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Abstract— During flights, an unmanned aerial vehicle (UAV)
may not be allowed to move across certain areas due to soft
constraints such as privacy restrictions. Current methods on
self-adaption focus mostly on motion planning such that the tra-
jectory does not trespass predetermined restricted areas. When
the environment is cluttered with uncertain obstacles, however,
these motion planning algorithms are not flexible enough to
find a trajectory that satisfies additional privacy-preserving
requirements within a tight time budget during the flights. In
this paper, we propose a privacy risk aware motion planning
method through the reconfiguration of privacy-sensitive sensors.
It minimises environmental impact by re-configuring the sensor
during flight, while still guaranteeing the safety and energy
hard constraints such as collision avoidance and timeliness.
First, we formulate a model for assessing privacy risks of
dynamically detected restricted areas. In case the UAV cannot
find a feasible solution to satisfy both hard and soft constraints
from the current configuration, our decision making method
can then produce an optimal reconfiguration of the privacy-
sensitive sensor with a more efficient trajectory. We evaluate
the proposal through various simulations with different settings
in a virtual environment and also validate the approach through
real test flights on DJI Matrice 100 UAV.

I. INTRODUCTION

Although Unmanned Aerial Vehicles (UAVs) are promis-
ing in commercial and public use, there is a growing fear
from customers and stakeholders that the usage of UAVs
could lead to the leakage of their private information [1].
One general purpose of the application of UAVs is to collect
information about the environment with on-board sensors,
e.g., camera, by planning the flight paths properly [2].
However, the risk of privacy leakage arises once personal
properties are exposed or private lifes are disturbed during
the flight of UAVs [3]. According to the EU’s General
Data Protection Regulations (GDPR) [4], privacy should be
protected by controlling the interference with private space
and/or the information transmitted.

Hence, the flights of UAVs over private regions shall
be prohibited, and certain privacy-sensitive sensors (e.g.,
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camera) shall be controlled. To achieve the above privacy
requirements, several methods have been proposed in liter-
ature. Most of them focus on the planning of flight paths
that can avoid the intervention with known restricted areas or
privacy-sensitive regions [5], [6] because the effectiveness of
path planning for conflict avoidance with various constraints
has been well demonstrated [7], [8]. Additionally, due to
the limitations of tasks, motion space, and battery capacity,
a UAV cannot always find a path satisfying all the privacy
requirements using existing motion planning methods [5].

To address the aforementioned problems, we propose an
adaptive planning method for motion safety and a self-
reconfigurable sensor to guarantee privacy-preservation. It
consists of three parts:

1) Online privacy risk detection and modelling to han-
dle previously unknown private regions and dynamic
privacy demands of citizens;

2) Real-time motion planning when the reference flight
paths interfere with newly detected private regions; and

3) Sensor reconfiguration offers the best possible privacy
preservation when there is no feasible flight path to meet
the strict privacy requirements for motion safety and
task completion.

We also test the effectiveness and performance of the ap-
proach through simulations and experiments on a real-life
outdoor scenario using a DJI Matrice 100 UAV.

The contributions of this work are summarised as follows:

o We propose a model for the risk assessment of privacy
intrusion, which makes UAVs aware of the uncertain
and dynamic environment;

« We propose a self-adaptive motion planner for online
path generation and sensor reconfiguration so as to al-
ways satisfy motion safety, task completion, and privacy
requirements.

The rest of paper is organised as follows. Sect. II gives
a brief literature review. The problem statement is given in
Sect. III. The detailed design of our method is given in Sect.
IV. Sect. V describes our simulation results and experiments
on real UAV flights. The paper is concluded in Sect. VL.

II. RELATED WORK

Most existing research focused on motion planning of
autonomous systems sharing the environment with the guar-
antees of safety (i.e., the collision shall never happen) and
liveness (i.e., travel to the destination eventually) [9]-[13].
For example, distributed approaches are proposed in [9], [10]
to avoid collisions and deadlocks in multi-robot systems. In
more complex scenarios, time, energy, and visibility con-
straints are taken into consideration [2], [14]. For example, a



search-based path planning algorithm for safe navigation un-
der visibility constraints has been proposed in [14]. However,
privacy preservation for restricted areas is rarely considered
in these traditional motion planning methods.

