
Optimal Sequential Task Assignment and Path Finding
for Multi-Agent Robotic Assembly Planning

Kyle Brown Oriana Peltzer Martin A. Sehr Mac Schwager Mykel J. Kochenderfer

Abstract— We study the problem of sequential task assign-
ment and collision-free routing for large teams of robots in
applications with inter-task precedence constraints (e.g., task
A and task B must both be completed before task C may
begin). Such problems commonly occur in assembly planning
for robotic manufacturing applications, in which sub-assemblies
must be completed before they can be combined to form the fi-
nal product. We propose a hierarchical algorithm for computing
makespan-optimal solutions to the problem. The algorithm is
evaluated on a set of randomly generated problem instances
where robots must transport objects between stations in a
“factory” grid world environment. In addition, we demonstrate
in high-fidelity simulation that the output of our algorithm can
be used to generate collision-free trajectories for non-holonomic
differential-drive robots.

I. INTRODUCTION

Consider a factory environment with an array of manufac-
turing stations and a fleet of autonomous mobile robots. The
project consists of an initial set of objects and a prescribed
set of manufacturing operations that will incrementally trans-
form those initial objects into a final object. The goal is
to assign and route robots to transport objects between
stations so that the project makespan—the time from start to
completion—is minimized. We call this problem precedence-
constrained multi-agent task assignment and path-finding
(PC-TAPF).

PC-TAPF generalizes the multi agent pathfinding (MAPF)
problem with task assignment, sometimes called the anony-
mous MAPF [1]. Whereas anonymous MAPF involves a
one off task assignment problem (each robot performs no
more than one task) in which all tasks are independent,
PC-TAPF involves sequential task assignment (each robot
may be assigned to a sequence of tasks) and incorporates
temporal precedence constraints between tasks (e.g., task A
and task B must both be completed before task C may
begin). Both problems involve collision-free routing, but the
PC-TAPF routing problem is affected by the same prece-
dence constraints that are present in the assignment problem.
Although minimum-makespan anonymous MAPF problems
with homogeneous agents can be solved in polynomial time
[1], the PC-TAPF problem is NP-hard. The difference lies in

*This work was supported by Siemens and the National Science Foun-
dation.

1Kyle Brown and Oriana Peltzer are with the Stanford
University Department of Mechanical Engineering, {kjbrown7,
peltzer}@stanford.edu.

2Martin A. Sehr is with Corporate Technology, Siemens Corporation,
Berkeley, CA 94704, USA, martin.sehr@siemens.com.

3Mac Schwager and Mykel Kochenderfer are with the Stanford Univer-
sity Department of Aeronautics and Astronautics,{mykel, schwager
}@stanford.edu.

the “cross-schedule dependencies” that arise from the inter-
task precedence constraints [2]. As the ratio of tasks to agents
increases, the sequential assignment problem approaches a
traveling salesman problem. As the breadth of the task de-
pendency graph (i.e., the degree to which it is parallelizable)
increases, the route-planning problem becomes increasingly
congested and potentially ill-matched with optimistic task
assignment. However, PC-TAPF problems often exhibit use-
ful structure that can be exploited to efficiently find optimal
solutions.

Various methods have been proposed for solving problems
that are mathematically similar to PC-TAPF. Some perform
joint task assignment and collision-free route-planning, but
do not handle dependencies between tasks [3]–[7]. Others
handle tasks with temporal dependencies, but ignore the
routing problem or assume that agents will never collide
[8]–[10]. To the best of our knowledge, no solver has been
proposed to optimally solve the combined sequential task
assignment and routing problems with inter-task precedence
constraints and collision-free constraints.

In this article, we propose a hierarchical algorithm for
optimally solving PC-TAPF problems. The first level assigns
tasks to robots by solving a relaxed problem that ignores non-
collision constraints. The task assignments are passed down
to a Conflict-Based Search (CBS) level, which searches over
a constraint tree for an optimal collision-free set of paths
[11]. At each node of the constraint tree, CBS calls a lower
level routine that incrementally constructs a joint route plan
by iterating over a dependency graph and repeatedly calling
a modified version of A? [12]. We evaluate the runtime
of the algorithm and its component parts on a suite of
problem instances that vary in size and structure, and show
that even large problem instances (i.e. 40 robots, 60 tasks)
can be efficiently solved to optimality in most cases. We
also demonstrate our solver with a fleet of non-holonomic
differential-drive robots in high-fidelity simulation.

