a, φθ) = hi(s, a, φθ)IKi

− εi for
all i = 1, . . . ,m. In the next section we present a primal dual
algorithm to solve the optimization problem (4). Before doing
so, we consider a specific case to illustrate the sufficiently
accurate learning framework.

Example: Normalized Error Model. As a specific case
of the previous formulation, we consider the minimization of
a normalized error. The error tolerance in a forward model
is directly related to the magnitude of the quantity being
estimated. For example, 1 unit of error when the output is
100 is different from 1 unit of error when the output is 1.
A natural way to mitigate these difference is to consider a
normalized error, ‖φθ(s, a)− f(s, a)‖ / ‖f(s, a)‖. It is often
the case that small values of f(s, a) are hard to even measure
accurately, thus, it matters only that the error is bounded rather
than minimized. The set of non-small values will be defined
as K = {(s, a) : ‖f(s, a)‖ ≥ δ}, where δ > 0. One can then
pose the following model learning objective

min
θ

E(s,a)∼D
‖φθ(s, a)− f(s, a)‖

‖f(s, a)‖
IK (5)

s.t. E(s,a)∼D ‖φθ(s, a)− f(s, a)‖ IKC ≤ ε.

This objective simply states that for all large enough f(s, a),
the normalized error should be minimized, and all small values
should be bounded by ε. This constraint can be seen as a
regularization placed on the model learning objective to avoid
overfitting the model to small valued labels.

A. Primal-Dual algorithm

The problem of sufficiently accurate learning can be formu-
lated as the constrained optimization problem (4). A possible

Fig. 2. Model training. The orange curve shows the value of the objective
function, l. Teal curve shows the value of the constraint function, g. Dark blue
curve shows the dual variable, λ. The objective and constraint functions are
smoothed and shown in a darker color. The dotted red line shows the y = 0
line and the constraint curve must go below that for the problem to have a
feasible solution. The curves have different values and are normalized so that
they can be displayed on one graph.

approach to solve said problem is through primal-dual meth-
ods. Let us start by defining a vector of multipliers λ ∈ RP+
and the Lagrangian associated to problem (4)

L(θ, λ) = E[L(s, a, φθ)] + λ>E[g(s, a, φθ)]. (6)

where to simplify notation we have defined L(s, a, φθ) =
l(s, a, φθ)IK0 and we have dropped the distribution D. The
Lagrangian allows us to define the dual problem as

D∗θ = max
λ

min
θ
L(θ, λ) (7)

s.t. λ � 0.

The duality gap is defined by the difference P ∗θ −D∗θ . When
an optimization problem has zero duality gap (we show in
Section III-B that the problem of learning sufficiently accurate
models has close to zero duality gap), then the solutions
of both optimization problems in (4) and (7) are the same.
The optimal primal variable, θ∗, must necessarily minimize
L given the optimal dual variable, λ∗. Likewise, the optimal
dual variable must maximize the Lagrangian given the optimal
primal variable. This leads to the widely used primal-dual
method, where the Lagrangian is iteratively minimized with
respect to the primal variable and maximized with respect
to the dual. This minimization/maximization can be solved
by computing gradient descent steps with respect to θ and
gradient ascent steps with respect to λ. The gradient of the
Lagrangian with respect to θ takes the form

∇θL(θ, λ) = E[∇θL(s, a, φθ)] +

m∑
i=1

λiE[∇θgi(s, a, φθ)],

(8)

and the gradient of the Lagrangian with respect to the multi-
plier λ yields

∇λL(θ, λ) = E[g(s, a, φθ)]. (9)

Each iteration must be followed by a projection of λ onto the
positive orthant to make sure it is non negative. Given a static
distribution of states and actions to optimize this model, the
algorithm is summarized in Algorithm 1. Note that gradient

Algorithm 1: ModelLearning(θ0, D)
Input: θ0, initial model parameters

D, dataset of (s, a, f(s, a)) tuples
λ← λ0 , set dual variable to an initial value ;
θ ← θ0 ;
while not converged do

Sample batch of (s, a, f(s, a)) data ;
Estimate ∇θL(θ, λ),∇λL(θ, λ) using data ;
θ+ = θ − αθ∇θL(θ, λ) ;
λ← λ+ αλ∇λL(θ, λ) ;
λ← max(λ, 0) ;
θ ← θ+

end
return θ ;

ascent and descent steps can be modified to include momentum
or include more complicated algorithms such as ADAM [25].
In the next section we show that the sufficiently accurate
learning formulated in (4) has almost zero duality gap which
motivates the use of the primal-dual algorithm to solve it. One
modification that many model learning methods use is to run
the model while it is training to gather new data that is added
to the training set. This is a DAGGER-like [5] approach used
by many methods [26], [27].

