
Sim-to-Real Transfer for Optical Tactile Sensing

Zihan Ding1, Nathan F. Lepora2, and Edward Johns1

Abstract— Deep learning and reinforcement learning meth-
ods have been shown to enable learning of flexible and complex
robot controllers. However, the reliance on large amounts of
training data often requires data collection to be carried out
in simulation, with a number of sim-to-real transfer methods
being developed in recent years. In this paper, we study these
techniques for tactile sensing using the TacTip optical tactile
sensor, which consists of a deformable tip with a camera
observing the positions of pins inside this tip. We designed
a model for soft body simulation which was implemented using
the Unity physics engine, and trained a neural network to
predict the locations and angles of edges when in contact with
the sensor. Using domain randomisation techniques for sim-
to-real transfer, we show how this framework can be used to
accurately predict edges with less than 1 mm prediction error
in real-world testing, without any real-world data at all.

I. INTRODUCTION

Tactile data offers a level of sensing granularity that is not
available through vision, proprioception, or force sensing,
and understanding how best to use this is an important step
towards dexterous robot manipulation. In recent years, data-
driven methods and robot learning have offered scalable so-
lutions to a wide range of tasks, such as object grasping [1],
[2], contact-rich control [3], [4], and dexterous manipulation
[5], [6]. Building upon these ideas, learning with tactile data
has also been studied for tasks such as object recognition
[7] and edge detection [8]. However, whilst learning-based
methods can offer flexible solutions for developing complex
controllers, they rely on large datasets – particularly those
involving deep learning and reinforcement learning (RL) –
which are typically very challenging to acquire from real-
world data collection.

The field of sim-to-real transfer has made important
progress in addressing this, by enabling robots to be trained
in simulation with no real-world data at all [1], [9], [10]. In
this paper, we study sim-to-real transfer for tactile sensing
with domain randomisation [11], where simulation parame-
ters are randomised to provide robustness to the difference
between dynamics in simulation and reality. We use the
TacTip optical sensor [12], which consists of two compo-
nents: a deformable tip containing 127 pins on the inside
surface, and a camera observing the pins as they move due
to external contact. This sensor is particularly suited to sim-
to-real transfer because simulation of the tip’s deformation
is sufficient to capture the tactile data, rather than directly
simulating forces as would be necessary with sensors based
on electrical signals [13]. In our experiments, we trained

1The Robot Learning Lab at Imperial College London.
2Bristol Robotics Laboratory, University of Bristol.
This work was supported by the Royal Academy of Engineering.

Fig. 1: Our experimental setup for real world testing, with a
TacTip sensor mounted onto a Sawyer robot. Here, we show
the image of the sensor’s pins, whose positions change as
the tip deforms due to external contact.

a neural network to predict positions and angles of edges
using supervised learning, and tested the network in the
real world by mounting the TacTip onto a Sawyer robot,
as in Figure 1. We studied the effect of different amounts
of randomisation required during simulation, and different
representations of the sensor’s pin positions. Our results show
that sim-to-real transfer for tactile sensing is possible, and
we achieve an error of less than 1 mm in predicting the
point of contact. A video of our experiments is available at
www.robot-learning.uk/sim-to-real-tactile-icra-2020.

II. RELATED WORK

Present work on tactile sensing for robotic control can be
divided into two main categories: (1) methods which use
tactile signals for basic tasks such as object identification,
slip detection, and edge following [7], [8], [14], [15], [16],
[17], [18]; (2) methods which use tactile signals as input to
reinforcement learning (RL) algorithms, for learning control
policies [19], [20], [21]. However, these methods primarily
operate with only real-world data, and as such, our work
offers the potential to scale these methods to new levels of
complexity via large-scale training in simulation.