Several methods for privacy protection during flights of
UAVs have been proposed in literature. For example, image
denaturing techniques [15] are put forward for sensitive data
protection. However, they are unrealistic for private users or
commercial entities due to the high cost and time consump-
tion [16]. Regulating UAV altitudes and onboard camera
capability to reduce video quality is another method [17];
however, it only mitigates privacy threats from the per-
spective of handling adversarial computer vision attacks
while not addressing physical intrusions. Determining the
border of a property according to its owner, “privacy by
design” principles can be applied to prevent a violation in
advance [6], while checking entities are required to gather
the information about declarer’s identity and to verify the
crossing of property borders [3]. With differential permission
of UAV given by citizens, a framework for UAV movement
under privacy constraints is introduced in [5]. However,
direct mapping of geospatial projection and land register
information is not generally available where UAVs need to
detect private regions online, to adapt the system behaviours
and adjust the sensor parameters for privacy preservation.

Autonomous unmanned systems like UAVs are controlled
by software with self-adaptive planning methods [18], which
decides the planning and subsequent actions in response to
uncertainty in the dynamic environment. Although models
of software and environment have been leveraged for auto-
mated adaptation in robotics software [19]-[21], little has
been done to guarantee privacy preservation during UAVs’
flights. In this work, we proposed a real-time self-adaptive
planner which is responsible for task adaptation (e.g., taking
an alternate path) and architectural adaptation (e.g., sensor
reconfiguration). Based on an updated risk model, the planner
optimises the performance in terms of safety and task com-
pletion time, while controlling the privacy violation risks.

III. MOTION MODELLING AND PROBLEM STATEMENT

A. Motion Modelling

1) Environment Discretization: Suppose that in the oper-
ating environment of a UAYV, there are obstacles and private
regions (e.g., properties of people like residential areas)
which can be detected by the UAV’s onboard sensors, such
as camera, Lidar, etc. The UAV should avoid hitting all
obstacles compulsorily, while intruding private regions and
exposing private information as much as possible. In this
work, we discretise the environment into a set of equally-
sized grids. Each grid is distinguished by its centre (x,y,z),
so the environment can be described as M = {p = (x,y,z)|x =
{0,....X},y={0,....Y},z={0,...,Z}}. Let O C M and
C C M be the set of grids containing obstacles and private
regions respectively. Due to the uncertainty of private areas
and the dynamics of privacy requirements, C will be updated
online when a new private region c,, is detected by the UAV.

The two grids containing the initial and the target locations
are denoted as p; and p,, respectively.

2) UAV Model: In this work, a UAV avoids unwanted
disclosure of private regions during its motion by adjusting
its trajectory and reconfiguration of the onboard camera.
Hence, at each time step ¢, the state of a UAV is described as
s; = [pr, ws|", where p, = (x,y,z) € M is the grid occupied
by the UAV at 7; ||ws|| € (0,1] is a normalised configuration
parameter of the camera’s properties, such as orientation
angle, resolution, etc. The mission of the UAV is to travel
from p; to p, within a given time budget. At any time step,
the UAV is assumed to move to an adjacent grid in one of the
six directions: up, down, right, left, forward, and backward.
Hence, the distance of movement from the time step i to j can
be computed by the 1-norm distance, i.e., /; j = ||pi — pjlli-
Assuming that the UAV moves at a constant velocity v, the
travel time needed from i to j is computed as 7; j = /; ; /.

B. Privacy Violation Risk Modelling

Based on the risk assessment methodology adopted by the
National Institute of Standards and Technology (NIST) [22],
the risk of privacy violations of a given private region ¢,
can be defined as the product of impact and likelihood.
For three intensity levels of residential areas (i.e., sparse,
medium, dense), we quantify the harmful impact h, for
privacy violation risk as high (semi-quantified as 8 [22]),
moderate (5), and low (2) correspondingly.