B. Almost Zero Duality Gap

By definition of the dual problem, it follows that the dual
solution D∗θ is always a lower bound for the primal solution
P ∗θ . That is, P ∗θ ≥ D∗θ [28]. The converse is however not
true, but we can show that in the case of sufficiently accurate
learning the duality gap is small. To that end we consider the
following generalization of the problem (4)

P ∗ = min
φ∈Φ

EB [l(s, a, φ)] (10)

s.t. EB [g(s, a, φ)] ≤ 0,

where instead of optimizing the weights of a function ap-
proximator, the optimization is done over the space of all
possible integrable functions Φ. We now have the following
result shown in [29].

Theorem 1. Given the optimization problem in (10), if (i) the
distribution B, is non-atomic, (ii) the inequality constraints
define a compact region within Φ, and (iii) there exists a
strictly feasible solution (φ, λ) (Slater’s condition) then the
duality gap is zero.

With this result, a natural question to ask is how the pa-
rameterization of functions φ ∈ Φ affects the duality gap. The
following theorem from [30] describes sufficient conditions
under which a proxy of the duality gap is bounded.

Theorem 2. For the optimization problems (7) and (10), if,
• there exists a strictly feasible solution (φ, λ) to the primal

problem (10);
• the parameterization θ of the function space Φ is a uni-

versal approximator within error δ, i.e. ED ‖φ− φθ‖ ≤ δ
for some θ for all φ ∈ Φ;

• the loss function, l(s, a, φ) is expectation-wise Lip-
schitz continuous, i.e., there exists a K such that
E ‖l(s, a, φ1)− l(s, a, φ2)‖∞ ≤ KE ‖φ1 − φ2‖∞ for all
φ1, φ2 ∈ Φ;

then the optimal parameterized dual value D∗θ is bounded by

P ∗ ≤ D∗θ ≤ P ∗ + ‖λ∗‖1Kδ, (11)

where λ∗ is the solution of (7).

The following proposition formalizes that the problem of
sufficient accurate learning in (4) has small duality gap.

Proposition 1. Sufficiently Accurate Learning and its dual,
defined in (5), satisfy the assumptions of Theorem 2. Hence
(11) holds for this case.

Proof. First we look at the Lipschitz condition.

E ‖l(s,a, φ1)− l(s,a, φ2)‖∞

≤ E
∥∥∥∥ IK
|f(s,a)|

∥∥∥∥ ‖|φ1(s,a)− f(s,a)|−

|φ2(s,a)− f(s,a)|‖∞

≤ 1

min(s,a) |f(s,a)|
E ‖φ1(s,a)− φ2(s,a)‖∞

=
1

ε
E ‖φ1(s,a)− φ2(s,a)‖∞

Thus, the loss is expectation-wise Lipschitz continuous. A
strictly feasible solution, φ, exists since the ground truth
model, which is representable in Φ, is strictly feasible. Lastly,
the parameterization used is the class of all neural networks
which are universal function approximators. Therefore the
conditions for Theorem 2 are fulfilled.

This theorem states that for a large enough neural network,
the gap between the optimal solution with no function ap-
proximation and the optimal solution to the parameterized
dual problem scales with ε. While this does not mean that
the optimal parameterized dual problem can be solved, it does
motivate the use of the primal dual method. A sample training
curve is shown in Fig. 2 for solving Eq. 5. More details about
the specific training parameters are given in Section V.

IV. CONTROL WITH LEARNED MODELS

The previous section describes a method for learning a
sufficiently accurate model for controller design. In this section
we describe how the learned model can be used to that end.
For many planning algorithms such as A* or RRT [31], the

Algorithm 2: Model Based Controller, π(s)

Input: θ, trained forward model parameters
s, state to compute action for

λ← λ0 , set dual variable to an initial value ;
a← a0, set action to some initial action ;
while not converged do

a+ = a− αa∇aL(a, λ);
λ← λ+ αλ∇θL(a, λ);
λ← max(λ, 0) ;
a← a+ ;

end
return a ;

model can simply be used to generate motion primitives that
are more accurate. For optimization based planners, there is a
variety of ways to use the model. One such method is to write
out costs that explicitly include the model.