For methods in the first category, Lepora et al. [14] classi-
fied edge position and angle with a probabilistic classifier, to
control the motion of a robot exploring complex 2D contours.
This as later extended with the use of convolutional neural
networks (CNNs) for processing the tactile images [8]. Lin et
al. [7] used CNNs to identify different objects from image-
based tactile signals using the GelSight sensor. Hogan et
al. [16] used CNNs and the GelSlim sensor to predict a
grasping gesture for regrasping. Zhang et al. [17] applied
a convolutional long-short-term-memory (LSTM) network

ar
X

iv
:2

00
4.

00
13

6v
1

 [
cs

.R
O

]
 3

1
M

ar
 2

02
0

 http://www.robot-learning.uk/sim-to-real-tactile-icra-2020

for slip detection using the FingerVision sensor. Garcia et
al. [18] applied a graph convolutional network for predicting
the grasp stability using the BioTac sensor.

For the second category, Hoof et al [19] used auto-
encoders to process tactile and visual data for input to an
RL algorithm. Huang et al. [20] explored deep RL for gentle
but contact-rich learning tasks, using the BioTac sensor and
a Shadow robotic hand. Hoof et al. [21] studied in-hand
manipulation using tactile data, with a policy based on a
Gaussian process representation.

However, because real-world data collection is time-
consuming and can cause sensors to degrade over time, sim-
to-real approaches could be highly beneficial for tactile-based
robot learning. Our work is based upon the use of domain
randomisation [11], [10] for sim-to-real transfer, where sim-
ulation parameters are randomised to offer robustness to the
difference between simulated and real-world dynamics.

Existing works on sim-to-real transfer for optical tactile
sensors include those which learn simulation models with
real-world data [22], [23]. Those which do not require
real-world data, such as ours, include methods based on
costly Finite-Element Analysis [24], and those which forego
complex physics simulation entirely and assume a simplified
model of deformations [25]. Our work differs in that we
explore the use of domain randomisation to avoid the need
to manually determine optimal simulation parameters, and
additionally, we propose the first work on sim-to-real transfer
for the TacTip sensor [12].

III. METHODS

A. Physics Simulation

We used the Unity physics engine to simulate the tip’s de-
formation. Unity allows for operations to be applied directly
to vertices on an object mesh, which provides the freedom
to build complex dynamic functions. We designed a model
for soft body dynamics based on an approximation of real-
world elastic behaviour. The membrane of the TacTip sensor
in Unity before and after collision is shown in Figure 2.

(a) (b) (c)

(d) (e) (f)

Fig. 2: The TacTip sensor’s pins with no deformation (top
row) and undergoing deformation due to contact (bottom
row). (a), (b), (d), and (e) show the simulation, (c) and (f)
show the real sensor..

The original STL file of the TacTip sensor was first
imported into Blender, and the number of vertices was
reduced to enable efficient computation. Whilst Blender itself

offers soft-body simulation, we found it to be very slow. We
also investigated PyBullet [26] which also offers soft body
simulation, but we found the simulation to be unstable in
practice. Therefore, rather than using off-the-shelf soft body
simulation models, we designed our own model in Unity.

We now introduce three components for approximating the
elastic soft-body deformation [27]: the pushing force fpush,
the pulling force fpull , and the damping coefficient d for
decaying the velocity caused by pushing and pulling forces.
We define the set of collision points as {pc|c∈C } and the set
of vertices on the object mesh as {pi|i∈V }, where C and V
are index sets correspondingly. pc and pi are 2-dimensional
(x,y) positions for collision points and vertices, respectively,
relative to the sensor’s centre. We also define the vertex set
of pin (centre) positions as P ⊂ V .

