
GOMP: Grasp-Optimized Motion Planning for Bin Picking

Jeffrey Ichnowski∗, Michael Danielczuk∗, Jingyi Xu∗, Vishal Satish∗, and Ken Goldberg∗

Abstract— Rapid and reliable robot bin picking is a critical
challenge in automating warehouses, often measured in picks-
per-hour (PPH). We explore increasing PPH using faster
motions based on optimizing over a set of candidate grasps.
The source of this set of grasps is two-fold: (1) grasp-analysis
tools such as Dex-Net generate multiple candidate grasps,
and (2) each of these grasps has a degree of freedom about
which a robot gripper can rotate. In this paper, we present
Grasp-Optimized Motion Planning (GOMP), an algorithm that
speeds up the execution of a bin-picking robot’s operations
by incorporating robot dynamics and a set of candidate grasps
produced by a grasp planner into an optimizing motion planner.
We compute motions by optimizing with sequential quadratic
programming (SQP) and iteratively updating trust regions
to account for the non-convex nature of the problem. In
our formulation, we constrain the motion to remain within
the mechanical limits of the robot while avoiding obstacles.
We further convert the problem to a time-minimization by
repeatedly shorting a time horizon of a trajectory until the
SQP is infeasible. In experiments with a UR5, GOMP achieves
a speedup of 9x over a baseline planner.

I. INTRODUCTION

With increasing e-commerce, robots are in demand for
bin picking. This “pick-and-place” operation is ostensibly
simple, as humans can do it will little effort. However,
the same is not true for robots. Having robots take on
this task requires tackling many computational challenges in
order to make it reliable and fast, including sensing, grasp
analysis, motion planning, and executing the actual robot
arm’s motion. With recent advances speeding up sensing and
grasp analysis, motion planning and robot arm movement
are rapidly becoming the bottleneck [1], [2]. In this paper,
we present Grasp-Optimized Motion Planner (GOMP), an
algorithm that speeds up the execution of a bin-picking
robot’s operations by incorporating the dynamics of a robot
arm and a set of candidate grasps produced by grasp analysis
into an optimizing motion planner.

The pipeline for GOMP starts with the observation that
grasp analysis tools can provide a set of candidate grasps.
A motion planner can then select a grasp from the set that
leads to the fastest motion between picking up and placing
the object. The variation in speed of motion comes from
both location and angle of grasp. Grasping locations and
angles closer to the placement configuration, or that present
alternate routes around obstacles can allow for faster bin
picking motions.

When generating optimized trajectories between pick and
place, GOMP allows the grasp point to vary over one degree

∗Jeffrey Ichnowski, Mike Danielczuk, Jingyi Xu, Vishal Satish, and
Ken Goldberg are with the AUTOLAB, University of California at
Berkeley, Berkeley, CA 94720, U.S.A. {jeffi, mdanielczuk,
jingyi xu, vsatish, goldberg}@berkeley.edu

Fig. 1. GOMP computes minimum-time trajectories that avoid obstacles,
while constraining the start and end configurations to a set computed by
grasp analysis. Although many bin-picking systems limit the robot to picking
from a top-down vector, the start and end configurations of a trajectory
generated by GOMP are allowed to vary over the degree of freedom as
defined by the grasp axis. This figure shows the optimal trajectory computed
by GOMP for the UR5 robot with obstacles as illustrated.

of freedom. This degree of freedom for parallel-jaw grippers
is around the grasp axis. For suction, the degree of freedom
is around the suction cup contact normal. While traditional
approaches limit the grasp to a single direction of approach
(e.g., top-down) to a grasp-analysis frame, we propose allow-
ing an optimization to select an approach angle that results
in the same pair of points in contact with the gripper jaws,
while allowing the robot to make faster motions.

GOMP incorporates the mechanical limits (e.g., each
joint’s maximum torque and velocity) of the robot arm
to minimize the resulting motions’ execution time. This
minimization is non-convex, as it must avoid obstacles in
the robot’s workspace (e.g., the bin sides) and allow for
degrees of freedom in the forward-kinematic space of the
start and goal poses while taking into account the mechanical
limits. To address this problem, GOMP uses a sequential
convex optimization on a discretization of a trajectory into a
fixed number of waypoints at a fixed time interval that: (1)
iteratively updates trust regions between convex optimization
steps to account for the constraints of the start and goal
poses and obstacles, (2) explicitly constrains joint motions
to remain within their velocity and torque limits, and (3)
minimizes the acceleration to produce smooth trajectories.