II. BACKGROUND

Many variants of multi-agent pathfinding (MAPF) [13]
problems exist in the literature. Related problems include
MAPF with Deadlines (MAPF-DL) [7], multi-agent pick-up
and delivery (MAPD) [14], and combined target-assignment
and path-finding (TAPF) with teams of heterogeneous agents
[5], [15]. Optimal solvers for path-finding problems are often
based on Conflict-Based Search (CBS) [11], Network flow
[15] or subdimensional expansion [4]. Conflict-Based Search
with Task Assignment (CBS-TA) addresses heterogeneous
anonymous MAPF problems [3]. CBS-TA searches over a

ar
X

iv
:2

00
6.

08
84

5v
1 

 [
cs

.R
O

] 
 1

6 
Ju

n 
20

20



Fig. 1: The factory environment. Dark gray regions repre-
sent obstacles (manufacturing stations). Blue disks represent
robots, and smaller black disks represent objects.

forest of CBS constraint trees, where each tree in the search
forest corresponds to a different task assignment matrix. Our
algorithm is similar, in the sense that it solves a relaxed
“assignment” problem at the top level and queries a lower-
level route-planner, iterating through all possible assignments
in best-first order until there is zero gap between the lower
bound from the assignment problem and the best route plan.

Several types of vehicle routing and scheduling problems
(VRSPs) incorporate temporal dependencies—such as prece-
dence, synchronization, and time-windowing constraints—
between tasks. Bredström and Rönnqvist introduce a travel-
ing repairman VRSP with precedence and synchronization
constraints [10]. Dohn, Rasmussen, and Larsen introduce
a formulation for modeling general temporal dependencies
between tasks [8]. Exact methods for VRSPs with temporal
dependencies usually involve solving a mixed integer linear
program (MILP) [8]. We do the same at the top level of
our hierarchical algorithm. Because such solution methods
are often intractable for large problem instances, many
decentralized approaches accept a degree of suboptimality
in exchange for savings in computation time. These include
algorithms like M+, wherein robots negotiate with each other
in a “task market [16].

III. PROBLEM STATEMENT

The factory environment is modeled as a two-dimensional
grid world. Manufacturing stations are regularly spaced
throughout the environment, and each station is surrounded
by an array of pick-up and drop-off zones, at which objects
may be collected and deposited, respectively. The discrete
state xti of robot i at time t corresponds to a grid cell
in the environment. At each time step, each robot may
remain in place or move in any of the compass directions
to arrive in an adjacent grid cell at the next time step. Cells
corresponding to manufacturing stations may not be entered.
robot i may collect object j if they occupy the same grid
cell (i.e., xti = otj , where otj denotes the object state), and
the object moves with the robot until the robot deposits it.
The environment is shown in fig. 1.

A project specification S defines the set of manufacturing
operation that must be performed. Each operation consumes

TABLE I: Notation
n number of robots
m number of objects
xi state of robot i
oj state of object j
pi = x0:t

i trajectory of agent i

G = (V, E) operating schedule
v ∈ V schedule vertex
(v → v′) ∈ E schedule edge
v.t0 vertex start time
v.∆t vertex duration
v.tF vertex end time

one or more input objects and produces (except in the case
of the no-output terminal operation) a single output object.
Precedence constraints arise whenever the output of one
operation is required as an input to another operation. The
project specification also defines the pick-up and drop-off
locations of all associated objects. Figure 2a depicts a simple
project specification. The project makespan is defined as
the time from start (t = 0) to completion of the terminal
operation.

A. Operating Schedules and Route Plans

The operating schedule G = (V, E) is a directed acyclic
graph (DAG). Each vertex v ∈ V of the graph corresponds to
one of the following discrete high-level events or activities:
initial object condition OBJECT AT, initial robot condition
ROBOT AT, manufacturing operation OPERATION, and the
robot actions GO, COLLECT, CARRY and DEPOSIT. An edge
(v → v′) ∈ E denotes a precedence constraint, meaning
that the activity associated with v′ may not begin until
the activity associated with v has been completed. The
required topological structure of the schedule is intuitive:
In order to perform a transport task, a robot must go to
the appropriate pick-up location, collect an object, carry it
through the factory, and finally deposit it at the drop-off
location. A manufacturing operation may only begin once
all input objects have been deposited at the prescribed drop-
off points. An output object becomes available for collection
only once the associated operation has been completed. An
example operating schedule is shown in fig. 2b.

