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Abstract— In order to solve complex, long-horizon tasks,
intelligent robots need to carry out high-level, abstract planning
and reasoning in conjunction with motion planning. However,
abstract models are typically lossy and plans or policies
computed using them can be unexecutable. These problems are
exacerbated in stochastic situations where the robot needs to
reason about, and plan for multiple contingencies. We present
a new approach for integrated task and motion planning in
stochastic settings. In contrast to prior work in this direction,
we show that our approach can effectively compute integrated
task and motion policies whose branching structures encoding
agent behaviors handling multiple execution-time contingencies.
We prove that our algorithm is probabilistically complete and
can compute feasible solution policies in an anytime fashion so
that the probability of encountering an unresolved contingency
decreases over time. Empirical results on a set of challenging
problems show the utility and scope of our methods.

I. INTRODUCTION

Recent years have witnessed immense progress in research

on integrated task and motion planning [1], [2], [3], [4], [5],

[6]. Research in this direction provides several approaches

for solving deterministic, fully observable task and motion

planning problems. However, the problem of integrated task

and motion planning under uncertainty has been under-

investigated. We consider integrated task and motion plan-

ning problems where the robot’s actions and its environment

are stochastic. This problem is more difficult computationally

because sequential plans are no longer sufficient; solutions

take the form of policies that prescribe an action for every

state that the robot may encounter during execution. For

instance, consider the problem where a robot needs to pick up

a can (black) from a cluttered table (Fig. 1). To achieve this

objective, the robot needs to consider multiple contingencies,

e.g., what if the can slips? What if it tumbles and rolls off

when it is placed?

This example is representative of many real-world prob-

lems such as diffusing IEDs, operating live machinery, or

assisting emergency response personnel. Safe robot execution

in such situations requires pre-computation of truly feasible

policies so as to reduce the need for time-consuming and

error-prone on-the-fly replanning. A naı̈ve approach for

solving such problems would be to first compute a high-

level policy using an abstract model of the problem (e.g., a

model written in a language such as PPDDL or RDDL[7]),

and to then refine each “branch” of the solution policy

with motion plans. Such approaches fail because abstract

models are lossy and policies computed using them might not

have any feasible motion planning refinements [8], [9], [6].

Fig. 1: Left: YuMi robot uses the algorithm developed in this paper to
build a 3π structure using Keva planks despite stochasticity in their initial
locations. Right: A stochastic variant of the cluttered table domain where
robot has to pick up the black can, but pickups may fail.

Furthermore, as the planning horizon increases, computing

complete task and motion policies becomes intractable as

it requires the computation of exponentially many task and

motion plans, one for each branch of the policy.

We present a novel anytime framework for computing

integrated task and motion policies. Our approach continually

improves the quality of solution policies while ensuring that

the versions computed earlier can resolve situations that

are more likely to be encountered during execution. It also

provides a running estimate of the probability mass of likely

executions covered in the current policy. This estimate can be

used to start execution based on the level of risk acceptable in

a given application, allowing one to trade-off precomputation

time for on-the-fly invocation of our planner if an unhandled

situation is encountered. Our approach generalizes methods

for computing solutions for most-likely outcomes during

execution [10], [11] to the problem of integrated task and

motion planning by drawing upon approaches for anytime

computation in AI planning [12], [13], [14]. Our experi-

ments indicate the probability of encountering an unresolved

contingency drops exponentially as the algorithm proceeds.

The resulting approach is the first probabilistically complete

algorithm for computing integrated task and motion policies

in stochastic environments using a powerful relational repre-

sentation for specifying input problems. Our approach uses

arbitrary stochastic shortest path (SSP) planners and motion

planners. This structure allows it to scale automatically with

improvements in either of these active areas of planning

research.

We begin with a presentation of the background definitions

(II) and our formal framework (III). (IV) describes our
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overall algorithmic approach, followed by a description of

empirical results using the Fetch and YuMi robot platforms

(V), and a discussion of prior related work (VI).

II. BACKGROUND

A motion planning problem is a tuple 〈C, f, p0, pt〉, where

C is the space of possible configurations or poses of a robot,

f(p) is a boolean function which determines whether the

robot at config p ∈ C is in collision with any object or not,

and p0, pt ∈ C are the initial and final configs. A trajectory

is a sequence of configurations. A collision-free motion plan

for a motion planning problem is a trajectory in C from p0
to pt such that f is false for any pose in the trajectory.