To minimize motion time, the sequential convex opti-

ar
X

iv
:2

00
3.

02
40

1v
1

 [
cs

.R
O

]
 5

 M
ar

 2
02

0

(a) top-down (b) left 60◦ (c) right 60◦

Fig. 2. Grasp analysis produces a pair of grasp points that a parallel jaw
gripper is able to grasp from any angle rotated around the grasp axis created
connecting the two grasp points. The optimizing motion planner starts with
the traditional top-down grasp from (a) and optimizes around the axis to
find the fastest motion.

mization above is repeated with a decreasing number of
waypoints until the minimization is no longer feasible. This
repeated optimization is sped up through the use of warm
starting the subsequent optimization based upon the previous
optimization.

In experiments, we integrate grasp analysis with the opti-
mizing motion planner and deploy it on a UR5 robot arm [3]
with a Robotiq gripper [4]. For the grasp analysis, we use
a modified Dex-Net 4.0 [5] which can produce multiple
grasp candidates in sub-second times. The result of these
is an optimized motion with no observed loss of reliability,
resulting in faster PPH than prior work.

This paper provides 3 main contributions:
1) The GOMP problem formalization and algorithm for

minimizing the execution time of a robot’s motion
while accounting for obstacles, robot’s mechanical
limits, and grasp constraints.

2) Grasp-analysis-based pose constraints that allow an
optimization to speed up motions by varying over a
degree of freedom implied by the gripper’s design.

3) Experimental results suggesting GOMP motions can
significantly speed up the bin picking pipeline.

II. RELATED WORK

Data-driven grasp-analysis or grasp planning algorithms
for parallel jaw grippers, such as Dex-Net [6], [7], [8], [5],
GG-CNN [1], GPD [9], or FC-GQ-CNN [2], typically take
sensor input (e.g., an object mesh, a depth-camera image),
perform some pre-processing (e.g., image inpainting), and
produce either a grasp or grasp quality score for a presampled
grasp candidate [10]. The majority of these algorithms are
based on convolutional neural networks (CNNs) and may
be learned from human annotations [11], simulated train-
ing data [12], [13], human or self-supervised labels from
grasps attempted on a physical system [14], [15], [16] or a
combination of the above [17]. These data-driven methods
often represent grasps using a center-axis [5] or rectangle
formulation [11] in the image plane, resulting in 4 degrees
of freedom (a 3D translation, plus a rotation about the camera
z-axis). Recent work has also explored introducing additional

degrees of freedom for grasps in cluttered environments [18],
[19], [20], [21], noting that top-down grasps leave out a wide
range of feasible high quality grasps on many objects [22].
In this paper, we build upon the 4 degree of freedom
representation commonly used with CNNs and propose using
the output coordinate frame as a basis for an infinite set of
grasps around the grasp axis. We note that this additional
degree of freedom applies also to suction cup grasps, which
can be rotated around the surface normal of the grasp point.
While we propose that many grasp-analysis algorithms could
be incorporated into GOMP, we use FC-GQ-CNN as it can
produce multiple grasp candidates in sub-second times.

Generating motion plans from a multiple start to multiple
goal configurations (e.g., by varying degrees of freedom on
the configurations), is well-suited for sampling-based motion
planners such as PRM [23], RRG [24], and bi-directional
RRTs [25]. While asymptotically-optimal variants of these
planners [24] are guaranteed to produce optimal motions
eventually, the slow convergence rate of these planners in
6+ degree-of-freedom robot arms does not lend itself to
producing time-optimal motion plans fast enough to improve
PPH. While sampling-based motion planners lend themselves
to parallelization [26], [27], the associated speed up in
convergence rate may still be insufficient. In any case, the
generated motions often still require subsequent smooth-
ing [28], time-parameterization [29], or both [30] in order
to run smoothly and quickly on a robot arm.