A deterministic policy is a function from the state to the
action space π : S → A. A specific way to describe a desired
policy is to minimize some cost, c(s, a, φθ) associated with
the performance of the system. This could be for instance
the difference between the predicted state of the model and
some desired state. The action selected has to typically satisfy
some constraints imposed by the model, e.g., the action is
bounded by the maximum torque of the motor in a robotic
system, or obstacles in an environment. Denote by gc : S ×
A × RN → RM , the constraints imposed to the system and
define the following policy

π(s, θ) = arg min
a

cf (sT) +

T−1∑
t=1

cs(st, at) (12)

s.t. gs(st, at) ≤ 0 for t = 1, . . . , T − 1

gf (sT) ≤ 0

where cf is the cost on the final state and cs is the cost on
each step. In addition, st+1 = φθ(st, at). Thus sT will be the
model φθ applied T − 1 times to s1. Observe that the policy
depends on the learned model, and thus it is also a function of
the parameters θ. In particular, if the residual error of learning
the model dynamics is low, we can expect good performance
out of such policies.

Since, the model is a neural network, it is easy to obtain
gradients ∇aφθ(s, a) which can be used for the same primal-
dual method mentioned in Sec. III-A. The only difference is
that instead of optimizing model weights, the solver is opti-
mizing for the inputs. This procedure is shown in Algorithm
2 where the Lagrangian is defined as

L(a,λ) = cf (sT) +

T−1∑
t=1

cs(st, at)+ (13)

λ0gf (sT) +

T−1∑
t=1

λtgs(st, at)

Learning a model and using such an optimization problem
as the policy allows different controllers to be designed for
different goals and constraints. This optimization problem can
be solved repeatedly, taking only one action each time in a
Model Predictive Control framework. Another alternatives can
be to formulate optimization problems where the dynamics are
constraints as in direct collocation [32].

V. EXPERIMENTS

We apply the sufficiently accurate model learning frame-
work to a robot arm bouncing a ball with a paddle, to
demonstrate its effects. The paddle has 5 degrees of freedom:
the position in the three dimensional space and the pitch and
roll angles. We model the impact of the ball on the paddle. It
takes as input the velocities of the paddle and the ball before
they collide as well as the orientation of the paddle and outputs
the velocity of the ball after collision. The controller is then
tasked to solve the optimization problem

π(s) = min
a
‖p(φθ(s, a))− pdesired‖ (14)

s.t. rollmin ≤ roll ≤ rollmax
pitchmin ≤ pitch ≤ pitchmax
vmin ≤ ‖vrel‖ ≤ vmax
p(φθ(s, a)) 6∈ Pobstacle,

where vrel is the relative velocity of the ball to the paddle,
and p(φθ(s, a)) is a function that outputs where on the xy
plane the ball will hit next. The actions, a, consist of a chosen
roll and pitch angle as well as desired paddle velocity. The
goal of the controller is to bounce a ball at some specific xy
location, pdesired while obeying action constraints and not hit
any obstacles. The simulation was created using libraries from
the DeepMind Control Suite [33].

While simulation has drawbacks such as its inability to
accurately capture full noise characteristics of a system, it is
a useful tool to test out model learning. We can inject known
errors into a model and compare how our method does with
the real model. This is difficult or impossible to do in real life.

We will first present experiments in which we learn a
full model of the system. That is, the neural network is
tasked to output the full model, f(s, a). Next, we will present
experiments where a residual model is learned. In the residual
model, the neural network is tasked to output the residual
f(s, a)−f̂(s, a) where f̂ is a (possibly wrong) analytic model.
This is the situation where we may have an initial guess
of what the model of the system looks like from physical
measurements but can be fine-tuned with data.

A. Full Model Learning

To train the full model, we first collect a dataset from
running the controller described by Eq. 14 where we replace
φθ with a faulty analytic model on the system. The faulty
analytic model is mistaken about the roll angle at which
the robot is holding the paddle (off by 0.1 radians). While
this level of angular error can be hard to measure, it has a
large effect on how the ball bounces. We collect data while

Fig. 3. Analytic vs Residual Model. The (x, y z) trajectory of the ball is
plotted for both the a wrong analytic model as well as the residual model
learned on top of it. The analytic model has an error of 0.2 radians in its
observation of the roll angle of the paddle. This leads to poor performance
by the optimizing controller. The residual model corrects these errors and can
track the desired (x, y) location quite well.