Stochastic shortest path (SSP) problems are a subclass

of Markov decision processes (MDPs) that have absorbing

states, the discounting factor γ = 1 and a finite hori-

zon [15]. An SSP can be defined as a tuple 〈S,A, T, C, γ =
1, H, s0, G〉 where S is a set of states; A is a set of actions;

∀s, s′ ∈ S, a ∈ A T (s, a, s′) = P (s′|s, a); C(s, a) is

the cost for action a ∈ A in a state s ∈ S; H is the

length of the horizon; s0 is an initial state; G is the set

of absorbing or goal states. A solution to an SSP is a policy

π of the form π : S × {1, . . . , H} → A that maps all

the states and time steps at which they are encountered to

an action. The optimal policy π∗ is a policy that reaches

the goal state with the least expected cumulative cost. SSP

policies need not be stationary because the horizon is finite.

Dynamic programming algorithms such as value iteration or

policy iteration can be used to compute these policies. Value

iteration for finite horizon SSPs can be defined as:

V 0(s) = 0

V i
t (s) = mina

∑

s′

T (s, a, s′)
[

C(s, a) + V i−1
t+1 (s

′)
]

πi
t(s) = argmina

∑

s′

T (s, a, s′)
[

C(s, a) + V i−1
t+1 (s

′)
]

III. FORMAL FRAMEWORK

We model stochastic task and motion planning problems

as abstracted SSPs where each action of the SSP (e.g. place)

corresponds to an infinite set of motion planning problems.

The overall problem is to compute a policy for the SSP along

with “refinements” that select, for each action in the policy,

a specific motion planning problem and its solution. E.g., the

“high-level” action for placing a can on a table corresponds

to infinitely many motion planning problems, each defined

by a target pose for the can. The refinement process would

thus need to select the pose that the gripper should be in

prior to opening, and a motion plan for each occurrence of

the pickup action in the computed policy.

Formalization of abstraction functions To formalize the

necessary abstractions we first introduce some notation. We

denote states as logical models or structures. We use the term

logical structures or structures to distinguish the concept

from SDM models. A structure S, of vocabulary V , consists

of a universe U , along with a relation rS over U for every

relation symbol r in V and an element cS ∈ U for every

constant symbol c in V . We denote the value of a term

or formula ϕ in a structure S as JϕKS .We also extend this

notation so that JrKS denotes the interpretation of the relation

r in S. We consider relations as a special case of functions.

We formalize abstractions using first-order queries [16],

[17] that map structures over one vocabulary to structures

over another vocabulary. In general, a first-order query α
from Vℓ to Vh defines functions in α(Sℓ) using interpreta-

tions of Vℓ-formulas in Sℓ: JrKα(Sℓ)(o1, . . . on) = True iff

Jϕα
r (o1, . . . on)KSℓ

= True, where ϕα
r is a formula over Vℓ.

We define relational abstractions as first-order queries

where Vh ⊂ Vℓ; the predicates in Vh are defined as identical

to their counterparts in Vℓ. Such abstractions reduce the num-

ber of properties being modeled. Let Uℓ (Uh) be the universe

of Sℓ (Sh) such that |Uh| ≤ |Uℓ|. Function abstractions do

not reduce the number of objects being considered.

Let ρ : Uh → 2Uℓ be a collection function that maps

elements in Uh to the collection of Uℓ elements that they rep-

resent. E.g., ρ(Kitchen) = {loc : ∧i loc · BoundaryVectori <
0} where the kitchen has a polygonal boundary.

We define an entity abstraction αρ using the collection

function ρ as JrKαρ(Sℓ)(õ1, . . . õn) = True iff ∃o1, . . . on
such that oi ∈ ρ(õi) and Jϕ

αρ
r (o1, . . . on)KSℓ

= True.

We omit the subscript ρ when it is clear from context.

Entity abstractions define the truth values of predicates over

abstracted entities as the disjunction of the corresponding

concrete predicate instantiations (an object is in the abstract

region “kitchen” if it is at any location in that region).