Optimizing motion planners for robot such as Trajopt [31],
CHOMP [32], STOMP [33], ITOMP [34], based on interior
point optimization [35], based on gradients [36], and based
on Gaussian Process [37], through various formulations of a
minimization problem work to produce a locally minimized
trajectory from a start to goal pose while avoiding obstacles.
In prior formulations, the trajectory is discretized into a
sequence of waypoints, and the constrained minimization
objective is cast either as sum-of-squared distances between
waypoints, or sum-of-distances between waypoints, without
taking into account the mechanical limits of the robot arm
(i.e., requiring a subsequent time-parameterization step). In
this paper, like prior work, we discretize the trajectory
into a sequence of a fixed number of waypoints. Unlike
prior work, we minimize the sum-of-squared accelerations
while incorporating mechanical limits and dynamics between
waypoints (to produce smooth motions), and then repeat the
process with fewer waypoints until we find a minimum-time
trajectory. With the observation that our obstacle-avoidance
problem is relatively simple compared to those addressed by
prior work, we use constraints similar to those of Trajopt,
though with a faster implementation using a different obsta-
cle model.

Integrated grasp and motion planning algorithms find
collision-free trajectories to grasps or grasp sets that are
precomputed or synthesized during the planning process.
Dragan et al. [38] use CHOMP to compute an optimized
motion plan to a discretized goal set. Wang et al. [39]
extend on Dragan’s approach to include learning and online
synthesis of grasps that increase the goal set during optimiza-

tion. Vahrenkamp et al. [40] propose a planner (GraspRRT)
that integrates finding a feasible grasp, inverse kinematics,
and finding a collision-free motion plan using a sampling-
based motion planner. Fontanals et al. [41] and Gravdahl et
al. [42] similarly integrates RRT with grasp-biased samples
to find collision-free motions to a grasp goal. Deng et al. [43]
sequence learned grasp planning into trajectory generation.
Pardi et al. [44] propose selecting grasps that enable a motion
planner to avoid obstacles. Berenson et al. [45] propose task
space regions (TSR) for constraining robot motions. GOMP
integrates a variation of TSR constraints on the start and end
configuration to compute an optimized motion that allows
for degrees of freedom about pre-computed pick and place
frames, and computing GOMP for multiple candidate grasps,
allows one to find grasps that minimizes motion time while
avoiding obstacles.

III. PROBLEM DEFINITION

Let gz− be a top-down grasp produced by grasp analysis
for a parallel-jaw gripper. This grasp has a rotational degree
of freedom associated with it based on the parallel-jaw
gripper axis. We note that this formulation can be extended to
the rotational axis of a suction gripper’s contact normal. Let
q ∈ C be the complete specification of a robot’s n degrees
of freedom (e.g., the angles of all n joints in the robot),
where C ⊆ Rn is the set of all possible configurations (valid
or not). For robots with joint rotation limits, let qmin ∈ Rn
and qmax ∈ Rn specify those limits. Thus q ∈ C implies
that qmin ≤ q ≤ qmax. Let Cobstacle ⊂ C be the set
of configurations that are in collision with an obstacle.
Let Cfree ⊆ C \ Cobstacle be the set of configurations that
are valid. Let p : C → SE(3) be the forward kinematic
function for a robot. The start configuration for a motion
is a grasp gz−start ∈ SE(3) produced by grasp analysis and
corresponding to a top-down grasp. By adding a 1 degree of
freedom in rotation Ra(·) about axis a corresponding to the
vector between the two grasp contact points, we get a set of
starting grasps,

Gstart =
{
gi

∣∣∣ gi = Ra(θ)g
z−
start, θ ∈

[
−π
2
,
π

2

]}
,

where here we limit the rotation to ±π2 . We note that the
rotation limit may be set based on application needs. We
define Ggoal similarly based on the target placement frame
of the grasped object, though we note that the goal may have
a different axis for its rotational degree of freedom, or may
have no constraints on its rotation.

Let vmax ∈ Rn+ be the maximum velocity of each joint,
and vmin = −vmax be each joints minimum velocity.
Similarly, let amax ∈ Rn+ be the maximum acceleration of
each joint, and amin = −amax. Let τ ∈ T be a sequence
of joint configurations τ = (q0,q1, . . . ,qend), and f : T →
R+ be the time required to traverse the τ from q0 to qend.