Following the safety index map modelling introduced
in [23], the possibility of privacy violation risk can be
estimated that, the greater the distance between the UAV
and the centre of a private region c,, the less possible
sensitive information being taken. The affected area of a
private region is modelled as concentric spheres with radius
Tiow and rp;e,. Hence, the set of all areas affected by private
regions can be described defined as risk regions M, =
{M,, = (cms 710w, Thigh)|cm € C}. If the distance of the UAV
and c, is larger than 7y, the privacy risk is ignored; while
the distance less than ry,,, is denied due to safety violation.
Note that although the camera’s parameters can be tuned,
for the UAV within 7y, its noise and visibility may still be
viewed as kinds of privacy violation.

Hence, the privacy violation risk for M, at s;, denoted
as pr((p:,ws;),M,,), can be computed by the following
exponential function:

0, d < riow
pr((pt>wst)7Mm) = hmeXP(—@ 'd2)7 Tiow < d < Thigh M
0, d > ryigh

where d = ||p; — cm||2 is the distance between the center of
privacy region ¢, and the UAV.

Problem Statement: Given the initial position ps, and the
farget position p,, an initial camera configuration ||ws o
and the time budget Ty, of the flight, find an optimal trajectory
and camera configuration in real-time so to minimise the
privacy violation risk during its motion in an environment
containing obstacles and uncertain private regions.
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Fig. 1: Architecture of the proposed method.

IV. SELF-ADAPTIVE MOTION PLANNING

This section presents the self-adaptive motion planning
framework which generates an optimal trajectory and camera
configuration so as to minimise the privacy violation risk
under safety and time constraints. An overview of our
approach is given before describing the details of each step.

A. Approach Overview

The architecture for privacy-aware UAV is shown in Fig. 1.
During the flight, recordings of the environment Pic are
captured and saved within the sensing radius R of the
onboard camera. Candidates of private regions are identified
and projected into the grids of the working space. So the
UAV can update risk region M,, new found. With the updated
risk regions M,;y, safety and time constraints, an optimal
trajectory * and camera configuration plan @* are generated
locally for the UAV. Furthermore, planning results received
by the actuator are converted into mechanical motions.

For real-time private region detection, a UAV first lever-
ages the object detection algorithm YOLOV3 [24] to identify
potential private regions based on the captured pictures.
The objection detection model is trained with two remote
sensing data sets NWPU-RESISC45 [25] and AID [26] for
aerial scene understanding. Then a monocular-vision-based
method [27] is used to locate their position in the working
space M. Next, we present the detailed design of the self-
adaptive motion planner.

B. Privacy Aware Motion Planning

At any time step ¢, assuming that the set of risk regions is
M, for a given trajectory 7 = psy1,...,Pn, and a camera
configuration @; = ws;11,...,ws,, the accumulated privacy
violation risk of 7; under @; can be formulated as:

n

PR(%, 0, Myigi) = Y. Y, pr((pi,wsi),Mn)  (2)
i=t+1 My €M
In time-sensitive scenarios, time to completion is also
expected to be minimised. As the UAV is flying at a constant
velocity, given the trajectory 7, the travel time along 7 is
T(m) = Xl i1 Ti-1 = Liep1 [|Pi — pic1ll1/v. Since in our
work, the privacy violation risk is the primary objective
during motion planning, we give a constant slack factor &
to the time budget 7, and a penalty function ¢(m;) to the

privacy violation risk, by deﬁning a mixed objective function
¢ (7 )PR(;, 00, Myi) where @ = (||ws]|o)?, . In this way,
we set ¢(m;) as a piece-wise function for the punishment of
overtime:

1 T(m) < Tope
o(m) = )—Ty 3)
nexp(ﬁ) Topt < T(T) < Tytan
where 7, = ”Pl psHl +Zi 1 ||pl+1 Pz||l’ opt = Tp — Tt

and Tpian = (1+6)T, — 7,4, N > 1 is a constant. The slack
factor and penalty factor encourage the UAV to move to its
target within the time limit, but they also allow some delay
to guarantee privacy preservation.

Hence, the optimisation problem at time step ¢ to gen-
erate the future optimal trajectory under the initial camera
configuration wsy can be described as follows.

