
Publications of the DLR elibelibelib

This is the author's copy of the publication as archived with the DLR's electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

CATs: Task Planning for Shared Control of Assistive Robots
with Variable Autonomy
Bustamante, S.; Quere, G.; Leidner, D.; Vogel, J.; Stulp, F.

Copyright Notice

c 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Citation Notice

@INPROCEEDINGS{Bustamante2022,

author={Bustamante, S. and Quere, G. and Leidner, D. and Vogel, J. and Stulp, F.},

title={CATs: Task Planning for Shared Control of Assistive Robots with Variable Autonomy},

booktitle={2022 IEEE International Conference on Robotics and Automation ICRA},

year={2022},

volume={ },

number={ },

pages={8},

url={},

doi={}

}



CATs: Task Planning for Shared Control of Assistive Robots
with Variable Autonomy

Samuel Bustamante, Gabriel Quere, Daniel Leidner, Jörn Vogel, Freek Stulp

Abstract— From robotic space assistance to healthcare
robotics, there is increasing interest in robots that offer
adaptable levels of autonomy. In this paper, we propose an
action representation and planning framework that is able
to generate plans that can be executed with both shared
control and supervised autonomy, even switching between
them during task execution. The action representation –
Constraint Action Templates (CATs) – combine the advantages
of Action Templates [1] and Shared Control Templates [2].
We demonstrate that CATs enable our planning framework to
generate goal-directed plans for variations of a typical task of
daily living, and that users can execute them on the wheelchair-
robot EDAN in shared control or in autonomous mode.

I. INTRODUCTION

In applications ranging from robotic space assistance [3] to
healthcare robotics [4], there is an increasing need for robots
with adaptable levels of autonomy, including direct control,
shared control, supervised autonomy, and full autonomy. For
instance, studies with users of wheelchair-mounted robots
show that more robot autonomy is not always better, and
flexible systems are recommended [5], [6]. As a concrete
example on our own wheelchair-robot EDAN [7], a user may
want to initiate the opening of a door in shared control [8],
but let the crossing of the doorway be done autonomously.

In this paper, we propose a hybrid task-planning and
motion-generation framework that enables plans to be
executed with both shared control and supervised autonomy,
as illustrated in Fig. 1. It combines the advantages of
two approaches. From hybrid planning, it inherits hybrid
symbolic/geometric action representations, which enable
symbolic planning of actions sequences to achieve a given
goal. From shared control, it inherits the feature that users are
enabled to control a high-dimensional robotic system with
low-dimensional user input commands with task-specific
support.

Concretely, the main contributions of this paper are:
1) Proposing a novel action representation Constraint Action
Templates (CATs). As summarized in Fig. 2, CATs combine
Action Templates [1] and Shared Control Templates [2].
2) Introducing a novel hybrid task-planning framework
for CATs, which enables goal-directed planning of shared

All authors are with the German Aerospace Center (DLR), Robotics and
Mechatronics Center (RMC), Münchner Str. 20, 82234 Weßling, Germany.
Corresponding author: Samuel.Bustamante@dlr.de. This work is
partly supported by the German Research Foundation (DFG) within the
Collaborative Research Center EASE (SFB 1320) and the Bavarian Ministry
of Economic Affairs, Regional Development and Energy (StMWi) by means
of the project SMiLE2gether (LABAY102). The authors would like to thank
Ribin Balachandran, Adrian Bauer, Annette Hagengruber, Florian Lay and
Peter Lehner for continual support and motivating discussions.

Fig. 1. Our task-planning framework in an example situation with our
wheelchair-robot EDAN. Left: A symbolic planner generates a plan with
all the necessary symbolic transitions to satisfy the goal. The shared control
planner creates an SCT, which is a finite state machine. Right: During plan
execution, the user can traverse the SCT with an interface in shared control,
or request autonomous completion of the task.

control plans. 3) Demonstrating that CATs enable appropriate
task plans to be automatically generated for variations of a
typical task of daily living on EDAN [7]. 4) Show that the
plans can be executed in shared control [9] or supervised
autonomous mode [10], and even allows users to switch
between them during task execution.

The rest of this paper is structured as follows: in the next
section, we present Action Templates and Shared Control
Templates; further related work beyond these approaches is
discussed later in Section VI. In Section III, we describe
the CAT action representation, and Section IV explains how
CATs are used for hybrid planning and plan execution. The
validation on EDAN is described in Section V. We conclude
with Section VII.