Algorithm 1 Grasp-Optimized Motion Planning

Require: gz−start and gz−goal are start and goal gripper poses,
H and tstep are the discretization parameters,
qmin, qmax, vmax, and amax are the mechanical limits,
D is the collision model (depth map)

1: q0 ← p−1(gz−start)
2: qH ← p−1(gz−goal)
3: xH+1 ← ∅
4: xH ← spline interpolation from q0 to qH
5: P← initialize matrix
6: A,b← linearize and initialize constraints from

qmin, qmax, vmax, amax, gz−start, g
z−
goal, D

7: for h← H down to 2 do
8: for i← 1, 2, . . . do
9: xh ← argminx

1
2x

TPx, s.t. Ax ≤ b
10: if QP is infeasible or i > imax then
11: return xh+1

12: A,b← update linearization and trust region from
xh[q0], xh[qH], D

13: if constraints and trust region in tolerance then
14: break
15: xh−1 ← interpolate xh to fit shorter trajectory
16: A,b← add constraint to reflect vh = 0
17: return x2

The objective of GOMP is to compute:

argmin
τ

f(τ), (1)

s.t. qmin ≤ qt ≤ qmax, ∀t ∈ [0, f(τ)] (2)
vmin ≤ vt ≤ vmax, ∀t ∈ [0, f(τ)] (3)
amin ≤ at ≤ amax, ∀t ∈ [0, f(τ)] (4)
qt ∈ Cfree, ∀t ∈ [0, f(τ)] (5)
p(q0) ∈ Gstart (6)
p(qend) ∈ Ggoal (7)

where qt, vt, and at are the configuration, velocity, and
accelerations at time t respectively. Thus, equations (2), (3),
and (4) constrain the motion to the robot’s mechanical limits,
equation (5) constrains the motion to avoid obstacles, and
equations (6) and (7) constrain the motion to start at a pick
location, and end at a placement location.

IV. GOMP ALGORITHM

In this section we present a method for computing the
constrained minimum-time trajectory of equation (1) using
sequential quadratic programming (SQP). The SQP method
solves a sequence of quadratic program (QP) subproblems by
establishing constraints based on trust regions. We propose
using QP solvers because fast implementations are readily
available (e.g., [46]), and when solving a sequence of QP
subproblems, each QP can be warm started using the solution
to the previous subproblem.

A QP solver minimizes a quadratic objective in the form:

argmin
x

1

2
xTPx+ pTx

s.t. Ax ≤ b,

where P ∈ S+ is a positive semidefinite matrix, A, and
b represent the linear (and linearized) constraints. For com-
pleteness, we include pT , but set it to 0 in this paper.

To set up the QP, we first recast the problem so that τ is
discretized over a finite horizon of H steps, with each step
separated by a fixed time interval tstep. We define x to match
this definition as:

x =
[
qT0 qT1 · · · qTH vT0 vT1 · · · vH

]T
,

thus containing the configuration and velocity of each joint
at each waypoint.

The recasting to a discretized fixed-interval sequence of
waypoints serves several purposes: the objective is now
compatible with a QP solver, the constrained dynamics can
be readily specified as linear constraints, and tstep can be set
to match the real-type cycle frequency of the robot’s control
loop. In section IV-E, this SQP formulation is then converted
to a time-minimization.

The overall algorithm is presented in Alg. 1. The details of
the algorithm are expanded on in the subsections that follow.

A. Smooth trajectory objective

After discretizing the trajectory, the next step is to set up
the minimization objective for the QP. Since the discretiza-
tion means the trajectory has a fixed time interval, we instead
have the QP encourage smooth trajectories by minimizing
a the sum-of-squared accelerations as approximated by the
difference in velocities. Thus,

P =

[
0 0
0 Pv

]
,

where, Pv is a (H + 1)× (H + 1) matrix in the form:

Pv =


2 −1 0 0 · · ·
−1 2 −1 0
0 −1 2 −1
...

.

 . (8)

B. Dynamics constraints

To enforce that the trajectory remains within the mechan-
ical limits of the robot, we place linear constraints on qi,
vi, and ai to match the problem definition. The position and
velocity constraints can be directly applied to the coefficients
of x. The accelerations constraint are set to

−amax ≤
1

tstep
(vi+1 − vi) ≤ amax.

To enforce that the waypoints follow the dynamics implied
by the velocity, we apply linear constraints using a common
model-predictive control technique. These constraints take
the form:

qi+1 = qi + vitstep.

With these constraints in place, the QP will enforce that the
trajectory follows the dynamics implied by each waypoint
while not exceeding the robot’s mechanical limits.