“min _ ¢(m)PR(m;, 0, Myi)
T =Pt+15--Pn
subject to DPn = Pe; (4)

T( ) ( +6) h_TSl,
pitO0,i=t+1,...,n

This problem can be solved by the A* algorithm. However,
when the motion space is large, the computation time is long,
which would not be available for real-time planning. Hence,
in this paper, we propose an approximate solution. Although
the environment is partially known initially, the UAV could
plan a reference trajectory from the initial position to the
target position in advance. In this way, at any time step, the
trajectory generated at the previous time step is determined.
The main idea of our approximate solution is that at the time
step ¢, we only replan the trajectory segments in ;1 (except
current position) that violate the privacy requirements with
the new detected private regions. Let U be the set of grids
in M_1 = py,Pr+1,-- -, Pn Whose privacy risk is not zero, and
M, ;s be the updated private regions at ¢, then

n
U pr: 3IM € Myige, pr((pi, wso), M) >0 (5)
k=t+1

For the first maximally continuous segment U; =
{pi+1,-..pj—1} CU, we replan a new trajectory from p; to
p; that minimise the privacy violation risk. Let 7,; and 7;,
be the time from pg to p; and from p; to p., respectively.
The time budget for the motion from p; to p; is Top,
T, — Tsi — Tjes and T/lan = (1 + 5)Th — Tsi — Tje- As Tij is
the motion time from i to j, penalty function (3) can rewritten
as:

, la , < T;)pl

o = %ij~Topt (6)
T —T !

Ne plan”"ort Topl <7, < Tplan

And the optimisation problem (4) can be rewritten as:

¢’ Z Y, pr((pe.wso), M)

k=i+1M;eM, g 7)
Tij < Tplun;

pk¢0, k=i+1,...

Dit1rees Pj-1
subject to

,j— L.



Algorithm 1: Sensor configuration based motion
planning for a UAV at time step ¢.

IHPUt: 1,00, Pty Pes Tbudget'

Initialisation: m = ;| — {p;} and @ = ©;

Take Pic for private regions detection;

Update O and M,;y;

Generate U based on (5);

while U # 0 do

Select the first maximal continuous trajectory segment
in U: Uy,

7 Find an optimal solution 7, and the optimal value V*

by solving (7); '

8 if 77y = None or V* > 0 then

A N B W N -

9 Find an optimal solution 7, and @/ by solving
3); '

10 Update m with 7", and @, with @f;

11 else

12 L Update 7, with 7";;

1B U=U-Uy;

return 7m; and @y;

[
-

If (7) generates an optimal solution 7", (p; — p;) with the
optimal value of zero, then replace the original segment with
the optimal one, and compute the next maximally continuous
segment in U. However, if (7) cannot generate a solution or
the optimal value is not zero, then we will adapt to search
for an optimal solution with camera reconfiguration.

C. Sensor Self-configuration

In case the solution of (7) does not guarantee privacy
preservation, i.e., the optimal value of (7) is larger than
0, meaning that there is not an ideal path without privacy
violation risk, a suboptimal option can be to regulate the
onboard camera configuration so as to reduce the potential
privacy risk. Hence, we have the following self-configuring
motion planning problem:

j—1
oY Y pr((pe,wsi), M)

k=i+1 My EM,.;g

!/

Ti,jSTp

pr ¢ O,wsy =wso, k=i+1,...,j— L.

(®)

subject to lans

The solution of (8) is recorded as x",(p; — p;) and ®;".

Compared with (7) and (8), optimizing in a larger search-
space, (8) is bound to give a solution that is better than a
smaller search-space solution of (7).

Our self-adaptive motion planner is summarised in Algo-
rithm 1. Lines 5—7 perform the first phase, i.e., privacy-
preserving motion planning, and Lines 8—10 perform the
second phase, i.e., sensor self-configuring motion planning.

V. EXPERIMENTS

A. Simulations

We first validate our approach using simulations under
three scales of working spaces, i.e., 10 x 10 x 10, 50 x 50 x 10
and 100 x 100 x 10 grids, cluttered with various density of

obstacles A, and private regions A,. The simulation environ-
ment is implemented with Python. Buildings for commercial
or industrial use are obstacles and marked in blue, while
residential buildings are private regions and marked in red!.
The depth of colors reflects the height of the building. The
starting point is set at the lower-left corner and the target
point is set at the upper-right corner marked in yellow. For
the 10 x 10 x 10 working space, we generate the buildings
randomly. The latter two working spaces are abstracted from
the open building dataset of Portland in the USA [28]. The
final representation is based on a 3D grid so that the map
is partitioned into grids, each of which represents a region
of 10m x 10m x 10m in practice according to the method
introduced in [29]. The longitude and latitude of the center
of each building, and its average height and building types
(apartment, duplex, houses) are also extracted from this
dataset. In each working space, the sensibility of UAV is
simulated by its view radius R = amax.cc rh,-gh(c), where
a > 1 indicates that the UAV can detect private regions
proactively. For dense, medium, and sparse residential areas,
Thigh 1s set to 1, 1.5, and 2 grids respectively, whilst r,,, is
set to 0.5 grid.