II. BACKGROUND

We combine two action representations: Action Templates
and Shared Control Templates, both illustrated in Fig. 2.

A. Action Templates (ATs)

ATs (Fig. 2, first row) are action representations that
enable hybrid symbolic/geometric planning for autonomous
robots [11], [1]. An example AT for a picking task (object
.pick) is shown in Listing 1. The header of an AT is a
declarative action definition specified with PDDL [12]. Its
body is a sequence of robot operations that generates motion



Fig. 2. Relation of CATs to previous work [1], [2].

plans and the required movements for the action, linked to
geometric properties of the objects in the world.

;; Header: declarative action specification in PDDL

:parameters (?o - _object ?m - _manipulator ?t - _tray)
:precondition (and(free ?rn) (on ?o ?t))
:effect (and(bound ?o ?m) (not. (free ?m)) (not. (on

?o ?t.)))

;; Body: a sequence of geometric operations that generate
;; motion plans and movements

(...)
operations = [

(’move_hand’, manip, graspset.approach_grasp) ,
(’plan_to’, manip, graspset.approach_frame, object_.
frame),
(’plan_to’, manip, graspset.grasp_frame, object_.
frame),
(’bind’, manip, object_.name),
(’move_hand’, manip, graspset.pre_grasp),
(’move_hand’, manip, graspset.grasp)]

Listing 1: AT for _object.pick, taken from [11].

Planning with ATs is a hybrid symbolic/geometric process.
The AT planner retrieves the symbolic headers of all ATs, and
a PDDL representation of the current state of the world. It
then generates a symbolic plan, i.e. a chain of ATs, to satisfy
the given goal. The geometric operations in the AT chain are
then called in order (e.g. generating a motion plan with a
rapidly-exploring random tree, RRT [13]), and executed in
simulation to assert reachability and collision avoidance. If a
simulation fails, the planner re-tries with different parameter
sets; if all fail, a backtracking mechanism discards the action,
and restarts the symbolic planner [1]. Finally, if the planner
is able to simulate the whole plan, it is executed on the robot.

The implementations of the operations in an AT have not
been made with shared control in mind, and the resulting
plans can therefore not be readily used in the context of
shared control. Our aim in this paper is to extend the AC
framework, so that the resulting plans can (also) be used for

shared control.

B. Shared Control Templates (SCTs)

SCTs are action representations that allow users to control
high-dimensional robotic systems with only low-dimensional
user input commands [2], [9], for instance from a 3D joystick
or electromyography sensors. They provide task-relevant
support in fields such as assistive robotics [2] or robotic
surgery [14].

In an SCT, Input Mappings (IM) map the user commands
to end-effector displacements. Different task phases require
different IMs: when transporting a bottle, 3D input
commands map to end-effector translational motions, with no
orientation control to avoid spilling. However when pouring
from the bottle, the bottle tip has a fixed position, but its
orientation can be controlled, allowing the bottle to be tilted.
IMs thus require knowledge about the relevant frames of
reference of a task (e.g. the relative pose between a cup and
a bottle tip), and which inputs map to which displacements
in these frames. Additionally, Active Constraints may limit
the range of motion provided by an IM, e.g. to limit the
angle at which a bottle is tilted to avoid pouring too quickly.

Fig. 3. An SCT with three states, each with their own Input Mapping and
Active Constraints. Image adapted from [2].

As different phases of a task requires different mappings
and constraints (e.g. transport of a bottle vs. pouring from it),
an SCT combines several of them in a Finite State Machine,
as illustrated in Fig. 3. State transitions occur when metrics
of interest (such as the distance between the bottle and the
mug while pouring, or the measured vertical force while
releasing) reach established thresholds.

As we shall explain in more detail in Section IV-C,
SCTs can be executed both with user commands as input
(which motivated their design), but also with autonomously
generated commands (which enables autonomous execution
of SCTs, without user commands) [10].

So far SCTs have been hand-coded for tasks [2], or
partially learned from demonstrations [9]. Our aim in this
paper is to partially automate their generation with a hybrid
task planning approach, as in the AT framework. See also
the comparison in Fig. 2.

III. CONSTRAINT ACTION TEMPLATES (CATS)

CATs aim to have the best of both the AT and SCT
worlds. That is, the task-planning functionality from ATs,
and the shared control functionality from SCTs. How this
combination is achieved is sketched in Fig. 2 (bottom), and
explained in the following.

Each CAT has a PDDL action definition in the header, and
geometric operations in its body. An example CAT file for
opening a microwave (_microwave.open) is in Listing 2.