Finally, to insure that the trajectory starts and ends with
zero velocity, we add the constraints:

v0 = 0 vH = 0

C. Obstacles

To enable obstacle avoidance, we add a linearization of
the constraints based on the robot’s forward kinematics and
the obstacle. The method we apply follows directly from
that of Trajopt [31]; we establish trust regions as linearized
constraints in a QP. In implementation, we observe that
pick-and-place robots can operate with a simplified task-
specific obstacle model—specifically a depth map. As such,
we can avoid the complexities associated with the GJK [47]
and EPA [48] methods for collision detection and instead
incorporate a constraint based on each waypoint’s position
over the depth map. We observe that an interior point
optimization using boundary functions [35] would also serve
to avoid obstacles.

Assuming we define the positive z-axis as the up vector,
obstacle avoidance constraint takes the form:

zobstacle − p(q(k)
i) + J(k)

z q
(k)
i ≤ J(k)

z q
(k+1)
i ,

where, zobstacle is the height of the obstacle that waypoint
i must be above, Jkz is the z-axis translation row of the
Jacobian of robot arm after SQP iteration k.

D. Start and goal constraints

The pick-and-place operation has a set of start grasps
Gstart and a set of goal positions Ggoal for the gripper.
To enforce the constraint that the trajectory starts with
p(q0) ∈ Gstart and ends at p(qH) ∈ Ggoal, we start with
an initial QP constraint of having the q0 = p−1(gz−start)
and qH = p−1(gz−goal), where p−1(·) produces an inverse
kinematic solution. As described in the problem definition,
these positions have at least one degree of freedom in the
form of a rotation about the axis of the grasp.

The inequality constraint on the start configuration q0 that
allows the rotation about a free axis is:

b
(k+1)
0 − ε0 ≤ R0J

(k)q
(k+1)
0 ≤ b

(k+1)
0 + ε0,

where R0 rotates the coordinate frame so that a single com-
ponent of the Jacobian cooresponds to the degree of freedom.
Thus, ε0 is a vector in which coefficient corresponding to
that degree of freedom is large, and the remaining values in
the vector are small. The bounds of the inequality for the
k + 1-th QP is based on the solution to the k-th QP,

b
(k+1)
0 = R0

(
gz−start − p(q

(k)
0) + J(k)q

(k)
0

)
.

The constraint on the goal configuration follows a similar
formulation as the bounds on the start configuration, with
potentially a different set of degrees of freedom.

Fig. 3. In experimental setup, we take a top-down image of the objects to
grasp (left) using a high-resolution depth camera. We then feed the image
through a modified version of Dex-Net 4.0, which produces a diverse set
of 28 candidate grasps (right). From these grasps, we then compute pick-
to-place trajectories.

E. Time minimization

After solving the SQP with the constraints specified as
above, x will correspond to a trajectory that satisfies dynamic
constraints, avoids obstacles, and minimizes the sum-of-
squared accelerations between waypoints. To convert this
formulation into a time minimization, we next repeatedly
solve the SQP, reducing H until the SQP is infeasible [49],
and taking the x associated with the smallest value of H for
which the SQP is feasible. By finding the minimum H we
explicitly minimize the number of discrete time steps, and
thus the overall time for the trajectory.

To implement the reduced horizon H , we convert the
velocity constraint on the last waypoint from the inequality
bound by vmax to the equality constraint vH = 0.

We note that this process can be stopped at any time after
the solution with the first feasible H , in which case the
shortest time solution found so far would be usable as a
trajectory for the robot.

F. Warm starting

The convergence time of QP solvers can benefit from
providing a good initial estimate of the solution or warm
starting the solver [46]. To speed up the SQP, we warm start
several phases of the optimization process.

We warm start the first QP with a spline that interpolates
between q0 and qH , and starting and stopping with zero
velocity without regarding obstacles.

When reducing H to find a minimum-time feasible tra-
jectory, the solution from the previous optimization does not
align with the optimization of the subsequent optimization.
As such we interpolate the solution from the previous H to
smaller set of waypoints.

V. RESULTS

To test the performance and compatibility of the trajec-
tories GOMP computes, we apply them to a physical setup
resembling what one may find at a pick-and-place station in
a warehouse. In this setup, a high-resolution depth camera
produces an image of the objects to grasp (Fig. 3 (a)). This
image is then sent to our modified version of Dex-Net 4.0 to
generate a diverse set of grasp candidate poses (Fig. 3 (b)).