The pushing force causes the mesh’s vertices to undergo
acceleration, and is approximated with the following second-
order inverse-distance relationship (the 1 in the denominators
is for scaling and to prevent division by zero):

fpush
ic =

(
f push

1+d2
ic
+ τ

f push

1+dic

)
· dic

dic
,∀i ∈I ,∀c ∈ C (1)

Here, τ is a trade-off factor between linear and quadratic
inverse terms, dic = pi−pc and dic = |pi−pc| are the vector
and scalar distances from the contact point c to the vertex i,
fpush
ic is the vector pushing force from point c to vertex i, and
I is the index set of vertices excluding the contact point
set C in the overall vertex set V of the object: I = {i|pi 6=
pc,∀c ∈ C }. Typically, very few of the overall vertices are
actually in contact, and therefore I ≈ V . f push is a constant
for manually changing the magnitude of the force, which is
now referred to as the factor of pushing force.

As a result of the pushing force, the velocity change over
time dt for vertex i can be represented as follows:

∆vi = ∑
c∈C

fpush
ic ·dt,∀i ∈I (2)

Meanwhile, the pulling force causes displaced vertices
to be pulled back to their original positions, due to the
object’s elasticity. It is defined using a first-order linear
approximation of Hooke’s law [28], in which the force
magnitude is proportional to the displacement of each vertex:

fpull
ii = f pull ·dii,∀i ∈I (3)

Here, dii = pt=0
i −pi is the vector distance from the displaced

vertex i at pi (caused by the pushing force), to its original
position pt=0

i (assuming no collision at time t = 0), and fpull
ii

is the corresponding pulling force. f pull is a constant for
manually changing the magnitude of the force, which is
now referred to as the factor of pulling force. A schematic
diagram showing the pushing and pulling forces is shown in
Figure 3.

If we only consider the pushing and pulling forces, the
object will continually oscillate as the pushing and pulling
forces alternate in their relative magnitudes. In reality, there
is an energy dissipation effect during soft body deformation,

c=1

f
p

21
f31

Tactile Sensor

Object

i=3
p

i=2
p

i=3
p

f33

f22
t=0

i=2
pt=0

Fig. 3: The pushing and pulling forces during collision of the
sensor and an object. The left half shows the collision scene;
the right half shows the forces during collision. pc=1 is one
of the collision points, and pi=2,pi=3 are two vertices on the
object mesh. For example, f21 is the ‘pushing’ force from
pc=1 to pi=2, and f22 is the ‘pulling’ force in the direction
opposite to the displacement of vertex pi=2.

which we approximate as a damping coefficient d on a
vertex’s velocity:

∆vt→t+dt
i = (∑

c∈C
fpush
ic + fpull

ii) ·dt (4)

vt+dt
i = (1−d) · (vt

i +∆vt→t+dt
i) (5)

and the new position of vertex i is:

pt+dt
i = vt

i ·dt +pt
i (6)

Using the above model, there are three key dynamics
parameters to define: (1) the factor of pushing force f push;
(2) the factor of pulling force f pull ; (3) the damping co-
efficient d. By manually tuning these three parameters, we
adjusted the deformation model such that it approximately
mimics soft-body deformation with visually realistic be-
haviour. When incorporating this model into a sim-to-real
framework, these three parameters were then randomised to
offer robustness to their true underlying values in real-world
deformations.

B. Representation of the Tactile Signal

Using this simulation model, we can then train a neural
network with supervised data, based on the sensor’s 2D pin
positions within the observed image of the tip’s interior. In
practice, we used 91 pins instead of all 127 pins, since the
outermost pins were not always visible during deformation.
Designing a representation for these positions is important
in ensuring robust sim-to-real transfer, and we study three
different representations R as follows:
• Pin positions representation: the most direct way of

representing TacTip deformation is directly using the 2D
pin positions. The total length of the vector is 91×2 =
182.