;; Header: declarative action specification in PDDL
;; Difference to AT: Effects distributed over blocks

@parameters
(?micro - _microwave ?rob - _manipulator)

@precondition
(and (free ?rob) (enclosed ?micro))

;; Body: a sequence of operations
;; Diff. to AT: operations are clustered in blocks
;; Diff. to AT: operations will be mapped to SCT states

@sets
use micro.sets.open[rob] as rmset

@block.approach microwave
operation(rob, "move_fingers", rmset.open_hand)
operation(rob.frames.hand, "reach_full_pose", rmset.

start_button)
effect = (and (not(free ?rob)))

@block.push button
operation(rob, "move_fingers", rmset.microwave_pinch)
operation(rmset.fingertip, "reach_position", micro.frames

.button_approach, use_constraint = "cone")
operation(rmset.fingertip, "reach_position", micro.frames

.button_contact, use_constraint = "line",
end_effector_force = force_button)

force_button = {axis:"x", value: micro.open_button_force}
effect = (and(not(enclosed ?micro)))

@block.go back
operation(rob.frames.hand, "local_axis_motion", rob.

frames.hand, axis = "-z", distance = 0.15)
operation(rob, "move_fingers", rmset.open_hand)
effect = (and(free ?rob))

Listing 2: CAT for _microwave.open.

CATs extend Action Templates by allowing for more fine-
grained specification of effects of the individual operations
in so-called “blocks”. For instance, opening the microwave
requires an approach, a push, and a go back block, which
each have their own partial effects, see Listing 2. As we shall
see in Section IV-B, each operation in the CAT maps to one
state in the SCT. The block structure allows effects to be
associated with the states in the SCT that achieve them.

The symbolic planner plans with PDDL action definitions,
not with individual operations or blocks. Therefore, the
overall effects of a CAT are determined by iterating from
its last block to its first and obtaining the list of effects, as
illustrated in Fig. 5 (left). When performing this so-called
effect tally, the list should contain only non-repeated and
non-negated state literals, e.g. one could not add not(free

?robot) from approach_microwave, because it is negated in
the last block go_back.

As we are combining several action representations
(PDDL, Action Templates, Shared Control Templates), let us
clarify the etymology of our terminology before continuing.
The term ‘action’ is taken from PDDL. In pure PDDL,
there are only actions. Actions must have preconditions and
completely specified effects. An action is the highest level
of abstraction in Action Templates and CATs. The term
‘operation’ is taken from Action Templates, and represents
one call to a motion or grasp planning algorithm (e.g. RRT)
or a hand-coded procedure for motion generation. A ‘block’

is specific to CATS, and provides partial effect specifications
for several operations.

A. Grounding of Objects and Frames of Reference

The operators in a CAT often refer to objects and frames of
reference, e.g. micro.frames.button_contact is the frame
of reference of the button of the microwave. All objects and
their frames are stored in the Object DataBase (ODB), and
updated in the World State Representation (WSR) [1], [7].

CATs and the ODB follow an object-centric paradigm:
actions are defined around the objects classes that take part
in them, according to a hierarchy illustrated in Fig. 4. During
execution however, the parameters come from specific
instances of the object classes. To give an example, the CAT
in Listing 2 needs the parameters of a _microwave instance,
such as the specific lab_microwave, and one _manipulator

instance, such as the specific edan_arm.

Fig. 4. A portion of the hierarchy for object classes, adapted from [1].
Object classes have a single leading underscore and are shown in yellow,
while object instances (and their frames) are shown in grey.

Instance parameters (fig. 4) can have three types:
1) Instance properties: For example the force expected from
the lab_microwave button. 2) Frames: explicit definitions
of the object frames referenced to the instance. Each
_microwave instance will store a button_contact frame with
respect to its origin. 3) Object-Robot sets: Some properties
are specific to a combination of an object instance and a
robot instance. Sets (@sets in Listing 2) contain an arbitrary
number of robot-object properties on a given context. For
instance, lab_microwave stores different opening finger
configuration and fingertip frames, one for each hand type
of EDAN.

IV. PLANNING AND EXECUTION WITH CATS

A. Symbolic planner

The parameters, preconditions and effects (acquired
through effect tallies) of each CAT and the current state of the
objects in the world (see Section III-A) completely specify
what is known as the ‘domain’ in the PDDL language. Given
the domain and the user goal (also expressed in PDDL
e.g. (on red_mug lab_micro) 1) , the planner produces the
sequence of CATs that can turn the state of the world into a
state containing the goal, if such a plan exists. We use Fast
Downward [15] for end-to-end PDDL planning.