Such abstractions have been used for efficient generalized

planning [18] as well as answer set programming [19].

STAMP Problems We define STAMP problems using

abstractions as follows.

Definition 1: A stochastic task and motion planning prob-

lem (STAMPP) 〈M, c0, α, [M]〉 is defined using a concrete

SSP M, its abstraction [M] obtained using a composition of

function and entity abstractions, denoted as α, and the initial

concrete configuration of the environment c0.

Solutions to STAMPPs, like solutions to an SSP, are

policies with actions from the concrete model M.

Let S be the set of abstract states generated when an

abstraction function α is applied on a set of concrete states

X . For any s ∈ S, the concretization function Γα(s) =
{x ∈ X : α(x) = s} denotes the set of concrete states

represented by the abstract state s. For a set C ⊆ X , [C]α
denotes the smallest set of abstract states representing C.

Generating the complete concretization of an abstract state

can be computationally intractable, especially in cases where

the concrete state space is continuous. In such situations, the

concretization operation can be implemented as a generator

that incrementally samples elements from an abstract argu-

ment’s concrete domain.

Example Consider the specification of a robot’s action

of placing an item as a part of an SSP. In practice, low-

level accurate models of such actions may be expressed

as generative models, or simulators. Fig. 2 helps identify

the nature of abstract representations needed for expressing

such actions. For readability, we use a convention where



Place(obj1, config1, config2, target pose, traj1)
precon RobotAt(config1), holding(obj1),

IsValidMP(traj1, config1, config2),
IsPlacementConfig(obj1, config2,

target pose)
concrete effect ¬holding(obj1),

∀traj intersects(vol(obj ,target pose),
sweptVol(robot, traj)→ Collision(obj1, traj),
probabilistic:

0.8
[

RobotAt(config2),

at(obj1, target pose)
]

0.2
[

RobotAt(around config2),

at(obj1,around target pose)
]

abstract effect ¬holding(obj1),
∀traj ?© Collision(obj1, traj),
probabilistic:

0.8
[

RobotAt(config2),

at(obj1, target pose)
]

0.2
[

RobotAt(around config2),

at(obj1,around target pose)
]

Fig. 2: Concrete (above) and abstract (below) effects of a one-handed
robot’s action for placing an object.

preconditions are comma-separated conjunctive lists and uni-

versal quantifiers represent conjunctions over the quantified

variables. Numbers represent the probability of that outcome.

The concrete, unabstracted, description of this action

(Fig. 2) requires action arguments representing the object to

be placed (obj1), the initial and final robot configurations

(config1, config2), the target pose for the object (target pose),

and the motion planning trajectory (traj1) to be used. These

arguments represent the choices to be made when placing

an object. The preconditions of Place express the conditions

that the robot is in config1; it is holding the object obj1; traj1
is a motion plan which moves robot from config1 to config2
(IsValidMP); config2 corresponds to the object being at the

target pose in the gripper (IsPlacementConfig). We ignore

the gripper open configuration for ease in exposition.

This action model specifies two probabilistic effects. The

robot moves to config2 and places the object successfully

at target pose with probability 0.8. It moves to some other

configuration around config2 and places the object at a

location around target pose with probability 0.2. In both

cases, the robot is no longer holding the object and it collides

with objects that lie in the volume swept by the robot while

following the trajectory. The intersects predicate is static as it

operates on volumes, while Collision changes with the state.

We use entity abstraction to replace each continuous action

argument with a symbol denoting a region that satisfies the

precondition subformulas where that argument occurs. This

may require Skolemization as developed in prior work [6].

Effects of abstract actions on symbolic arguments cannot

be determined precisely; their values are assigned by the

planning algorithm. E.g., it is not possible to determine in

the abstract model whether the placement trajectory will be

in collision. Such predicates are annotated in the set of effects

with the symbol ?© (see the abstract effect in Fig. 2). This

results in a sound abstract model [6], [20].

IV. ALGORITHMIC FRAMEWORK

A. Overall Approach

We now describe our approach for computing task and

motion policies as defined above. For clarity, we begin

by describing certain choices in the algorithm as non-

deterministic. Variants of our overall approach can be con-

structed with different implementations of these choices; the

versions used in our evaluation are described in IV-B.