• Threshold representation: we select pins with a dis-
placement larger than a time-dependent threshold Ct ,
and assign these pins a value of 1, and 0 otherwise. The
total length of this vector is 91. The motivation behind
this representation is to remove reliance on precise mod-
elling of pin locations, and use a coarser representation

which may be more tolerant to differences between the
simulator and reality. In our experiments, Ct is chosen
to be adaptive over time based on the current amount of
deformation, by using a modified average value of pin
displacements:

Ct = max(
1.2
|P| ∑

i∈P
(|pt

i−pt=0
i |),0.05) (7)

where P is the index set of 91 pin centres, and pt
i is a 2-

dimensional position vector of pin centre i on the sensor
mesh at time t. The 1.2 and 0.05 in above equation are
constant coefficients for adopting the threshold repre-
sentation, which were defined empirically. This leads to
the following latent representation:

Rt
i = H[|pt

i−pt=0
i |−Ct], i ∈P (8)

where H[.] is the discrete Heaviside step function. Rt is
a list of Rt

i with i ∈P .
• Weighted-average representation: the weighted average

position of all pins is calculated, with each pin’s position
weighted by its displacement, to approximate the centre
point of the collision. The weighted-average represen-
tation returns the averaged 2-dimensional coordinates,
together with the average displacement magnitude, and
is therefore of length 3. In practice, we found that a
quadratic function of the displacements leads to a more
effective weighting:

(xt ,yt) = ∑
i∈P

(pt
i−pt=0

i)2pt
i

∑i∈P(pt
i−pt=0

i)2
(9)

The average displacement magnitude is defined as:

d̄t =
1
|P| ∑

i∈P
|pt

i−pt=0
i | (10)

Finally, the weighted-average representation is:

Rt = (xt ,yt , d̄t) (11)

IV. SIM-TO-SIM EVALUATION

A. Tasks

Sim-to-sim transfer evaluation is a useful way to gain
initial insights into the robustness of a sim-to-real transfer
method, by training and testing under different simulation
parameters. We studied this in a supervised learning setting,
where the task is to predict (i) the object’s position, (ii)
the object’s orientation, and (iii) the object’s identity. The
scene for these tests is shown in Figure 4, which contains
the TacTip sensor and three different objects: a cylinder (red),
a cuboid (green), and a plane (orange).

During both training and testing, objects were randomly
rotated about the x, y, and z axes, with the sensor repeatedly
lowered onto the object to create a set of episodes. Each
episode corresponds to one tap of the sensor onto the object,
and includes several simulation steps during deformation.
The objects shown in the left half of Figure 4 are at zero
rotation about each axis. We restricted the possible rotation
angles to within the range [−30,30] degrees for each axis.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4: The three objects used during sim-to-sim evaluation.
(a) shows the objects with zero rotation, (b)-(g) show random
rotations.

Rotations were uniformly sampled from this range at the start
of each episode, and fixed for the entire episode.

B. Training

A neural network was trained to take in the pin position
representation, and predict the central position of collision,
the rotation angles of the object, and the object identity.
We used a four-layer fully-connected neural network, with
500 hidden units per layer and ReLU activation [29]. In our
experiments, we found that a convolutional neural network
did not provide any improvement over a fully-connected
network. The network contained two heads, with one head
regressing the position and rotation with a mean squared
error (MSE) loss, and the other head predicting the object
identity with a Softmax activation and MSE loss. The overall
loss was the overall MSE across all predictions.

In order to test the effects of domain randomisation, we
trained the predictor with both fixed-dynamics and random-
dynamics environments, and tested the predictor with both
fixed and random environments. The environments with ran-
dom dynamics were achieved by randomising the pushing,
pulling, and damping factors, as described previously. To
generate training and testing datasets, we first empirically
chose a baseline value for each parameter, which provides a
good overall imitation of the real-world deformation during
collisions. For the fixed-dynamics environment, we used
these fixed baseline values and collected data across different
positions and rotation angles of the objects relative to the
sensor, as well as across different object identities. For the
random-dynamics environments, we additionally randomised
the values of the three dynamics parameters by applying a
multiplier α . We experimented with two different ranges for
α: α ∈ [0.8,1.2] (randomisation factor 0.2) and α ∈ [0.5,1.5]
(randomisation factor 0.5). For each task, 1000 training
episodes and 100 testing episodes were collected separately,
with 3 ∼ 5 simulation steps per episode, during which the
sensor was lowered onto the object (each episode has a fixed
object identity, position, and orientation, and a fixed set of
dynamics parameters). Therefore, ∼ 4000 training and ∼ 400
examples were collected in simulation for each task.