Fig. 2 shows the trajectories generated by our method. In
the figure, the black line is the reference path generated off-
line; the blue one is generated at the first phase in Alg. 1,
while some parts violate privacy requirement, so the second
phase tweaks these parts by adjusting both trajectory and
camera configuration, i.e., the green parts.

B. Performance Analysis

To further analyse the efficiency of our Sensor Self-
Configuring based Motion Planning (SC-MP) method, we
focus on the 10 x 10 x 10 working space by setting different
obstacle density A,, private region density A,, camera view
radius R, exploration rate ER (the prior information of the
private regions), and time budget 7;,. We compare our method
with the pure Path Planning method (PP) mentioned in [3],
which is realised as a variant of the A* algorithm to avoid
private regions at the least privacy risk, and the Sensor
Configuration method (SC), which is validated in [17] for
privacy protection.

1) Effect of tuning A, and A,: Given the time budget
T, = 32 time steps and the slack factor 6 = 0.125, we
vary the densities of obstacles and private regions, i.e, A,
and l,,, in the working space. For each combination, we
record the generated trajectories and time to completion with
different view radius and exploration rate. As illustrated in
Fig. 3, our method SC-MP generates trajectories with the
lowest accumulated privacy violation risk PR and middle task
completion time Ty in different settings. Comparing with the
privacy violation risk shown in Figs. 3(a) and 3(b), it can be
found that with an increase of lp, SC-MP registers lower
average mission completion time than PP and outperforms
the other two methods in privacy preservation. This implies

'In black/white prints, red shapes are darker than blue one, green line
segments are lighter than the black ones.
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(a) 10 x 10 x 10 grid map (R =2)

(b) 50 x 50 x 10 grid map (R =4)

(c) 100 x 100 x 10 grid map (R=4)

Fig. 2: Planning results for self-adaptive motion planning at different scales of grids.
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Fig. 3: Mission completion time and privacy violation risk with various sensibility and scenario settings.

TABLE I. Probability of Privacy Intrusion with A4, = 0.3,
Ay =0.1, T, =32, § =0.125

TABLE II: Probability of Camera Configuration and Trajec-
tory Replanning with 4, =0.2, 4, =0.1, R=3, ER=0.5

Str . R=1 R=2 R=3
© ER=03 | ER=0.7 | ER=03 | ER=0.7 | ER=03 | ER=0.7
SC 63.12% | 45.54% 53.17% | 42.66% | 49.49% 39.73%
PP 56.00% 39.07% | 45.51% 34.52% 37.58% 31.48%
SC-MP 47.00% | 35.02% | 39.66% | 32.90% | 33.80% | 28.95%

. Camera Configuration | Trajectory Replannin,
Strategies \—p——5 ﬁi:% I}JiSO = pr:36 £
SC 48.03% 46.75% / /
PP / / 28.03% 33.97%
SC-MP 44.10% 40.98% 23.25% 30.58%

that our method is suitable for the environment clustered with
private regions. From Figs. 3(b) and 3(c), we can find that
as the density of obstacles increases, the mission completion
time does not vary greatly, and the PP method is more
likely to finish its mission on time. This is because the UAV
cannot change its trajectories greatly to guarantee safety in an
environment cluttered with obstacles. In such environments,
performance for privacy-preservation is also sacrificed for the
safety reason, whereas the benefits of more prior knowledge
(ER > 0.5) is not obvious.