TABLE I
TIMING COMPARISON FOR 28 PICK-TO-PLACE MOTIONS

baseline GOMP speedup
mean 5.042 s 0.544 s 9.2×
stdev 0.440 s 0.172 s

min 4.144 s 0.256 s 16.2×
max 5.624 s 0.976 s 5.8×

TABLE II
PER-OBJECT GOMP MOTION TIMES

object (color) grasps minimum mean maximum
Car (orange) 5 0.400 s 0.659 s 0.736 s

Castle (blue, right) 2 0.432 s 0.464 s 0.496 s
Clamp (dark blue) 2 0.480 s 0.512 s 0.544 s

Mug (black) 8 0.382 s 0.578 s 0.976 s
Nozzle (blue, left) 2 0.400 s 0.440 s 0.480 s

Pipe connector (purple) 3 0.384 s 0.501 s 0.384 s
Turbine (green) 6 0.256 s 0.496 s 0.896 s

From the grasp candidates, we compute a trajectory for the
UR5 robot that takes the robot from pick-point to placement,
while avoiding obstacles including the side of the placement
bin. This physical setup, along with the execution of an
example trajectory, is shown in Fig. 4.

We modify the original Dex-Net 4.0 to produce a diverse
set of grasp candidates for GOMP by changing the sampling
method from argmax to rejection-sampling with a minimum
distance constraint between grasps in image space.

In the physical experiment, each grasp is initially com-
puted as a top-down grasp. We set the SQP constraints to
allow rotation about the grasp point by up to 45 degrees in
either direction. In Fig. 4 (a), the SQP computed an initial
grasp that aligns to the computed grasp points, but is rotated
to allow for a faster motion from pick-point to placement.

At any point in time after the initial computation of a
trajectory, the robot has a valid trajectory. With additional
compute time, successive reduction of H allows for a faster
trajectory. An example of this process of computing faster
trajectories is shown in Fig. 5. In this figure, we can see an
initial smooth trajectory that is successively made faster until
it cannot be shortened any further due to mechanical limits
of the robot.

We compare the motion execution time for the 28 grasps
shown in Fig. 4, to a baseline trajectory that uses top-down
grasps and performs 3 steps: lift to safe height, move over
bin, then lower to placement height. The baseline motion
does not incorporate obstacle avoidance, instead, it avoids
obstacles by lifting the object sufficiently high to avoid
foreseeable collisions in the workspace. This baseline is run
at the UR5’s default speed. The comparison between the
baseline and the optimized motions are shown in table I.
From the table, we observe that GOMP performs faster in
all tested cases, and on average provides speedup that is 9.2
faster than the baseline. These savings can be passed on to
the complete grasping pipeline to speed up the pick and place
process.

We also test the ability of the trajectory optimization to
be integrated with grasp selection. In Fig. 3, each object
has multiple candidate grasp points. For each object, we

(a) (b) (c) (d) (e) (f)

Fig. 4. UR5 robot moves quickly to transport picked object to placement over bin. The UR5 moves within its joint limits, and with both pick and
placement orientation optimized as part of the motion planning process. This motion takes 0.43 seconds.

-3
-2
-1
0
1
2
3

-100
-50

0
50

100

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Jo
in

t
V

el
oc

ity
(r

ad
/s

)
Jo

in
t

A
cc

el
.

(r
ad

/s
2

)

(a) Initial H = 60 (b) H = 49 (c) H = 38 (d) Final H = 27

Fig. 5. Joint velocities and accelerations computed during time optimization of the trajectory. In these plots, the velocity and acceleration of each
of the 6 joints on the UR5 robot is plotted in a separate color. Each column represents the result of trajectory optimization for a successively smaller value
of H . The time optimization of the trajectory starts with a value of H and subsequently shrinks this value by constraining the velocity to zero at the end
of the trajectory. Trajectory optimization stops once the QP is infeasible. In this case, the shortest time is H = 27, which, at tstep = 0.008, results in a
trajectory that requires 0.216 seconds to execute.

compute trajectories to all of its candidate grasp points in
parallel, and then select the grasp that results in the shortest
execution time. In table II we observe that selecting the grasp
that produces the shortest motion can sometime produce an
additional performance benefit.

The bin-picking pipeline in these experiments requires the
following steps: (a) imaging (1.200 ± 0.051 s), (b) grasp
analysis (0.529 ± 0.041 s) (c) motion to grasp, (d) gripper
closing (0.280 ± 0.140 s), (e) motion to placement, and (f)
gripper opening (0.280±0.140 s). Plugging the mean values
for baseline motions and GOMP motions from table I, the
mean total pick time for baseline motions is 12.373 s, and
with GOMP motions is 3.377 s. This suggests that GOMP
can speed up our pipeline’s mean total pick time by 3.6×.
We caveat that this PPH has not been confirmed with a fully
integrated system.