Each vertex v has a start time v.t0 and completion time
v.tF . For root nodes only (i.e., ROBOT AT vertices and
the initial OBJECT AT vertices), start times are fixed. The
completion time of every vertex is equal to v.t0 + v.∆t,
where ∆t is the duration of the activity. For ROBOT AT and
OBJECT AT nodes, ∆t = 0 by definition. Each COLLECT,
DEPOSIT and OPERATION node may have a fixed positive
∆t. For navigation nodes (GO and CARRY), ∆t is a variable
that depends on how quickly the robot travels from the node’s
start location to its destination location.

An operating schedule is valid if and only if (a) all
vertices have the correct number of incoming and outgoing
edges to the appropriate neighbor vertices and (b) there
are no cycles in the graph. An example of a cycle would
be if robot i were assigned to first deliver object j and
then deliver one of object j’s prerequisites, which would
require traveling backward through time. Constructing a valid
schedule corresponds to solving a sequential task assignment
problem.

A route plan is denoted by P = (p1, . . . , pn), where



OP2O3OP1

O1

O2

(a)

OP2DEPOSITCARRYCOLLECTO3OP1

DEPOSITCARRYCOLLECT
O1

GOR1

DEPOSITCARRYCOLLECT
O2

GOR2

GO

GO

(b)

Fig. 2: (a) An example project specification and (b) a possible corresponding schedule graph with n = 2 robots. robot 1 is
assigned to deliver object 1, and robot 2 is assigned to first deliver object 2 and then deliver object 3 once Operation 1 is
complete.

pi = (x0
i , x

1
i , . . . , x

t
i) = x0:t

i is the trajectory of agent i
from time 0 to t. A route plan is consistent if and only
if it satisfies all environment constraints in addition to the
constraints associated with the operating schedule (i.e., each
robot must be at the relevant pick-up and drop-off locations
at the time steps specified by the operating schedule). These
latter constraints may be understood as boundary conditions
that partition an individual robots trajectory into disjoint
segments. A route plan is valid if and only if it is consistent
and it contains no conflicts between trajectories. A state-
conflict between agents i and j is said to occur at time t if
xti = xtj . An action conflict occurs if (xti = xt+1

j )∧ (xt+1
i =

xtj), where the two agents switch places in a single time step
(which would require that they pass through each other).

A solution consists of a operating schedule and corre-
sponding route plan. A solution is valid if and only if the
schedule and the route plan are both valid. A valid solution
is optimal if and only if no other valid solution has a lower
makespan. The project makespan T is defined as the total
number of timesteps from the beginning of a project (t = 0)
until the terminal operation is completed.

IV. METHODS

We propose a four-level hierarchical planning algorithm to
optimally solve PC-TAPF problems. Each of the four levels
is described in this section. A graphical summary of the
algorithm is given in fig. 3.

A. Level 1: Sequential Next-Best Assignment Search

Sequential Next-Best Assignment Search (NBS) computes
a valid operating schedule by solving a sequential task
assignment problem. The assignment problem is a relax-
ation of the full PC-TAPF problem, because it ignores the
constraint that robots must not collide. The solution to the
assignment problem is an optimistic operating schedule,
and its makespan is a lower bound on the makespan of
the optimal solution to the full PC-TAPF problem. The
optimistic schedule is passed to Level 2, CBS, which returns
a corresponding minimum-makespan valid route plan. The
makespan of this route plan (which may be higher than
the lower bound, since CBS must respect the collision-free
constraints) constitutes an upper bound on the makespan of
the optimal valid solution. NBS tries all possible assignments
in best-first order until no assignments remain with better

makespan than the best route plan found by CBS up to that
point. NBS is summarized in algorithm 1.

The relaxed problem is formulated as a mixed integer
linear program (MILP). We re-cast the sequential assignment
problem as a one-off assignment problem by introducing m
“dummy robots”, where the jth dummy robot is shorthand
for “the robot that just delivered object j.” We encode the
discrete decision variable as an binary assignment matrix
A ∈ B(n+m)×m, where Aij = 1 indicates that robot
i is assigned to transport object j. The first n rows of
A correspond to the real robots, and the final m rows
correspond to the dummy robots. Hence, if Aij = 1 and
Aj+n,k = 1, then robot i is assigned to deliver object j and
then to deliver object k. Because the jth dummy robot is
a placeholder for the robot that already delivered object j,
constraints must be added so that dummy robot j cannot be
assigned to object j or any of its prerequisites (as this would
lead to a cyclic schedule graph).