C. Results

Figure 5 shows test results when trained on the fixed-
dynamics environment, and tested on both the fixed en-
vironment, and the random-dynamics environment with a

(a) (b)

(c) (d)

Fig. 5: Sim-to-sim comparison of different representations,
with training in fixed environments but testing in randomised
environments. We evaluated on three tasks: (a) predicting the
object’s identity, (b) predicting the central position of the
collision, (c) predicting the rotation angle of the object. (d)
shows the MSE of these predictions over all three tasks.

randomisation factor of 0.2 and 0.5. We can see that the
performance generally degraded as the amount of randomi-
sation in the test environment increased, due to a greater
discrepancy between training and testing simulation models.
The basic pin positions representation was generally more
accurate and robust than the other two representations, with
the weighted-average representation performing the worst.
With the threshold representation, we can see that there is
overfitting to the training data since the test error under
fixed dynamics is very low, but high when randomisation
is introduced. This may be due to the reliance on a single
threshold value, which is not flexible enough to generalise
across environments. We found that the overfitting happened
even when using early stopping during training.

Figure 6 shows test results when trained in the random-
dynamics environment with a randomisation factor of 0.2,
and tested in environments with factors 0.2 and 0.5. We find
that training with random dynamics significantly improved
the test performance when compared to training with fixed
dynamics, and that using the same randomisation factor of
0.2 in both training and testing led to the best results. As
before, we see that the pin positions representation performed
best. In both Figures 5 and 6, the object index prediction
shows relatively large mean prediction error. We ascribe this
to the fact that the object identity is generally not predictable
with a single tap of the sensor, since the objects in our
tests have similar local surface geometry, even if their global
geometry is distinct.

V. SIM-TO-REAL EVALUATION

We then evaluated our method with real-world experiments
and sim-to-real transfer, by mounting the TacTip onto a
Sawyer robot arm, as shown in Figure 1. Experiments were

(a) (b)

(c) (d)

Fig. 6: Comparison of different representations, with training
and testing both in randomised environments. We evaluated
on three tasks: (a) predicting the object’s identity, (b) pre-
dicting the central position of the collision, (c) predicting
the rotation angle of the object. (d) shows the MSE of these
predictions over all three tasks.

conducted in a similar manner to the sim-to-sim setting, but
with a different set of tasks and objects.

A. Normalisation of Pin Positions

First, the positions of pins when observed in the real
camera need to be made consistent with those in simulation.
In simulation, the pin positions are taken directly from
the environment state, whereas in reality, the pin positions
are estimated by use of contour localisation in the camera
images. As such, normalisation is required to align the pin
positions across the two domains.

To normalise the spatial unit, we first represented each pin
position as the relative position from the central pin, in both
simulation and reality, denoted by {(xi

s,y
i
s)} for simulation

and {(xi
r,y

i
r)} for reality, where i ∈P and P is the vertex

set of pin centres. The normalised positions {(x̃i, ỹi)} were
calculated as follows:

(x̃i, ỹi) = (xi,yi)/
x̄+ ȳ

2
, (12)

x̄ =
1
|P| ∑

i∈P
|xi|, (13)

ȳ =
1
|P| ∑

i∈P
|yi|, (14)

which applies for both positions {(xi
s,y

i
s)} and {(xi

r,y
i
r)}. The

x̄, ȳ are the average absolute positions over all pin centres
along the x- and y-axes.

However, there were still small differences in normalised
pin positions in simulation and reality after normalisation.
To handle these differences, we added extra Gaussian noise
(with zero mean and standard deviation of 10−2) on each pin
position during training on the simulated data.