1Note: with (on object microwave) we model ”on the microwave
inner surface” and not ”on top of the microwave”.



In the example in Fig. 5, the goal (on red_mug lab_micro

) can be achieved by first opening the door of the microwave
(using the CAT in Listing 2), then grasping the mug,
and finally placing the mug in the microwave. But the
same actions could also fulfill other goals from different
initial states; for example, the planner could also use use
_microwave.open or _container.pick to achieve goals like
(opened lab_micro) or (on red_mug lab_table).

Fig. 5. Symbolic planning with CATs Left: Schematic of the CAT for
_microwave.open and the procedure to obtain an effect tally. Top right:
The PDDL information, included the effect tally, provides a PDDL action
description, and is stored in a domain.pddl file. Bottom right: An end-
to-end PDDL planner can generate a symbolic plan that solves the goal with
the object instances in the world.

B. Shared Control planner

As mentioned in Section II-A, the implementation of
operations in Action Templates cannot be readily used in
the context of shared control. CATs solve this problem by
mapping each operation to one state of a Shared Control
Template (see Section II-B), which have been designed
specifically for this purpose. The output of the planner is one
large Shared Control Template. In comparison, such FSMs
in previous work needed to be created and fine-tuned by
hand [2].

Once there is a symbolic plan containing a list of CATs
to be traversed by the robot, our task-planning framework
aggregates all their operations and generates an new SCT
from them. This SCT, shown in Fig. 6A., is a large linear
FSM containing one state for every operation in the planned
CATs, and only forward transitions. The planner creates
the basic elements of an SCT state (input mappings, active
constraints, and transitions), and includes the parameters of
the object instances. Operations thus provide a blueprint for
the robot to interpret how a movement should be performed
regardless of the autonomy level.

The structure of a CAT operation is shown on Fig. 6B. It
contains three required arguments and an unlimited number
of optional keyword arguments. The required arguments are,
in order, the motion reference (meaning the frame or item

TABLE I
OPERATIONS INCLUDED IN OUR CATS IMPLEMENTATION

Operation name
Implementation Transition

reach_full_pose
The user starts or stops the motion,
which is a simple point-to-point motion
in SE(3).

Target position and
orientation are reached
with a small tolerance.

reach_position
The user controls the actuated frame in
a translational motion, and the motion
uses constraints defined by the axes of the
target frame (e.g. a cone on the Z axis).

Position (but not
orientation) is reached
with a small tolerance.

move_fingers
The robot moves the fingers while the user
is waiting.

Timeout of one second to
finish the finger motion.

local_axis_motion
The user controls a 1D translational
motion, in one of the axes of the target
frame.

Actuated frame
displacement reaches a
treshold.

actuated by the robot, like the hand configuration or the
fingertip frame), the type of the operation, and a target
(viz. an object frame or a finger target). Keyword arguments
can add adjustments to the motion, most notably constraints
(cones, lines, etc.) from our constraint model collection [9].
Our first implementation of CATs contains four operation
types, explained in Table I, each of which has a prefabricated
state primitive. Each generated SCT state is thus assembled
from the primitives and the keyword arguments.

Example: To press a microwave button in Listing 2
(@block.push_button) the SCT would first contain a state
in which the fingers would move to a pinch (first op.); then,
a state in which the user could steer the joystick-controlled
fingertip in 3D while staying in a cone volume towards an
approach position (relative to the button, second op.); finally,
in another state the SCT would assist the button press by
applying a line constraint to the fingertip (third op.).

Force transitions: SCTs states and the Automaton have
support for force transitions [2], [10]. CATs wrap this
functionality in the keyword arguments, and allow to override
the original primitive transitions. To name one example: in
@block.push_button of Listing 2, the transition where the
fingertip frame reaches the contact button (third op.) only
happens after the robot senses a horizontal force, using an
instance-specific treshold micro.open_button_force.

C. Execution of the generated SCT

The SCT generated by the planner can be executed in
shared control, supervised autonomy, or a mixture of both.
For example, while opening a microwave, the user could start
moving with a 3D joystick, but then click to let the robot
finish the task when it gets close to the button. The user can
also trade back autonomy at any time, and continue with
the task in shared control. Although the original SCTs were
designed for shared control with user inputs, an Automaton
(presented in [10]) can execute them autonomously by
generating the commands, rather than a human. Furthermore,



Fig. 6. Left: Schematic of an SCT generated by our planning framework. Right: Procedure for generating one SCT state from a CAT operation.

we demonstrated previously that smooth transitions between
shared control and autonomous execution are possible during
the task [10].