To simplify notation, we define t0i , τ0
j , and τFj as the start

time of robot i, the pickup time of object j, and the delivery
time of object j, respectively. The MILP formulation is given
by

minimize τFm (1)
Aij ∈ {0, 1} i ∈ 1 : n+m, j ∈ 1 : m (2)∑n+m

i=1 Aij = 1, j ∈ 1 : m (3)∑m
j=1Aij ≤ 1, i ∈ 1 : n+m (4)

Aj+n,k = 0, j ∈ 1 : m, k ∈ PRED(j) (5)
t0i = 0, i ∈ 1 : n (6)

t0j+n = τFj , j ∈ 1 : m (7)
τ0
j ≥ 0, j ∈ 1 : m (8)
τ0
j ≥ τFk + OP.∆t, OP ∈ S.operations,
j ∈ OP.inputs, k ∈ OP.outputs (9)

τFj ≥ τ0
j + COLLECTj .∆t + d(sj , gj)

+ DEPOSITj .∆t, j ∈ 1 : m (10)
τ0
j − (t0i + d(x0

i , sj)) ≥ −M(1−Aij),

i ∈ 1 : n, j ∈ 1 : m, (11)

where (1) defines the project makespan, (2) constrains the
elements of the assignment matrix to be binary, (3) ensures
that each task is assigned to exactly one robot, (4) ensures
that each robot (including dummies) is assigned to no more



Level 1: NBS

Level 2: CBS

Level 3: ISPS

Level 4: A?
SC

problem instance solution

valid route planoptimistic schedule

consistent route planrouting constraints

path segmentpartial route plan

Fig. 3: A schematic overview of our algorithm.

than one task, (5) prevents each dummy robot j from being
assigned to any task k ∈ PRED(j) among the predecessors of
its parent task, (7) constrains the start time of each dummy
robot to match the completion time of its parent task, (6)
defines the start times for all non-dummy robots, (8) ensures
that no object can be collected before time t = 0, (9) enforces
all task precedence constraints that arise from the operations
in the project spec, (5) constrains the time between task start
and task completion to be separated by at least collection
time plus the minimum travel time between the pick-up and
drop-off locations plus the deposit time, and (11) uses the
big M method to constrain the start time of task j to be at
least the start time of the assigned robot plus the minimum
travel time d(x0

i , gj) from the robot initial location to the
object pick-up location. The MILP can be solved with any
off-the-shelf solver. We use Gurobi in our experiments [17].

Algorithm 1 Sequential Next-Best Assignment Search (NBS)
1: procedure NBS(PC-TAPF)
2: MILP ← FORMULATE MILP(PC-TAPF)
3: (S?, T?)← (nothing,∞) . best solution
4: T ← 0 . lower bound
5: while T? > T
6: G, T ← SOLVE(MILP)
7: if T? > T
8: S, T ← CBS(PC-TAPF, G) . Call Level 2
9: if T < T?

10: (S?, T?)← (S, T )

11: MILP.constraints← (G 6= S.G)

12: return S?, T?

B. Level 2: Conflict-Based Search

CBS is a general framework for multi agent path finding
[11]. It operates by best-first search over a binary constraint
tree, where each node of the constraint tree contains a set
of constraints (the root node constraint set is empty). A
state constraint cS = (i, x, t) specifies that robot i may
not occupy position x at time t, and an action constraint
cA = (i, x, x′, t) specifies that robot i may not move from
position x to position x′ at time t.

When CBS receives a operating schedule from NBS, it
initializes the root node of the binary constraint tree. Begin-
ning at the root node, CBS passes the operating schedule
and the current node’s constraint set down to the next level
of planner. ISPS returns a consistent route plan that also
respects all constraints passed in by CBS, or an infeasible
flag if no consistent route plan can be found. If the route plan
is invalid (i.e., it has at least one conflict), CBS branches
by generating a pair of mutually exclusive constraints and
adding each to a new search node that also inherits all the

constraints of its parent search node. CBS calls ISPS for each
child search node to recompute a new solution that respects
the added constraint, then adds each search node to a priority
queue with priority defined by its makespan. CBS continues
until (1) a valid solution is obtained, (2) the cost of the best
node in the queue exceeds the upper bound on the optimal
solution, or (3) the priority queue is exhausted. In the latter
two cases, CBS returns no solution.