(a) (b) (c)

(d) (e) (f)

Fig. 7: The scenes of three tasks in both reality (a)-(c) and
simulation (d)-(f). (a) and (d) are task I. (b) and (e) are task
II. (c) and (f) are task III.

B. Tasks

As illustrated in Figure 7, we tested sim-to-real transfer
on three different tasks:

I. Rotation Angle Prediction. We tested predicting the
polar coordinate angle of the sensor with respect to a circular
shape, as shown in Figure 7 (a). 10000 examples were
collected in simulation, containing 1000 different angles
{α = 2πi

1000 |i = 0,1,2, ...,999}. In the real-world test, the
sensor was moved along the circular object in a tapping
manner, and tested on 12 uniformly-distributed angles around
the circle {α = 2πi

12 |i = 0,1,2, ...,11}. Each round therefore
contained 12 taps. In both simulation and reality, small
perturbations were added to the radius.

II. Position Prediction on Edge. We tested predicting
the one-dimensional position of the sensor when touching an
edge, as shown in Figure 7 (b). 5000 examples were collected
in simulation. In the real-world test, each round contained 10
taps on the edge. In both simulation and reality, the sensor’s
position was sampled uniformly from the range [-5, 5] mm
between the sensor’s centre and the edge.

III. Position Prediction on Pole. We tested predicting the
two-dimensional position of the sensor when touching the
tip of a pole. 5000 examples were collected in simulation,
recording the x- and y-coordinates of the sensor’s centre
relative to the pole’s tip. Each round of testing contained 10
taps. During both training and testing, the sensor’s position
was sampled uniformly from the range [-5, 5] mm from the
centre of the pole’s tip.

As with the sim-to-sim experiments, data was collected
in simulation across a range of randomisation factors. The
total amount of real time to collect the simulated data was
less than one hour for each task. For all tasks, each test
was conducted for 10 rounds in the real world, and the
mean absolute error (MAE) and the standard deviation of
the absolute error were calculated across these rounds.

C. Training

As with the sim-to-sim experiments, training was done
with a 4-layer fully-connected neural networks, with 500
hidden nodes per layer, and ReLU activations.. The rotation
angle prediction used a Sigmoid function, and the position
prediction used a Tanh function. A mean squared error loss
was used for all tasks.

D. Results

Results for sim-to-real transfer are displayed in Table I,
where we also show the effect of different randomisation
factors. Figure 8 (a)-(c) show the prediction performances
on all tasks with a subset of data samples, using the pin
positions representation, and the best randomisation range
for each task (i.e. this shows our best results for each task).
Figure 9 then plots the performance of the pin positions
representation, as a function of the randomisation factor.

We can see three interesting outcomes from these ex-
periments. Firstly, we show that, as with the sim-to-sim
experiments, the representation which directly uses the (nor-
malised) pin positions performs the best, and further manual
engineering of the representation actually degrades perfor-
mance. Secondly, we see that when using this representation,
the sim-to-real transfer is robust across a wide range of
parameter randomisation factors. Thirdly, we see that this
method is able to achieve low errors of less than 1 mm in
predicting the position of a point of contact.

Sim-to-real Performance: Mean Absolute Error
Randomisation Factor

Representation 0.0 0.2 0.4 0.6

Task I
Positions 0.686 0.325 0.254 0.579
Threshold 3.12 2.71 3.31 3.20
WA 2.98 3.02 3.31 3.14

Task II
Positions 0.88 1.21 0.45 0.80
Threshold 2.44 4.05 3.83 2.27
WA 2.24 2.80 1.41 1.24

Task III
Positions 1.02 0.73 1.14 1.29
Threshold 3.13 5.23 4.52 5.74
WA 3.23 4.38 5.24 3.63

TABLE I: Real-world results studying three tasks, three
pin representations, and four randomisation factors. Bold
indicates the lowest error for each task.