Recall that abstract grounded actions [a] ∈ [M]
(e.g., Place(cup, config1 cup, config2 cup, target pose cup,

traj1 cup)) have symbolic arguments that can be instantiated

to yield concrete grounded actions a ∈ M.

Our overall algorithm interleaves computation among the

processes of (a) concretizing an abstract policy, (b) updating

the abstraction to include predicate valuations for a fixed

concretization, and (c) computing an abstract policy for

an updated abstract state. This is done using the plan

refinement graph (PRG). Every node u in the PRG represents

an abstract model [M]u, an abstract policy [π]u in the

form of a tree whose vertices represent states and edges

represent action applications, the current state of the search

for concretizations of all actions aj ∈ [π]u, and a partial

concretization σu for a topological prefix of the policy tree

[π]u. Each edge (u,v) between nodes u and v in the PRG

is labeled with a partial concretization σu,v and the failed

preconditions for the first abstract action in a root-to-leaf

path in [π]u which doesn’t have a feasible refinement under

σu,v . Recall that this occurs because the abstract model is

lossy and doesn’t capture precise action semantics. [M]v is

the version of [M]u where the predicates corresponding to

the failed preconditions (corresponding to effects with ?©,

created due to the abstraction discussed in Sec. III) have been

replaced with their literal versions that are true under σu,v .

ATM-MDP algorithm (Alg.1) carries out the interleaved

search outlined above as follows. It first initializes the PRG

with a single node containing an abstract policy for the

abstract SSP (line 1). In every iteration of the main loop,

it selects a node in the PRG and extracts an unrefined root-

to-leaf path from the policy for that node (lines 3-5). It then

interleaves the three processes as follows.

a) Concretization of an available policy: Lines 7-

13 search for a feasible concretization (refinement) of

the partial path by instantiating its symbolic action argu-

ments with values from their original non-symbolic do-

mains. Trajectory symbols like traj1 are refined using mo-

tion planners. A concretization c0, a1, c1, . . . , ak, ck of the

path [s0], [a1], [s1], . . . , [ak], [sk] is feasible starting with a

concrete initial state c0 iff ci+1 ∈ ai+1(ci) and ci |=
PRECOND(ai+1) for i = 0, . . . , k − 1. However, it is

possible that [π] admits no feasible concretization because

every instantiation of the symbolic arguments violates the

preconditions of some action in {πi}. For example, an

infeasible path would have the robot placing a cup on the

table in the concrete state c0, when every possible motion

plan for doing so may be in collision with some object(s).



b) Update abstraction for a fixed concretization: Lines

16-20 fix a concretization for the partially refined path

selected on line 6, and identify the earliest abstract state

in this path whose subsequent action’s concretization is

infeasible. This abstract state is updated with the true forms

of the violated preconditions that hold in this concretization,

using symbolic arguments. E.g., Collision(teapot, traj cup).

The rest of the policy after this abstract state is discarded.

A state update is immediately followed by the computation

of a new abstract policy (see below).

c) Computation of a new abstract policy: Lines 21-

22 compute a new policy with the updated information

computed under (b). The SSP solver is invoked to compute

a new policy from the updated state; its solution policy is

unrolled as a tree of bounded depth and appended to the

partially refined path. This allows the time horizon of the

policy to be increased dynamically.

Several optimizations can be made while selecting a PRG

node to concretize or update in line 3. We used iterative-

broadening depth-first search on the PRG with the max

breadth incremented by 5 in each iteration.

In our implementation the Compute variable on line 6

is set to either Concretization or UpdateAbstraction with

probability 0.5. The explore parameter on line 9 needs to

be set with non-zero probability for a formal guarantee of

completeness, although in our experiments it was set to False.

B. Optimizations and Formal Results

We develop the basic algorithm outlined above (Alg. 1)

along two major directions: we enhance it to facilitate

anytime computation and to improve the search for con-

cretizations of abstract policies.

Anytime computation for task and motion policies: The

main computational challenge for the algorithm is that the

number of root-to-leaf (RTL) branches grows exponentially

with the time horizon and the contingencies in the domain.