The Automaton is capable of traversing all the states
required by a plan, effectively providing supervised
autonomy after a button press, and within an SCT. However,
before CATs these plans had been provided ad-hoc for every
SCT, as the robot did not have any symbolic knowledge of
the tasks and was not able to reason about goals.

V. VALIDATION ON EDAN

Robot: All experiments were conducted on EDAN,
which consists of a wheelchair with a 8-DOF light-weight
robot with a three-fingered hand shown in fig. 7. The
wheelchair base, arm, and hand can be controlled through
electromyography, a 3D joystick, and/or a tablet graphical
user interface (GUI). As a fallback to SCT execution, EDAN
offers a manual mode interface with mode switches. More
details about EDAN and these interfaces can be found in [7].
Only the 3D joystick interface was used in the experiments.

Task: We consider an activity of daily living involving the
placement of a cup in and out of a microwave. The different
variations of this task, i.e. the different initial conditions and
goals, are listed Table II. Both are provided to the planning
algorithm as PDDL specifications.

Planning process: For each demo, the position of the
objects and the initial symbolic state2 were specified
before the experiment, and loaded into the World State
Representation (WSR). Based on the goal, the initial state
and the library of CATs, symbolic plans were generated with
Fast Downward [15] just-in-time before the plan execution.
The different CATs that were implemented and used by the
planner are listed in the final column of Table II.

Plan execution: Plans were executed either in shared
control, supervised autonomy, or switching between the two
during the task (see the fourth column in Table II). Shared

2We use a closed-world assumption, meaning that a semantic state that
is not specified in the WSR is considered as False.

control was performed by an expert user, using a 3D joystick
for shared control. Plan executions are illustrated both in
Fig. 7, as well as in the video attached as supplementary
material.

Previous work has shown that executing SCTs (without
CATs) in autonomous mode is not slower than in shared
control [10], and that a human in shared control is faster
than in direct manual control [2].

Planning time duration: In a separate test (not executed
on the robot), we show on table III the planning times for 10
runs of a (on red_mug lab_microwave) task on an Intel(R)
Xeon(R) with 8 cores. The times reported in the Symbolic
Plan row include the generation of the domain.pddl file
from the CAT files and the call to Fast Downward. We
also show the time needed to convert the symbolic plan to
an SCT. To assess how well planning times scale with the
number of objects in the world, we generated plans for scenes
containing 10 and 40 mugs, where only one was involved in
the plan.

Discussion and limitations: The experiments demonstrate
that our approach is able to generate symbolic plans for
variations of a task, convert the plans to SCTs, and execute
these SCTs with different levels of autonomy. Planning times
in the experiments are below 1s. Although we cannot prove
that an SCT is always successfully executed autonomously,
in previous work we have shown a success rate of 93-98% for
SCT task execution in an obstacle-free scenario [10]. We do
not yet implement joint space planning nor simulations with
feasibility checks and backtracking mechanisms as in the
Action Templates approach. We expect to implement these
features in future work to improve the robustness of the CATs
framework, albeit with longer planning times.

VI. RELATED WORK

There is a need for goal-guided interaction in Human-
Computer interaction, particularly for non-expert users [16].
However, while there is a large body of work in shared
control of assistive robotic systems, for instance on systems



Demo Goal Starting position Autonomy level CATs queried

1 (on red_mug
lab_microwave) Video
frames: Fig. 7 (top row)

Closed microwave and the
mug on the table.

Shared control with multiple
supervised autonomy
triggers during task
execution.

_microwave.open(lab_microwave, edan_arm),
_container.grasp(lab_table, red_mug, edan_arm),
_microwave.place(lab_microwave, red_mug, edan_arm).

2 (on red_mug
lab_table). Video
frames: Fig. 7 (bottom row).

Closed microwave and mug
inside the microwave.

Shared control. _microwave.open(lab_microwave, edan_arm),
_container.grasp(lab_microwave, red_mug, edan_arm),
_table.place(lab_table, red_mug, edan_arm).

3 (not (enclosed
lab_microwave))

Closed microwave. Full supervised autonomy. _microwave.open(lab_microwave, edan_arm)

TABLE II
OVERVIEW OF THE PLANS GENERATED AND EXECUTED ON EDAN.