VI. CONCLUSION

We presented a time-optimizing motion planner that
speeds up pick-and-place operation by incorporating joint
limits, obstacle avoidance, and allowing a degree of freedom
to be incorporated into grasping and placement positions.
By first converting the problem from a time-minimization
problem to minimization that encourages smooth velocities
and linearizing constraints, we are able to recast the problem
to a sequential quadratic program (SQP). After solving the
SQP, we then repeatedly shorten the trajectory’s time horizon
in the SQP—stopping at any time, or when the SQP is
detected as infeasible, resulting in a fast motion plan. When
comparing to a baseline motion, the optimized motion plan

runs significantly faster, creating an opportunity to speed up
the entire pick-and-place operation.

In future work, we plan to test this motion planner
on different robots with differing degrees of freedom, as
well as integrate it into the Dex-Net pipeline. We also see
opportunities to extend this work to account for additional
constraints and trajectory objectives that one might encounter
when deploying this to different robots and environments—
including, for example, generating minimum-jerk trajecto-
ries, and avoiding dynamic obstacles.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep
Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and
the CITRIS “People and Robots” (CPAR) Initiative. Authors were also
supported by the Scalable Collaborative Human-Robot Learning (SCHooL)
Project, a NSF National Robotics Initiative Award 1734633, and in part
by donations from Google and Toyota Research Institute. We thank our
colleagues who provided helpful feedback and suggestions, in particular
Ashwin Balakrishna and Brijen Thananjeyan. This article solely reflects the
opinions and conclusions of its authors and do not reflect the views of the
sponsors or their associated entities.

REFERENCES

[1] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time,
reactive robotic grasping,” The International Journal of Robotics
Research, p. 0278364919859066, 2019.

[2] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep
networks,” IEEE Robotics & Automation Letters, vol. 4, no. 2, pp.
1357–1364, 2019.

[3] U. Robotics. UR5 collaborative robot arm. [Online].
Available: https://web.archive.org/web/20190815054522/https://www.
universal-robots.com/products/ur5-robot/

https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/

[4] Robotiq. 2F-85 and 2F-140 grippers. [Online]. Avail-
able: https://web.archive.org/web/20190519030456/https://robotiq.
com/products/2f85-140-adaptive-robot-gripper

[5] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, 2019.

[6] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a
multi-armed bandit model with correlated rewards,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). IEEE, 2016, pp. 1957–1964.

[7] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Proc.
Robotics: Science and Systems (RSS), 2017.

[8] J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences,” in Conf. on Robot
Learning (CoRL), 2017, pp. 515–524.

[9] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” Int. Journal of Robotics Research (IJRR),
vol. 36, no. 13-14, pp. 1455–1473, 2017.

[10] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE, 2015, pp. 4304–4311.

[11] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5, pp.
705–724, 2015.

[12] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a
grasp function for grasping under gripper pose uncertainty,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE,
2016, pp. 4461–4468.

[13] U. Viereck, A. t. Pas, K. Saenko, and R. Platt, “Learning a visuomotor
controller for real world robotic grasping using simulated depth
images,” in Conf. on Robot Learning (CoRL), 2017.

[14] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manip-
ulation,” in Conf. on Robot Learning (CoRL), 2018, pp. 651–673.

[15] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). IEEE, 2016, pp. 3406–3413.

[16] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with large-scale data collection.”
Springer, 2016, pp. 173–184.

[17] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[18] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proc. IEEE Int. Conf.
on Computer Vision (ICCV), 2019, pp. 2901–2910.

[19] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-
dof grasping for target-driven object manipulation in clutter,” arXiv
preprint arXiv:1912.03628, 2019.

[20] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson,
and H. Lee, “Learning 6-dof grasping interaction via deep geometry-
aware 3d representations,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–9.

[21] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha, “Generating
grasp poses for a high-dof gripper using neural networks,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[22] C. Eppner, A. Mousavian, and D. Fox, “A billion ways to grasp: An
evaluation of grasp sampling schemes on a dense, physics-based grasp
data set,” in Int. S. Robotics Research (ISRR), 2019.