Each RTL branch has a certain probability of being encoun-

tered; refining it incurs a computational cost. Waiting for

a complete refinement of the policy tree results in wasting

a lot of time as most of the situations have a very low

probability of being encountered. The optimal selection of

the paths to refine within a fixed computational budget can

be reduced to the knapsack problem. Unfortunately, we do

not know the precise computational costs required to refine

a path. However, we can approximate this cost depending

on the number of actions and the size of the domain of

the arguments in those actions. Furthermore, the knapsack

problem is NP-hard. However, we can compute provably

good approximate solutions to this problem using a greedy

approach: we prioritize the selection of a path to refine

based on the probability of encountering that path p and the

estimated cost of refining that path c. We compute p/c ratio

for all the paths and select the unrefined path with largest

ratio for refinement.

Search for concretizations: Sample-based backtracking

search for concretization of symbolic variables [6] suffers

from a few limitations in stochastic settings that are not

Algorithm 1: ATM-MDP Algorithm

Input: model [M], domain D, problem P , SSP Solver SSP,
Motion Planner M

Output: anytime, contingent task and motion policy
1 Initialize PRG with a node with an abstract policy [π] for P

computed by SSP;
2 while solution of desired quality not found do
3 PRNode ← GetPRNode();
4 [π] ← GetAbstractPolicy([M], PRNode, D, P , SSP);
5 path to refine ← GetUnRefinedPath([π]);
6 Compute ← NDChoice{Concretization,

UpdateAbstraction};
7 if Compute = Concretization then
8 while [π] has an unrefined path and resource limit is

not reached do
9 if explore// non-deterministic

10 then
11 replace a suffix of partial path with a

random action;
12 end
13 search for a feasible concretization of

path to refine;
14 end
15 end
16 if Compute = UpdateAbstraction then
17 partial path ← GetUnrefinedSuffix(PRNode,

path to refine);
18 σ ← ConcretizeLastUnrefinedAction([π]);
19 failure reason ← GetFailedPrecondition([π], σ );
20 updated state ← UpdateState([π], failure reason);
21 [π′]← merge([π], solve(updated state, G, [M]));
22 generate new pr node([π′], [M]);
23 end
24 end

Fig. 3: Left: Backtracking from node B invalidates the refinement of subtree
rooted at A. Right: Replanning from node B.

present in deterministic settings. Fig. 3 illustrates the prob-

lem. In this figure, grey nodes represent actions in the policy

tree that have already been refined; the refinement for B

is being computed. White nodes represent the nodes that

still require refinement. If backtracking search changes the

concretization for B’s parent (Fig. 3, left) it will invalidate

the refinements made for the entire subtree rooted at that

node. Instead, it may be better to compute an entirely new

policy for B (effectively jumping to the UpdateAbstraction

mode of computation on line 16 from line 13).

Thm. 1 formalizes the anytime performance of ATM-

MDP and Thm. 2 shows that our solution to this problem

is probabilistically complete. Additional details about these

results are available in the extended version of the paper [21].

Theorem 1: Let t be the time since the start of the

algorithm at which the refinement of any RTL path is

completed. If path costs are accurate and constant then the



total probability of unrefined paths at time t is at most

1 − opt(t)/2, where opt(t) is the best possible refinement

(in terms of the probability of outcomes covered) that could

have been achieved in time t.

Proof: (Sketch) Let c be the cost of refining some

RTL path and ĉ be an approximation of it. The proof

follows from the fact that the greedy algorithm achieves

a 2-approximation for the knapsack problem and that for

all RTL paths, ĉ ≥ c. So the priority queue will never

underestimate the relative costs, and algorithm’s coverage

of high-probability contingencies will be no further from the

optimal than the bound suggested in the theorem.

Theorem 2: If there exists a proper policy that reaches the

goal within horizon h with probability p, and has feasible

low-level refinement, then Alg. 1 will find it with probability

1.0 in the limit of infinite samples.

Proof: (Sketch) Let πp be a proper policy. For some

policy π in PRG, let k denote the minimum depth up to

which πp and π match. If there are no feasible refinements

possible for an action at depth k + 1 in π, then the explore

step (line 11) would replace that action such that it matches

the action at depth k+1 in πp with some non-zero probability

(given that actions are finite). Once the algorithm finds policy

π which matches πp, the backtracking search will find a

feasible refinement if the measure of these refinements under

the probability density of generators is non-zero.