VI. CONCLUSIONS
In this work, we investigated optical tactile sensing via

sim-to-real transfer, and we showed this to be effective in
supervised learning tasks. A soft-body simulation method
with Unity was first designed to simulate the deformation
of the TacTip sensor during contact. This was then used to
generate training data for a number of supervised learning
tasks, which involved predicting the positions, angles, and
identities of objects which the sensor is in contact with.
When training with a neural network, we showed that directly
using the pin positions as input to the network is superior
to other manually-engineered representations. Our sim-to-
real results, using domain randomisation of the simulation
physics parameters, show that our method can achieve less
than 1 mm position prediction error, and is robust across
different parameter randomisation ranges.

Whilst predicting contact points may be trivial through
a manually-engineered method without requiring machine
learning, the purpose of these experiments was to show that

(a)

(b)

(c)

Fig. 8: Prediction results for three tasks on a subset of data.

(a) (b)

(c)

Fig. 9: Comparison of different randomisation ranges for
three tasks with the pin positions representation.

sim-to-real transfer with tactile data is possible at all. As
such, this work now opens up future studies into using this
for learning more complex tasks, such as those requiring
reinforcement learning, where learning directly from data
is required. Evaluation on more complex objects beyond
simple primitive shapes, where there is greater sensitivity
to the difference between simulation and reality, would also
be useful in understanding real-world applicability. Addition-
ally, limitations of the current simulation model remain to be
addressed: simulation speed is currently restricted by Unity’s
collision detection module, and static and sliding friction
effects could be incorporated during deformation, with a
view towards simulating more complex object interactions.

REFERENCES

[1] Edward Johns, Stefan Leutenegger, and Andrew J Davison. Deep
learning a grasp function for grasping under gripper pose uncertainty.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4461–4468. IEEE, 2016.

[2] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and
Deirdre Quillen. Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection. The International
Journal of Robotics Research, 37(4-5):421–436, 2018.

[3] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016.

[4] Roberto Martı́n-Martı́n, Michelle Lee, Rachel Gardner, Silvio
Savarese, Jeannette Bohg, and Animesh Garg. Variable impedance
control in end-effector space. an action space for reinforcement
learning in contact rich tasks. In Proceedings of the International
Conference of Intelligent Robots and Systems (IROS), 2019.

[5] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
Jzefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias
Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba.
Learning dexterous in-hand manipulation. The International Journal
of Robotics Research, 39(1):3–20, 2020.

[6] Vikash Kumar, Emanuel Todorov, and Sergey Levine. Optimal control
with learned local models: Application to dexterous manipulation.
In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 378–383. IEEE, 2016.

[7] Justin Lin, Roberto Calandra, and Sergey Levine. Learning to
identify object instances by touch: Tactile recognition via multimodal
matching. arXiv preprint arXiv:1903.03591, 2019.

[8] Nathan F Lepora, Alex Church, Conrad De Kerckhove, Raia Hadsell,
and John Lloyd. From pixels to percepts: Highly robust edge
perception and contour following using deep learning and an optical
biomimetic tactile sensor. IEEE Robotics and Automation Letters,
4(2):2101–2107, 2019.

[9] Stephen James, Andrew J Davison, and Edward Johns. Transferring
end-to-end visuomotor control from simulation to real world for a
multi-stage task. In Conference on Robot Learning (CoRL), 2017.

[10] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics ran-
domization. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018.

[11] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 23–30. IEEE, 2017.

[12] Benjamin Ward-Cherrier, Nicholas Pestell, Luke Cramphorn, Ben-
jamin Winstone, Maria Elena Giannaccini, Jonathan Rossiter, and
Nathan F Lepora. The tactip family: Soft optical tactile sensors
with 3d-printed biomimetic morphologies. Soft robotics, 5(2):216–
227, 2018.