C. Level 3: Incremental Slack-Prioritized Search

Algorithm 2 Incremental Slack-Prioritized Search (ISPS)
1: procedure ISPS(G, constraints)
2: P ← ([x0

1], . . . , [x0
n]) . init route plan

3: C ← ∅ . closed set
4: Q← INITQUEUE(G, C) . priority queue
5: while Q 6= ∅
6: v ← DEQUEUE(Q) . pop vertex from queue
7: p ← A?

SC(P, v, constraints) . plan path segment p
8: v.tF ← p.tF . update vertex final time
9: P ← ADD PATH(P, p) . update route plan

10: C ← {v} ∪ C . update closed set
11: G← UPDATESCHEDULE(G)
12: Q← INITQUEUE(G, C)
13: return P

14: procedure UPDATESCHEDULE(G)
15: for v ∈ TOPOLOGICAL SORT(G)
16: for v′ ∈ PRED(v)
17: v.t0 ← max(v.t0, v′.T )

18: v.tF ← max(v.t0 + v.∆t, v.tF )

19: for v ∈ REVERSE TOPOLOGICAL SORT(G)
20: for v′ ∈ SUCC(v)
21: v.SLACK ← min(v.SLACK, v′.t0 + v′.SLACK − v.tF )

22: v.tF ← max(v.t0 + v.∆t, v.tF )

23: return G

24: procedure INITQUEUE(G, C)
25: for v ∈ VERTICES(G)
26: if v /∈ C ∧ PRED(v) ⊆ C
27: Q← ENQUEUE(Q, v → v.SLACK)

28: return Q

The Incremental Slack-Prioritized Search (ISPS) module
receives a operating schedule and a set of constraints from
CBS. ISPS incrementally constructs a consistent plan by
traversing the schedule graph in topological order and calling
A?

SC to compute a path segment for each vertex. The key
idea behind ISPS is that it takes advantage of slack in the
operating schedule. Slack denotes the amount of room for
delay in a vertex’s final time v.T before the makespan would
increase. Vertices with high slack can afford significant delay
without affecting the project completion time. Vertices with
zero slack are on the critical path. If they are delayed by
even a single timestep, the entire project will be delayed.

ISPS begins by adding all root vertices (vertices with no
predecessors) of the schedule graph to a priority queue Q
where they are prioritized by their slack. The lowest slack
vertex is popped from the queue, and A?

SC is called to plan
a path segment corresponding to that vertex. When planning
is complete for that vertex, it is placed in the closed set
C. The path segment is added to the partial route plan, and
ISPS calls a subroutine to update the operating schedule and
recompute the slack of all vertices.When all of a vertex’s
predecessors are in the closed set, that vertex is added to the
priority queue.



Only GO and CARRY nodes require actual path-planning
from an initial location to a target location.1 All other nodes
in the operating schedule serve only as checkpoints, and
can be automatically closed as soon as they become active.
To avoid scheduling explicit waiting periods between GO
nodes and COLLECT nodes, the planner extends the planning
horizon of each GO node to the time step at which the
assigned object become available. ISPS terminates when
either (1) all schedule nodes are closed, (2) A?

SC fails to find
a feasible path, or (3) the cost of the route plan exceeds the
upper bound cost maintained by NBS. ISPS is summarized
in algorithm 2.

D. Level 4: Slack-and-Collision-aware Tie-breaking A?

Slack-and-Collision-aware Tie-breaking A? (A?
SC) com-

bines a custom cascading search heuristic with the well-
known A? graph-search algorithm [12]. As in regular space-
time A?, A?

SC maintains a priority queue of search states,
where each search state corresponds to a path p. At every
iteration, A?

SC pops the lowest-cost search state from the
queue and expands it by trying all possible one-step actions
beginning from the terminal state of the corresponding path.
When a search state satisfies the termination criteria (i.e., the
path reaches the goal location), it is returned to A?

SC .
For brevity, we do not include the pseudocode of the

entire A?
SC algorithm. However, algorithm 3 shows the

pseudocode of GET HEURISTIC COST(P, p, v), a subroutine
that computes the four element heuristic cost c ∈ R4

+ of a
path p. This custom heuristic cost determines the order in
which A?