Fig. 4. Model errors vs. state magnitude. On the left side, data from a
model trained with Eq. 1 is shown. The right side shows data from a model
using Eq. 5. The scatter plot shows the errors of running each model on a
validation set. The unconstrained problem leads to a good loss in expectation,
however the errors are distributed poorly. There might be large errors for
states with a small magnitude. The normalized loss on the right allows the
large states to have large error and small states to have small error.

simulating the system for the equivalent of 42 real world
minutes. The analytic model used for the velocity of the ball
after impact is given as

vball = α ∗ (vrel − 2n(n · vrel)) + vpaddle (15)

where vrel is the relative velocity of the ball to the paddle,
α is a coefficient of restitution, and n is the normal vector
representing the orientation of the paddle. The normal vector
is observed with an error.

First, we examine the distribution of errors, comparing
with a simple model learning approach where just the loss
E[l(s, a, φθ)] is minimized with the objective defined in Eq. 5.
They will be denoted as unconstrained and constrained models,
respectively. The neural network model that is used is a simple

2 hidden layer fully connected neural net with 128 neurons in
each hidden layer with parametric rectified linear activations
[34]. The network was trained using the ADAM optimizer with
an initial learning rate of 1e-3. For the constrained example,
both δ and ε were chosen to be 0.1. The results in Fig. 4 show
that the model trained with the sufficiently accurate objective
has a different error distribution.

One hypothesis that can be drawn from this figure is that
the gradients of the model may be less noisy as there are not
sudden jumps in error. For optimization based controllers and
planners, this is a big benefit. To see what effect this has on the
controller, the controller is run with each model 500 times with
different goal locations, pdesired as well as different velocity
constraints, vmin and vmax. pdesired is uniformly distributed in
the region {(x, y)| − 1m ≤ x ≤ 1m,−1m ≤ y ≤ 1m}, vmin
uniformly sampled from the interval [3m/s, 4m/s), and vmax
is selected to be above vmin by between 1m/s to 2m/s. Of
these 500 experiments, we consider it a failure if the ball falls
off the paddle, or when it is hit far away and can not recover.
The “Full Model” rows of Table I shows that the failure rate
of the sufficiently accurate model is much lower as well as
having a lower mean error when it does not fail. The mean
error is the mean position error (to the desired location) over
time. It is a crude measure of both how fast the controller gets
to the goal and how well it stays on it.

TABLE I
CONTROLLER PERFORMANCE WITH LEARNED MODELS

Unconstrained Constrained

Full Model Failure 20.8% 0.8%
Mean error 0.3136 0.2124

Residual Model Failure 0% 0%
Mean error 0.164 0.156

B. Residual Model Learning

In many scenarios, we will have a base analytic model that
may be wrong, but would like to improve upon it rather than
learning a full model from scratch. Using the same dataset
as described in the previous section, we can train a residual
model using the unconstrained form in Eq. 1 and a constrained
model. All architecture details and hyperparameters used in the
residual model are the same as in the full model training. With
the residual models, there are no failures as the base analytic
model performs well enough to prevent that. The mean error
rates are shown in Table I. Trajectories of the ball using the
analytic and the residual constrained model is shown in Fig.
3. We can see with a wrong analytic model, the controller
does not track the desired position well. As expected, it has a
consistent bias to overshoot when trying to correct its position
and ends up with a jagged trajectory. The constrained residual
model tracks the position much better and does not deviate as
the analytic model does.

We compare the constrained residual model with different
analytic models with varying levels of error in Fig. 5. The error
is computed the same way as in Table I. The residual model
has both a lower mean error as well as having a much tighter
variance, which means it has more consistent performance.

Fig. 5. Analytic vs Residual Model. A residual model is trained using the
same dataset for the same number of iterations with different base analytic
models of increasing error. Both the analytic and constrained residual models
are then evaluated by running them for 50 different task goals and constraints
and their mean errors are computed. The transparent regions show half of a
standard deviation above and below the mean.

VI. DISCUSSION AND CONCLUSION

In looking at model learning, we have seen that using
the Sufficiently Accurate formulation can bring better results
simply by changing the optimization objective. We believe this
is due to the fact that this formulation can smooth out error
characteristics and provide better gradients for the controller to
work with. This methodology is orthogonal with most other
model learning algorithms as it makes a suggestion to use
constraints as a way to control the errors and gradients.