[13] Jeremy A Fishel and Gerald E Loeb. Sensing tactile microvibrations
with the biotaccomparison with human sensitivity. In 2012 4th IEEE
RAS & EMBS international conference on biomedical robotics and
biomechatronics (BioRob), pages 1122–1127. IEEE, 2012.

[14] Nathan F Lepora, Kirsty Aquilina, and Luke Cramphorn. Exploratory
tactile servoing with active touch. IEEE Robotics and Automation
Letters, 2(2):1156–1163, 2017.

[15] Siyuan Dong, Wenzhen Yuan, and Edward H Adelson. Improved
gelsight tactile sensor for measuring geometry and slip. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 137–144. IEEE, 2017.

[16] Francois R Hogan, Maria Bauza, Oleguer Canal, Elliott Donlon, and
Alberto Rodriguez. Tactile regrasp: Grasp adjustments via simulated
tactile transformations. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2963–2970. IEEE,
2018.

[17] Yazhan Zhang, Zicheng Kan, Yu Alexander Tse, Yang Yang, and
Michael Yu Wang. Fingervision tactile sensor design and slip detection
using convolutional lstm network. arXiv preprint arXiv:1810.02653,
2018.

[18] Alberto Garcia-Garcia, Brayan Stiven Zapata-Impata, Sergio Orts,
Pablo Gil, and J. A. Rodriguez. Tactilegcn: A graph convolutional
network for predicting grasp stability with tactile sensors. 2019

International Joint Conference on Neural Networks (IJCNN), pages
1–8, 2019.

[19] Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt,
and Jan Peters. Stable reinforcement learning with autoencoders for
tactile and visual data. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3928–3934. IEEE,
2016.

[20] Sandy H Huang, Martina Zambelli, Jackie Kay, Murilo F Martins,
Yuval Tassa, Patrick M Pilarski, and Raia Hadsell. Learning gentle
object manipulation with curiosity-driven deep reinforcement learning.
arXiv preprint arXiv:1903.08542, 2019.

[21] Herke Van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Pe-
ters. Learning robot in-hand manipulation with tactile features. In
2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pages 121–127. IEEE, 2015.

[22] Philipp Ruppel, Yannick Jonetzko, Michael Görner, Norman Hendrich,
and Jianwei Zhang. Simulation of the syntouch biotac sensor. In
International Conference on Intelligent Autonomous Systems, pages
374–387. Springer, 2018.

[23] Carmelo Sferrazza, Adam Wahlsten, Camill Trueeb, and Raffaello
DAndrea. Ground truth force distribution for learning-based tactile
sensing: a finite element approach. IEEE Access, 7:173438–173449,
2019.

[24] Carmelo Sferrazza, Thomas Bi, and Raffaello D’Andrea. Learning the
sense of touch in simulation: a sim-to-real strategy for vision-based
tactile sensing. arXiv preprint arXiv:2003.02640, 2020.

[25] Daniel Fernandes Gomes, Achu Wilson, and Shan Luo. Gelsight
simulation for sim2real learning. In ICRA ViTac Workshop, 2019.

[26] Erwin Coumans and Yunfei Bai. Pybullet, a python module for
physics simulation for games, robotics and machine learning. GitHub
repository, 2016.

[27] Erastus H Lee. Elastic-plastic deformation at finite strains. Journal of
applied mechanics, 36(1):1–6, 1969.

[28] J Rychlewski. On hooke’s law. Journal of Applied Mathematics and
Mechanics, 48(3):303–314, 1984.

[29] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

	I Introduction
	II Related Work
	III Methods
	III-A Physics Simulation
	III-B Representation of the Tactile Signal

	IV Sim-to-Sim Evaluation
	IV-A Tasks
	IV-B Training
	IV-C Results

	V Sim-to-Real Evaluation
	V-A Normalisation of Pin Positions
	V-B Tasks
	V-C Training
	V-D Results

	VI CONCLUSIONS
	References