V. EMPIRICAL EVALUATION

We implemented the presented framework using an open-

source implementation from MDP-Lib github repository

[22] of LAO* [23] as the SSP solver, the OpenRAVE [24]

robot simulation system along with its collision checkers,

CBiRRT implementation from PrPy suite [25] for motion

planning. Since there are no common benchmarks for eval-

uating stochastic task and motion planning problems, we

evaluated our algorithm on 7 diverse and challenging test

problems over 4 domains and evaluated 5 of those problems

with physical robot systems. In practice, fixing the horizon

h a priori can render some problems unsolvable. Instead, we

implemented a variant that dynamically increases the horizon

until the goal is reached with probability greater than 0. We

evaluated our approach on a variety of problems where com-

bined task and motion planning is necessary. The source code

and the videos for our experiments experiment can be found

at https://aair-lab.github.io/stamp.html.

Cluttered Table: In this problem, we have a table

cluttered with cans having different probabilities of being

crushed when grabbed by the robot. Some cans are delicate

and are highly likely to be crushed when the robot grabs

them, incurring a high cost (probability for crushing was

set to 0.1, 0.5 & 0.9 in different experiments in Fig. 6(a)),

while others are normal and are less likely to be crushed

(with probability set to 0.05). The goal of the robot is to

pick up a specific can. We used different numbers of cans

(15, 20, 25), and different random configurations of cans to

extensively evaluate the proposed framework. We also used

Problem % Solved Avg. Time (s)

Cluttered-15 95 1093.71
Cluttered-20 79 1144.85
Cluttered-25 74 1392.83
Aircraft Inspection 100 1457.08
3π 100 1312.83
Tower-12 100 1899.73
Twisted-Tower-12 98 1984.29
Domino (n = 10, k = 2) 100 98.64
Domino (n = 10, k = 3) 100 350.63
Domino (n = 15, k = 2) 100 179.60
Domino (n = 15, k = 3) 100 631.91
Domino (n = 20, k = 2) 100 350.60
Domino (n = 20, k = 3) 100 590.60

Fig. 4: Summary of times taken to solve the test problems. Timeout for
cluttered table, aircraft inspection, and Domino: 2400 seconds, building
Keva stuctures: 4000 seconds.

this scenario to evaluate our approach in the real-world (Fig.

5(a)) using the Fetch mobile manipulation robot [26].

Aircraft Inspection: In this problem, an unmanned

aerial vehicle (UAV) needs to inspect possibly faulty parts of

an aircraft. Its goal is to locate the fault and notify the super-

visor about it. However, its sensors are not accurate and may

fail to locate the fault with some non-zero probability (failure

probability was set to 0.05, 0.1, & 0.15 for experiments in

Fig. 6(b)) while inspecting the location; it may also drift to

another location while flying. Charging stations are available

for the UAV to dock and charge itself. All movements use

some amount of battery charge depending on the length of

the trajectory, but the high-level planner cannot determine

whether the current level of the battery is sufficient for an

action as it doesn’t have access to precise trajectories. This

makes it necessary for the high-level to obtain feedback from

the low-level to solve the problem.

Domino: In this problem, the YuMi robot [27] needs to

pick up a domino from a table that has n dominos on it. It has

to notify the human about toppled dominos. While trying to

pick up a domino, k domino’s on each side can topple adding

up to 22k contingencies that might need refinement.

Building structures using Keva planks: In this problem,

the YuMi robot [27] needs to build different structures using

Keva planks. Keva planks are laser cut wooden planks with

uniform geometry. Fig. 5(b) and Fig. 1 show some of the

target structures. Planks are placed one at a time by a user

after each pickup and placement by the YuMi. Each new

plank may be placed at one of a few predefined locations,

which adds uncertainty in the planks’ initial location. For

our experiments, two predefined locations were used to

place the planks with a probability of 0.8 for the first

location and a probability of 0.2 for the second location.