Fig. 7. Left: EDAN. Right: Two task examples, achieving goals (on red_mug lab_microwave) (top) & (on red_mug lab_table) (bottom).
At every snapshot we annotate the symbolic state, as well as the level of autonomy (shared control [SC], or supervised autonomy [SA]).

1 mug 10 mugs 40 mugs
Symbolic plan 0.446± 0.021 0.574± 0.047 0.837± 0.055
SCT generation 0.375± 0.037 0.422± 0.035 0.570± 0.034
Total 0.820± 0.037 1.000± 0.065 1.407± 0.085

TABLE III
TASK PLANNING COMPUTATION TIMES (µ± σ, TEN RUNS, SECONDS)

that blend the command of the user with an autonomy
module [17], [18], research about creating a sequence of
shared control tasks towards a goal is rare. While planned
shared control systems exist [19], [20], [21], they usually
do not plan an explicitly long sequence of actions while
providing the option to switch to supervised autonomy.

In the brain-machine interface (BMI) community there
are inference systems that leverage knowledge to discover
and exploit the user goal while executing a manipulation
task [22], [23], and planning systems where the user
inputs a goal that the robot plans and later executes by
itself [24]. In a similar direction as us, albeit in the domain
of wheelchair navigation, Lopes et al. [25] use a hybrid-
planning framework to create a grid the user can traverse with
a BMI. In the teleoperation literature there has been research
in adaptive movement constraints (virtual fixtures) [26] and
on-the-fly goal-oriented pedagogical task demonstrators for
a space robot [27].

The paradigm for simultaneously creating symbolic high-
level and geometric low-level plans in robotics is usually
called hybrid planning. There are many practical robotics
applications, like in space [28], search-and-rescue [29] and
household robotics [30]. On the symbolic side, one of the
most famous formalisms for symbolic descriptions of actions
is the Planning Domain Definition Language (PDDL) [12].

On the geometric side, our work is inspired by the task
frame formalism [31], which modeled robot contacts in
terms of frames of interest within a task. This approach
is close to the one of Bartels and Beetz [32], where they
use an object-frame constraint representation for planning in
an autonomous system. Workspace limits and task-related
constraints have also been studied by Berenson et al. [33]
and Pérez-D’Arpino et al. [34].

VII. CONCLUSION

In this paper we propose the Constraint Action Template
framework, which combines Action Templates and Shared
Control Templates, with the main aim of enabling task-
planning for shared control. To the best of our knowledge,
CATs are the first action representation that allows
symbolic planning of action sequences that can be used
for shared control and autonomous execution (using the
Automaton [10]), even allowing smooth switches between
the two during execution.

This paper has introduced CATs and validated that the
plans they generated can be used to successfully complete
tasks. In future work, we will use a more extensive set of
CATs and operations, and port the missing features from
ATs. It was also beyond the scope of this paper to explain
how perception can be used to ground the objects and their
PDDL symbols under uncertainty. This is being studied in
parallel in our robotics institute [35] and the EDAN team [7].

Finally, with a more diverse repertoire of actions and tasks,
we will also be able to conduct user studies. Preliminary
studies on SCTs and ATs have confirmed their usability in
assistive [2] and space robotics [3].



REFERENCES

[1] D. S. Leidner, Cognitive Reasoning for Compliant Robot
Manipulation, ser. Springer Tracts in Advanced Robotics. Cham:
Springer International Publishing, 2019, vol. 127. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-04858-7

[2] G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared Control Templates for Assistive
Robotics,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, 2020, p. 7.

[3] P. Schmaus, D. Leidner, T. Krüger, A. Schiele, B. Pleintinger,
R. Bayer, and N. Y. Lii, “Preliminary insights from the
meteron supvis justin space-robotics experiment,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 3836–3843, 2018.
http://dx.doi.org/10.1109/LRA.2018.2856906

[4] J. Vogel, D. Leidner, A. Hagengruber, M. Panzirsch, B. Bauml,
M. Denninger, U. Hillenbrand, L. Suchenwirth, P. Schmaus,
M. Sewtz, A. S. Bauer, T. Hulin, M. Iskandar, G. Quere, A. Albu-
Schaffer, and A. Dietrich, “An ecosystem for heterogeneous robotic
assistants in caregiving: Core functionalities and use cases,” IEEE
Robotics Automation Magazine, vol. 28, no. 3, pp. 12–28, 2021.
http://dx.doi.org/10.1109/MRA.2020.3032142