SC will expand search states within the algorithm.
Ties are broken in cascading fashion. This cascaded tie-
breaking behavior is the key to the efficiency of our path-
planner in computing make-span optimal route plans while
simultaneously avoiding conflicts.

The first element c1 of the cost tuple is the delay cost. It
measures the amount by which a path is guaranteed to delay
the entire project, which is 0 until the slack disappears. The
second cost element c2 counts the number of times that a
path conflicts with the global route plan P . The third element
c3 is equal to the path length plus the remaining distance to
the goal location, and the fourth element c4 is simply the
distance to the goal location. Hence, the default behavior
(based on c3 and c4) of A?

SC is to move to the goal location
as quickly, but it will avoid conflicts at the expense of path
length until the slack runs out, at which time path length
again become the dominant criterion for optimality. The only
way that A?

SC will return a path that creates conflicts is if
it runs out of slack and there is no other path of equal or
shorter length with fewer conflicts.

E. Repairing Route Plans

When ISPS has finished computing a consistent route plan
for the entire operating schedule, the solution is checked
for conflicts. If there are conflicts, ISPS tries to repair the

1GO and CARRY are functionally equivalent–the path-planning process
for them is identical. We simply call them different things to acknowledge
that the agent is actually transporting an object during the CARRY phase.

Algorithm 3: GET HEURISTIC COST Subroutine of A?
SC

1: procedure GET HEURISTIC COST(p, P, v)
2: h← d(s, v.goal state) . “cost-to-go” heuristic
3: c1 ← max(0, p.tF + h− (v.tF + v.SLACK)) . delay cost
4: c2 ← COUNT CONFLICTS(p, P ) . number of conflicts along path
5: c3 ← p.length + h . lower bound total travel distance
6: c4 ← h . minimum remaining travel time
7: return c

“broken” solution by iterating through the operating schedule
a second time. The difference the second time through is
that a full route plan (as opposed to a partial route plan) is
available to populate the conflict table which is used in A?

SC

for computing the conflict cost COUNT CONFLICTS(p, P ).
This allows paths that are planned early in the topological
ordering to be adjusted to avoid potential conflicts with plans
that are planned later in the ISPS procedure.

F. Theoretical Properties

It can be shown that NBS will search the full space
of possible valid project schedules in best-first order. If
the combination of CBS, ISPS, and A?

SC is optimal and
complete, the full algorithm can also be guaranteed to find
the optimal solution if the problem is feasible. Sharon, Stern,
Felner, et al. have already shown that CBS is optimal and
complete under the assumption that the lower level path
planner is also optimal and complete [11].

However, our lower level path planner (ISPS combined
with A?

SC) is incomplete because it is possible for A?
SC

to prematurely consume slack in one vertex such that a
downstream vertex is forced to unnecessarily delay the
project. Completeness could be ensured by removing the
slack term from line 3 of algorithm 3, but this would negate
the planner’s key advantage: its ability to avoid conflicts by
consuming slack. We are preparing an extension of ISPS and
A?

SC that will incrementally anneal the slack cost term when
necessary, thus achieving completeness without ruining the
planner’s efficiency.

V. EXPERIMENTS

We evaluate our solver on a set of 384 randomly gen-
erated PC-TAPF problem instances—16 instances for every
combination of number of robots n ∈ {10, 20, 30, 40} and
number of objects m ∈ {10, 20, 30, 40, 50, 60}. The grid
world environment is shown in fig. 1. Initial robot locations
are selected at random. The initial and destination locations
of all objects are selected at random from the designated
pick-up and drop-off zones surrounding each manufacturing
station. For each problem instance, we evaluate the runtime
of (a) the full algorithm, (b) the NBS MILP solver alone, and
(c) a single iteration of ISPS. The results are summarized in
figs. 4a to 4c.

Figure 4a shows that the PC-TAPF solver runs very fast
for most problem instances, even when m and n are large.
However, NBS struggles when the ratio of tasks to robots
becomes high. This is unsurprising, as the MILP approaches
a traveling salesman problem when m � n. The NBS
MILP solver timed out (at 100 seconds) on 40 of the
problem instances (including all instances with m = 60,



n = 10) before finding an optimal solution. In these cases,
the suboptimal MILP solution was still passed to CBS.

ISPS (as demonstrated by fig. 4c) scales gracefully with
problem size. The route planner’s efficiency is largely due
to the ability of ISPS and A?