In this problem, hand-written goal conditions are used to

specify the desired target structure. The YuMi [27] needs

to create a task and motion policy for successively picking

up and placing planks to build the structure. There are

infinitely many configurations in which one plank can be

placed on another, but the abstract model blurs out different

regions on the plank. The put-down pose generator uses the

target structure to concretize each plank’s target put-down

pose. State-of-the-art SSP solvers fail to compute abstract

https://aair-lab.github.io/stamp.html
https://aair-lab.github.io/atam_full.html


(a) The Fetch mobile manipulator uses a STAMP policy to pickup a target bottle while
avoiding those that are likely to be crushed. It replaces a bottle that wasn’t crushed
(left), discards a bottle that was crushed (center) and picks up the target bottle (right).

(b) ABB YuMi builds Keva structures using a STAMP
policy: 12-level tower (left), twisted 12-level tower (cen-
ter), and 3-towers (right).

Fig. 5: Photos from our evaluation using the Fetch and YuMi robots. Videos are available at https://aair-lab.github.io/stamp.html.

Fig. 6: Anytime performance of ATM-MDP, showing the time in seconds
(x-axis) vs. probability mass refined (y-axis).

solution policies for structures of height greater than 3 for

this problem. However, these structure-building problems

exhibit repeating substructure every 1-2 layers that reuse

minor variants of the same abstract policy. We used this

observation to develop an SSP solver that incrementally calls

LAO* to compute iterative policies. The results for Keva

structures use this solver. In addition to the test problems

shown in Fig. 4 this allows our approach to scale to more

complex problems such as 3-towers (Fig. 5). Approaches for

generalized planning [28], [29], [30], [18] could be used

to automatically extract and utilize such patterns in other

problems with repeating structures.

A. Analysis of Results

Fig. 6 shows the anytime characteristics of our approach in

all of the test domains. The y-axis shows the probability with

which the policy available at any time during the algorithm’s

computation will be able to handle all possible execution-

time outcomes, and the x-axis shows the time (seconds)

required to refine that probability mass.

These results indicate that in all of our test domains,

the refined probability mass increases rapidly with time so

that about 80% of probable executions are covered within

about 30% of the computation time. Fig. 6 also shows that

refining the entire policy tree requires a significant time. This

reinforces the need for an anytime solution in such problems.

Fig. 4 shows average times taken to compute complete

STAMP policies for our test problems. These values are

averages of 50 runs for cluttered table, 20 runs for aircraft

inspection and 15 runs for Keva structures. Aircraft inspec-

tion problems and Keva structure problems required fewer

runs because their runtimes showed negligible variance.

VI. OTHER RELATED WORK

There has been a renewed interest in integrated task and

motion planning algorithms. Most research in this direction

has been focused on deterministic environments [8], [31],

[32], [9], [33], [34], [35]. Kaelbling and Lozano-Perez [36]

consider a partially observable formulation of the problem.

Their approach utilizes regression modules on belief fluents

to develop a regression-based solution algorithm. While

they address the more general class of partially observable

problems, their approach follows a process of online, incre-

mental discretization and does not address the computation

of branching policies, which is the focus of this paper. Sucan

and Kavraki [37] use an explicit multigraph to represent the

problem for which motion planning refinements are desired.

Other approaches [10] address problems where the high-level

formulation is deterministic and the low-level is determinized

using most likely observations. Our approach uses a compact,

relational representation; it employs abstraction to bridge

SSP solvers and motion planners and solves the overall

problem in anytime fashion. Preliminary versions of this

work [38], [39] were presented at non-archival venues and

did not include the full formalization and optimizations

required to solve the realistic tasks prsented in this paper.

Several approaches utilize abstraction for solving

MDPs [40], [41], [42], [43]. However, these approaches

assume that the full, unabstracted MDP can be efficiently

expressed as a discrete MDP. Marecki et al. [44] consider

continuous-time MDPs with finite sets of states and actions.

In contrast, our focus is on MDPs with high-dimensional,

uncountable state and action spaces. Recent work on

deep reinforcement learning (e.g., [45], [46]) presents

approaches for using deep neural networks in conjunction

with reinforcement learning to solve short-horizon MDPs

with continuous state spaces. These approaches can be

used as primitives in a complementary fashion with task

and motion planning algorithms, as illustrated in recent

promising work by Wang et al. [47].
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