[23] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[24] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. Journal of Robotics Research (IJRR), vol. 30,
no. 7, pp. 846–894, June 2011.

[25] J. Kuffner and S. LaValle, “An efficient approach to path planning
using balanced bidirectional rrt search,” Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep, 2005.

[26] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), May 1999, pp. 688–694.

[27] J. Ichnowski and R. Alterovitz, “Scalable multicore motion planning
using lock-free concurrency,” IEEE Trans. Robotics, vol. 30, no. 5,
pp. 1123–1136, 2014.

[28] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth
trajectory computation in cluttered environments,” The International
Journal of Robotics Research, vol. 31, no. 10, pp. 1155–1175, 2012.

[29] Q.-C. Pham, “A general, fast, and robust implementation of the
time-optimal path parameterization algorithm,” IEEE Transactions on
Robotics, vol. 30, no. 6, pp. 1533–1540, 2014.

[30] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path
following with bounded acceleration and velocity,” Robotics: Science
and Systems VIII, pp. 1–8, 2012.

[31] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[32] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” 2009.

[33] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 4569–4574.

[34] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Twenty-Second International Conference on Automated Planning and
Scheduling, 2012.

[35] A. Kuntz, C. Bowen, and R. Alterovitz, “Fast anytime motion planning
in point clouds by interleaving sampling and interior point optimiza-
tion,” ISRR, 2017, 2017.

[36] M. Campana, F. Lamiraux, and J.-P. Laumond, “A gradient-based
path optimization method for motion planning,” Advanced Robotics,
vol. 30, no. 17-18, pp. 1126–1144, 2016.

[37] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, 2018.

[38] A. D. Dragan, N. D. Ratliff, and S. S. Srinivasa, “Manipulation
planning with goal sets using constrained trajectory optimization,”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 4582–4588.

[39] L. Wang, Y. Xiang, and D. Fox, “Manipulation trajectory opti-
mization with online grasp synthesis and selection,” arXiv preprint
arXiv:1911.10280, 2019.

[40] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated grasp
and motion planning,” in 2010 IEEE International Conference on
Robotics and Automation. IEEE, 2010, pp. 2883–2888.

[41] J. Fontanals, B.-A. Dang-Vu, O. Porges, J. Rosell, and M. A. Roa,
“Integrated grasp and motion planning using independent contact
regions,” in 2014 IEEE-RAS International Conference on Humanoid
Robots. IEEE, 2014, pp. 887–893.

[42] I. Gravdahl, K. Seel, and E. I. Grøtli, “Robotic bin-picking under ge-
ometric end-effector constraints: Bin placement and grasp selection,”
in 2019 7th International Conference on Control, Mechatronics and
Automation (ICCMA). IEEE, 2019, pp. 197–203.

[43] Z. Deng, X. Zheng, L. Zhang, and J. Zhang, “A learning framework
for semantic reach-to-grasp tasks integrating machine learning and
optimization,” Robotics and Autonomous Systems, vol. 108, pp. 140–
152, 2018.

[44] T. Pardi, R. Stolkin, et al., “Choosing grasps to enable collision-
free post-grasp manipulations,” in 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids). IEEE, 2018, pp.
299–305.

[45] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460,
2011.

[46] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

[47] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional

https://web.archive.org/web/20190519030456/https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://web.archive.org/web/20190519030456/https://robotiq.com/products/2f85-140-adaptive-robot-gripper

space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193–203, 1988.

[48] S. Cameron and R. Culley, “Determining the minimum translational
distance between two convex polyhedra,” in Proceedings. 1986 IEEE
International Conference on Robotics and Automation, vol. 3. IEEE,
1986, pp. 591–596.

[49] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility
detection in the alternating direction method of multipliers for convex
optimization,” Journal of Optimization Theory and Applications,
vol. 183, no. 2, pp. 490–519, 2019. [Online]. Available: https:
//doi.org/10.1007/s10957-019-01575-y

https://doi.org/10.1007/s10957-019-01575-y
https://doi.org/10.1007/s10957-019-01575-y

	I Introduction
	II Related Work
	III Problem Definition
	IV GOMP Algorithm
	IV-A Smooth trajectory objective
	IV-B Dynamics constraints
	IV-C Obstacles
	IV-D Start and goal constraints
	IV-E Time minimization
	IV-F Warm starting

	V Results
	VI Conclusion
	References