[5] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks,
T. Cunningham, D. Portee, J. Bricout, Z. Wang, and A. Behal,
“How Autonomy Impacts Performance and Satisfaction: Results
From a Study With Spinal Cord Injured Subjects Using an Assistive
Robot,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 42, no. 1, pp. 2–14, Jan. 2012.
[Online]. Available: http://ieeexplore.ieee.org/document/5941028/.
http://dx.doi.org/10.1109/TSMCA.2011.2159589

[6] T. Bhattacharjee, E. K. Gordon, R. Scalise, M. E. Cabrera,
A. Caspi, M. Cakmak, and S. S. Srinivasa, “Is More Autonomy
Always Better?: Exploring Preferences of Users with Mobility
Impairments in Robot-assisted Feeding,” in Proceedings of the 2020
ACM/IEEE International Conference on Human-Robot Interaction.
Cambridge United Kingdom: ACM, Mar. 2020, pp. 181–190.
[Online]. Available: https://dl.acm.org/doi/10.1145/3319502.3374818.
http://dx.doi.org/10.1145/3319502.3374818

[7] J. Vogel, A. Hagengruber, M. Iskandar, G. Quere, U. Leipscher,
S. Bustamante, A. Dietrich, H. Hoeppner, D. Leidner, and A. Albu-
Schäffer, “Edan - an emg-controlled daily assistant to help people with
physical disabilities,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[8] M. Iskandar, G. Quere, A. Hagengruber, A. Dietrich, and J. Vogel,
“Employing Whole-Body Control in Assistive Robotics,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Macau, China: IEEE, Nov. 2019, pp. 5643–5650.
[Online]. Available: https://ieeexplore.ieee.org/document/8967772/.
http://dx.doi.org/10.1109/IROS40897.2019.8967772

[9] G. Quere, S. Bustamante, A. Hagengruber, J. Vogel, F. Steinmetz, and
F. Stulp, “Learning and interactive design of shared control
templates,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 1887–1894.
http://dx.doi.org/10.1109/IROS51168.2021.9636047

[10] S. Bustamante, G. Quere, K. Hagmann, X. Wu, P. Schmaus, J. Vogel,
F. Stulp, and D. Leidner, “Toward seamless transitions between shared
control and supervised autonomy in robotic assistance,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 3833–3840, 2021.

[11] D. Leidner, C. Borst, and G. Hirzinger, “Things are made for what they
are: Solving manipulation tasks by using functional object classes,” in
2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012). IEEE, 2012, pp. 429–435.

[12] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL, The Planning
Version Domain Definition Language. Version 1.2,” Yale Center for
Computational Vision and Control, AIPS-98 Planning Competition
Committee, Tech. Rep., 1998.

[13] J. Kuffner and S. LaValle, “Rrt-connect: An efficient
approach to single-query path planning,” in Proceedings
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.00CH37065), vol. 2, 2000, pp. 995–1001 vol.2.
http://dx.doi.org/10.1109/ROBOT.2000.844730

[14] K. Hagmann, A. Hellings-Kuss, J. Klodmann, R. Richter, F. Stulp,
and D. Leidner, “A digital twin for contextual assistance in surgical
robotics training,” Frontiers in AI and Robotics, 2021.

[15] M. Helmert, “The fast downward planning system,” J. Artif. Intell.
Res., vol. 26, pp. 191–246, 2006.

[16] A. L. Carrillo and J. A. Falgueras, “Proposal and testing
goals-guided interaction for occasional users,” Human-centric
Computing and Information Sciences, vol. 10, no. 1, 2020.
http://dx.doi.org/10.1186/s13673-020-0209-2

[17] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, Jun. 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913490324.
http://dx.doi.org/10.1177/0278364913490324

[18] D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop
optimization of shared autonomy in assistive robotics,” IEEE
Robotics and Automation Letters, vol. 2, no. 1, pp. 247–254, Jan.
2017. [Online]. Available: https://doi.org/10.1109/lra.2016.2593928.
http://dx.doi.org/10.1109/lra.2016.2593928

[19] W. Zhang, F. Sun, C. Liu, W. Su, C. Tan, and S. Liu, “A hybrid eeg-
based bci for robot grasp controlling,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 3278–
3283. http://dx.doi.org/10.1109/SMC.2017.8123134

[20] E. A. M. Ghalamzan, F. Abi-Farraj, P. R. Giordano, and
R. Stolkin, “Human-in-the-loop optimisation: Mixed initiative
grasping for optimally facilitating post-grasp manipulative
actions,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017, pp. 3386–3393.
http://dx.doi.org/10.1109/IROS.2017.8206178

[21] M. Behery, “A knowledge-based activity representation for shared
autonomy teleoperation of robotic arms,” RWTH-Aachen University,
Master’s Thesis, 2016.