There are several drawbacks of this method. One of which
is that computing derivatives of the model through a neural
network can be computationally expensive. This makes it more
difficult to deploy on systems that require fast control loops.
This can possibly be alleviated by training a fast policy for
specific tasks by imitating the more expensive model based
solution. Another drawback is that εi in Eq. 4 is determined
by hand. These may need to be adjusted if the problem is
infeasible or not tight enough.

There are several branches of future exploration. One is
to implement this on a robot arm to test how this method
can handle other types of errors that can occur. Another is to
explore different types of constraints on different portions of
the state space, or an automated way to choose constraints.
Testing how different controllers and planners interact with
these models can inform us of other characteristics of models
that may be important to study.

ACKNOWLEDGMENTS

The authors would like to thank Pratik Chaudari for valuable
conversations as well as funding by NSF Grant No. DGE-
1321851 and the Intel Science and Technology Center for
Wireless Autonomous Systems. Any opinions, findings, and
conclusions do not necessarily reflect the views of the NSF.

REFERENCES

[1] G. Lee, S. S. Srinivasa, and M. T. Mason, “Gp-ilqg: Data-driven
robust optimal control for uncertain nonlinear dynamical systems,” arXiv
preprint arXiv:1705.05344, 2017.

[2] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc using neural network
dynamics,”

[3] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, pp. 1–9, 2013.

[4] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual
reinforcement learning with imagined goals,” in Advances in Neural
Information Processing Systems, pp. 9209–9220, 2018.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, pp. 627–635, 2011.

[6] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and
D. D. Lee, “Memory augmented control networks,” arXiv preprint
arXiv:1709.05706, 2017.

[7] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1168–1175, IEEE, 2014.

[8] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” 2009.

[9] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential con-
vex optimization.,” in Robotics: science and systems, vol. 9, pp. 1–10,
Citeseer, 2013.

[10] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–472,
2011.

[11] Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving pilco with
bayesian neural network dynamics models,”

[12] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, pp. 1071–1079, 2014.

[13] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[14] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning
with a distal teacher,” Cognitive science, vol. 16, no. 3, pp. 307–354,
1992.

[15] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and M. D.
Killpack, “Learning nonlinear dynamic models of soft robots for model
predictive control with neural networks,” in 2018 IEEE International
Conference on Soft Robotics (RoboSoft), pp. 39–45, IEEE, 2018.

[16] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal
on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.

[17] A. Byravan, F. Leeb, F. Meier, and D. Fox, “Se3-pose-nets: Structured
deep dynamics models for visuomotor planning and control,” arXiv
preprint arXiv:1710.00489, 2017.

[18] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
mpc for end-to-end planning and control,” in Advances in Neural
Information Processing Systems, pp. 8299–8310, 2018.

[19] R. S. Sutton, “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” in Machine
Learning Proceedings 1990, pp. 216–224, Elsevier, 1990.

[20] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,”

[21] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” arXiv preprint arXiv:1705.10528, 2017.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,
2017.

[23] J. Cerviño, J. A. Bazerque, M. Calvo-Fullana, and A. Ribeiro, “Meta-
learning through coupled optimization in reproducing kernel hilbert
spaces,” in 2019 American Control Conference (ACC), pp. 4840–4846,
IEEE, 2019.

[24] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,”

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. Rehg, B. Boots,
and E. Theodorou, “Information theoretic mpc for model-based rein-
forcement learning.,” in Proceedings of the 2017 IEEE Conference on
Robotics and Automation (ICRA).

[27] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7559–7566, IEEE, 2018.

[28] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

[29] A. Ribeiro, “Optimal resource allocation in wireless communication
and networking,” EURASIP Journal on Wireless Communications and
Networking, vol. 2012, no. 1, p. 272, 2012.

[30] M. Eisen, C. Zhang, L. F. Chamon, D. D. Lee, and A. Ribeiro, “Learn-
ing optimal resource allocations in wireless systems,” arXiv preprint
arXiv:1807.08088, 2018.

[31] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[32] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[33] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,”
arXiv preprint arXiv:1801.00690, 2018.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

	I Introduction
	I-A Contributions

	II Related Work
	III Constrained Model Learning
	III-A Primal-Dual algorithm
	III-B Almost Zero Duality Gap

	IV Control with Learned Models
	V Experiments
	V-A Full Model Learning
	V-B Residual Model Learning

	VI Discussion and Conclusion
	References