SC to exploit slack in the
operating schedule, thereby removing the burden of conflict-
resolution from CBS. Figure 5 shows that only nine of the
384 problem instances required any CBS branching at all.
On two problem instances, the solver reached our arbitrary
limit of 100 branching operations in a single CBS iteration.
Despite the incompleteness of ISPS and A?

SC , only three
problem instances (besides those on which the solver reached
a time or iteration limit) were not solved optimally.

0.1

1.0

10.0

100.0

m = 10

tim
e

(s
)

n = 10

n = 20

n = 30

n = 40

m = 20 m = 30 m = 40 m = 50 m = 60

(a) Runtime statistics for the full PC-TAPF solver.

0.1

1.0

10.0

100.0

m = 10

tim
e

(s
)

n = 10

n = 20

n = 30

n = 40

m = 20 m = 30 m = 40 m = 50 m = 60

(b) Runtime statistics for the task assignment MILP solver.

0.1

1.0

10.0

100.0

m = 10

tim
e

(s
)

n = 10

n = 20

n = 30

n = 40

m = 20 m = 30 m = 40 m = 50 m = 60

(c) Runtime statistics for ISPS.

Fig. 4: Box plots summarizing the computation time for the
full PC-TAPF solver, the NBS MILP Solver and ISPS. Each
individual plot represents 16 trials with the indicated values
of m (labeled along the x-axis) and n (increasing from left-
to-right and labeled by color). Runtime is plotted on a log
scale, and all three figures are plotted on the same scale.

In addition to the experiments above, we include a video to
demonstrate our solver’s performance in a high-fidelity sim-
ulator with multiple non-holonomic differential drive robots.
After solving the PC-TAPF problem, we use geometric path-
planning and convex optimization to convert the optimal

0

25

50

75

100

m = 10

m
ax

C
B

S
ite

ra
tio

ns

n = 10

n = 20

n = 30

n = 40

m = 20 m = 30 m = 40 m = 50 m = 60

Fig. 5: Box plots summarizing the maximum number of CBS
iterations in any full iteration of the PC-TAPF solver. Plots
are organized as in figs. 4a to 4c. Only nine of the 384
problem instances required any CBS branching.

route plan into dynamically feasible trajectories that allow
each robot to pass in and out of each grid cell in the planned
sequence at precise intervals. To stabilize each robot about
its reference trajectory, we implement a hybrid nonlinear
feedback control policy that switches between control laws
(including the tracking control law of Lee, Song, Lee, et
al. [18]) depending on the current stage of the reference
trajectory. Our simulator is built on Webots (http://www.
cyberbotics.com).

VI. CONCLUSIONS

We introduced the PC-TAPF formulation and presented a
hierarchical algorithm that takes advantage of slack in the
operating schedule to efficiently and optimally solve many
PC-TAPF problem instances. Though the algorithm performs
well empirically, there are several weaknesses that need to
be addressed. ISPS (and hence, the entire algorithm) is not
complete. We are preparing an extension of ISPS that will
make the full algorithm optimal and complete. Moreover, we
have observed that the computational cost of NBS can grow
intractably large for certain classes of problems. This makes
it attractive to develop bounded-suboptimal PC-TAPF solvers
with better runtime guarantees.

Real manufacturing applications are likely to include large
sub-assemblies that are too big to be transported by a
single robot. We are currently extending our approach to
“collaborative transport” scenarios, in which some transport
tasks must be handled by teams of robots. Another interesting
avenue of future work would be to extend our work to a
heterogeneous robot fleets, wherein robots might vary in size,
shape, speed, and ability to service certain tasks.

We are extending our algorithm to a paradigm where
projects arrive at the factory continuously, and wherein
better performance may be attained by partial re-planning of
the operating schedule and route plan to optimally balance
multiple projects simultaneously. A related theme in our
ongoing work is robustness to uncertainty. We are interested
in incorporating open-loop robustness to potential failure and
delay, as well as closed-loop robustness during execution
of the PC-TAPF solution. Our algorithm currently assumes
a deterministic environment, but several efforts from the
MAPF and TAPF literature offer a promising starting point
for incorporating robustness to uncertainty [19], [20].

http://www.cyberbotics.com
http://www.cyberbotics.com


REFERENCES

[1] J. Yu and S. M. LaValle, “Multi-agent Path Planning and
Network Flow,” in Algorithmic Foundations of Robotics X,
2013, pp. 157–173.