2) Effect of tuning R and ER: The ability to be aware of
the environment is affected by the capability of the camera
or other sensors the UAV equipped with (e.g., Lidar). From
each sub-figure in Fig. 3, we found that under our method,
the increasing of R contributes to lower privacy violation risk
but a longer path. This is because, with more private regions
detected proactively at each time step, SC-MP prefer to make
an adaptive plan to avoid private regions intrusion. Table I
also shows the probabilities of trespassing into a private
region with different view radius under different methods.
We found that our method has the lowest probabilities
of intrusion since our method avoids private regions by
changing both trajectories and camera configuration. Sensor
parameters can be tuned for a compromise under the time

constraint in SC-MP, while SC suffers from the highest
probabilities of private region intrusion since it does not
change the waypoints listed in the reference trajectory. As
shown in Fig. 3, the privacy violation risk decreases when
more prior knowledge of private regions is acquired before
the flight. This is because we can plan a more privacy-aware
reference trajectory off-line with such information. However,
at a higher view radius (R = 3), the benefit of having more
prior knowledge is not significant for privacy preservation.
The reason is that with a higher view radius, the UAV can
detect more private regions online, which has similar effect
of more prior knowledge.

3) Effect of tuning T,: Time sensitiveness of UAV flight
missions varies to applications, e.g., public safety, commer-
cial use like goods delivery, and personal use for entertain-
ment. Table II shows the probability of sensor reconfiguration
and trajectory replanning under different values of 7;,. When
T}, increases, the probability of sensor reconfigured decreases
for both SC-MP and SC, while the possibility of trajectory
replanning increases for SC-MP and PP. Indeed, with the
increase of time budget, the UAV has more time redundancy,
so it can change the trajectory to be away from private
regions. This can eliminate privacy violation risk by avoiding
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Fig. 4: Architecture of the experiment setup.

the physical intrusion into those regions.

From the analysis above, it can be concluded that our
proactive and online method (SC-MP) is suitable for different
environments and outperforms methods of pure path planning
and sensor configuration in privacy preservation.

C. Experiments On A Real UAV

We implement the algorithm on a Lenovo laptop to control
a DJI Matrice 100 UAV equipped with camera Zenmuse Z3,
whose resolution ranges from 4096 x 2160 to 1920 x 1080,
and the orientation angle 6 ranges from —90° to 30°.
The laptop is equipped with Intel(R) Core(TM) i7-7500U
CPU@2.70GHz and NVIDIA GeForce 940MX. The archi-
tecture of the experiment setup is depicted in Fig. 4. First, the
onboard camera of UAV checks the current environment and
sends the captured pictures to the laptop for private region
identification and localisation. Then the algorithm computes
a new trajectory and camera configuration based on the
current environmental conditions and sends to the UAV for
execution via a customised Android application deployed on
a remote controller.

The experiments are conducted in a 10m x 10m outdoor
environment with a maximum height of 5Sm. The private

region is marked as a blue box on the playground, while
its location is estimated based on the pictures taken by
the UAV. During its flight, the UAV replans a trajectory
and adapts its camera’s orientation for privacy preservation.
Under the proposed approach, privacy risk was reduced by
85.32% against the reference path with 7, = 24 time steps
and 0 = 0.083. Figs. 5 and 6 show some snapshots during
the motion of the UAV with the reference path and with self-
adaptation, respectively. Without the proposed algorithm, the
UAV can always “see” the private region while crossing
it. To prevent taking pictures of the blue box, the UAV
changes its trajectory and alters its camera’s orientation
from —90° to 30°, while considering the tight time budget
based on our method. The videos of our simulations and
outdoor experiments are given at https://yixingluo.
github.io/SCMP.github.io/.

VI. CONCLUSIONS AND FUTURE WORK

Aiming at privacy-aware motions of UAVs with un-
certain private regions or dynamic privacy requirements,
this work presents a motion planning algorithm with self-
reconfiguration of privacy-sensitive sensors. Within a space
modelled with 3D grids, the algorithm generates the optimal
UAV motion plan for a privacy-preserving trajectory and
sensor configuration with the least privacy risk. The proposed
approach has been validated experimentally through both
simulations and test flights of a physical UAV. The results
demonstrated the effectiveness and efficiency of the method.
Future work will take into considerations multiple aspects,
including the kinematics of the UAV, more parameters of
on-board sensors for self-configuration, and various kinds of
environment disturbances.
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