[22] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and
J. A. Bagnell, “Shared autonomy via hindsight optimization for
teleoperation and teaming,” The International Journal of Robotics
Research, vol. 37, no. 7, pp. 717–742, Jun. 2018. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364918776060.
http://dx.doi.org/10.1177/0278364918776060

[23] K. Muelling, A. Venkatraman, J.-S. Valois, J. E. Downey,
J. Weiss, S. Javdani, M. Hebert, A. B. Schwartz, J. L.
Collinger, and J. A. Bagnell, “Autonomy infused teleoperation with
application to brain computer interface controlled manipulation,”
Autonomous Robots, vol. 41, no. 6, pp. 1401–1422, Aug.
2017. [Online]. Available: http://link.springer.com/10.1007/s10514-
017-9622-4. http://dx.doi.org/10.1007/s10514-017-9622-4

[24] D. Kuhner, L. Fiederer, J. Aldinger, F. Burget, M. Völker,
R. Schirrmeister, C. Do, J. Boedecker, B. Nebel, T. Ball, and
W. Burgard, “A service assistant combining autonomous
robotics, flexible goal formulation, and deep-learning-
based brain–computer interfacing,” Robotics and Autonomous
Systems, vol. 116, pp. 98–113, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889018302227.
http://dx.doi.org/https://doi.org/10.1016/j.robot.2019.02.015

[25] A. Lopes, J. Rodrigues, J. Perdigao, G. Pires, and U. Nunes, “A
new hybrid motion planner: Applied in a brain-actuated robotic
wheelchair,” IEEE Robotics Automation Magazine, vol. 23, no. 4, pp.
82–93, 2016. http://dx.doi.org/10.1109/MRA.2016.2605403

[26] D. Aarno, S. Ekvall, and D. Kragic, “Adaptive virtual fixtures for
machine-assisted teleoperation tasks,” in Proceedings of the 2005
IEEE International Conference on Robotics and Automation, 2005,
pp. 1139–1144. http://dx.doi.org/10.1109/ROBOT.2005.1570269

[27] K. Belghith, B. Auder, F. Kabanza, P. Bellefeuille, and L. Hartman,
“Automatic animation generation of a teleoperated robot arm,” in ECAI
2008. IOS Press, 2008, pp. 931–932.

[28] J. Martı́nez-Moritz, I. Rodrı́guez, K. Nottensteiner, J.-P. Lutze,
P. Lehner, and M. A. Roa, “Hybrid planning system for in-
space robotic assembly of telescopes using segmented mirror tiles,”
in 2021 IEEE Aerospace Conference (50100), 2021, pp. 1–16.
http://dx.doi.org/10.1109/AERO50100.2021.9438399

[29] P. Bechon, C. Lesire, and M. Barbier, “Hybrid planning and distributed
iterative repair for multi-robot missions with communication losses,”
Autonomous Robots, vol. 44, pp. 505–531, 2020.

[30] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task
and motion planning,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, pp. 265–293, 2021.
[Online]. Available: https://doi.org/10.1146/annurev-control-091420-
084139. http://dx.doi.org/10.1146/annurev-control-091420-084139



[31] H. Bruyninckx and J. De Schutter, “Specification of force-controlled
actions in the ”task frame formalism”-a synthesis,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 4, pp. 581–589, 1996.
http://dx.doi.org/10.1109/70.508440

[32] G. Bartels, I. Kresse, and M. Beetz, “Constraint-based
movement representation grounded in geometric features,” in
2013 13th IEEE-RAS International Conference on Humanoid Robots
(Humanoids). Atlanta, GA: IEEE, Oct. 2013, pp. 547–554.
[Online]. Available: http://ieeexplore.ieee.org/document/7030027/.
http://dx.doi.org/10.1109/HUMANOIDS.2013.7030027

[33] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 618–624.

[34] C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric
constraints from demonstrations for multi-step manipulation in shared
autonomy,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4058–4065.

[35] J. Feng, M. Durner, Z. Marton, F. Balint-Benczedi, and R. Triebel,
“Introspective robot perception using smoothed predictions from
bayesian neural networks,” in International Symposium on Robotics
Research (ISRR), 06-10 Oct 2019, Hanoi, Vietnam, 01 2019.