[2] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive
taxonomy for multi-robot task allocation,” The International
Journal of Robotics Research, vol. 32, no. 12, pp. 1495–
1512, 2013.

[3] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N.
Ayanian, “Conflict-Based Search with Optimal Task Assign-
ment,” in International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2018.

[4] G. Wagner, H. Choset, and N. Ayanian, “Subdimensional
Expansion and Optimal Task Reassignment,” Symposium on
Combinatorial Search, pp. 177–178, 2012.

[5] H. Ma and S. Koenig, “Optimal Target Assignment and Path
Finding for Teams of Agents,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
2016.

[6] J. Yu and S. M. LaValle, “Optimal Multi-Robot Path Plan-
ning on Graphs: Structure and Computational Complexity,”
ArXiv, 2015.

[7] H. Ma, G. Wagner, A. Felner, J. Li, T. K. Satish Kumar,
and S. Koenig, “Multi-agent Path Finding with Deadlines,”
in International Joint Conference on Artificial Intelligence
(IJCAI), vol. July, 2018, pp. 417–423.

[8] A. Dohn, M. S. Rasmussen, and J. Larsen, “The Vehicle
Routing Problem with Time Windows and Temporal De-
pendencies,” Networks, vol. 58, no. 4, pp. 273–289, 2011.

[9] D. Bredstrom and M. Ronnqvist, “A Branch and Price Al-
gorithm for the Combined Vehicle Routing and Scheduling
Problem With Synchronization Constraints,” SSRN Elec-
tronic Journal, pp. 1–21, 2011.

[10] D. Bredström and M. Rönnqvist, “Combined vehicle rout-
ing and scheduling with temporal precedence and syn-
chronization constraints,” European Journal of Operational
Research, vol. 191, no. 1, pp. 19–31, 2008.

[11] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-
Based Search For Optimal Multi-Agent Path Finding,” in
AAAI Conference on Artificial Intelligence (AAAI), 2012.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths,”
IEEE Transactions on Systems Science and Cybernetics, vol.
4, no. 2, pp. 100–107, 1968.

[13] D. Silver, “Cooperative Pathnding.pdf,” Proceedings of the
First AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, pp. 117–122, 2005.

[14] H. Ma, T. K. Kumar, J. Li, and S. Koenig, “Lifelong multi-
Agent path finding for online pickup and delivery tasks,”
in Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS, vol. 2,
2017, pp. 837–845.

[15] J. Yu and S. M. LaValle, “Optimal Multirobot Path Planning
on Graphs: Complete Algorithms and Effective Heuristics,”
IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1163–
1177, 2016.

[16] S. Botelho and R. Alami, “Multi-Robot Cooperation
Through Negotiated Task Allocation and Achievement,”
IEEE International Conference on Robotics and Automation
(ICRA), no. May, pp. 1234–1239, 1999.

[17] L. L. C. Gurobi Optimization, Gurobi Optimizer Reference
Manual, 2019.

[18] T. C. Lee, K. T. Song, C. H. Lee, and C. C. Teng, “Tracking
control of unicycle-modeled mobile robots using a saturation
feedback controller,” IEEE Transactions on Control Systems
Technology, vol. 9, no. 2, pp. 305–318, 2001.

[19] W. Honig, S. Kiesel, A. Tinka, J. W. Durham, and N. Aya-
nian, “Persistent and Robust Execution of MAPF Schedules
in Warehouses,” IEEE Robotics and Automation Letters, vol.
4, no. 2, pp. 1125–1131, 2019.

[20] H. Ma, W. Hönig, L. Cohen, T. Uras, H. Xu, T. K. Kumar,
N. Ayanian, and S. Koenig, “Overview: A Hierarchical
Framework for Plan Generation and Execution in Multirobot
Systems,” IEEE Intelligent Systems, vol. 32, no. 6, pp. 6–12,
2017.


	I Introduction
	II Background
	III Problem Statement
	III-A Operating Schedules and Route Plans

	IV Methods
	IV-A Level 1: Sequential Next-Best Assignment Search
	IV-B Level 2: Conflict-Based Search
	IV-C Level 3: Incremental Slack-Prioritized Search
	IV-D Level 4: Slack-and-Collision-aware Tie-breaking A
	IV-E Repairing Route Plans
	IV-F Theoretical Properties

	V Experiments
	VI Conclusions

