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Abstract—Indirect trajectory optimization methods such as
Differential Dynamic Programming (DDP) have found consid-
erable success when only planning under dynamic feasibility
constraints. Meanwhile, nonlinear programming (NLP) has
been the state-of-the-art approach when faced with additional
constraints (e.g., control bounds, obstacle avoidance). However,
a naı̈ve implementation of NLP algorithms, e.g., shooting-based
sequential quadratic programming (SQP), may suffer from
slow convergence – caused from natural instabilities of the un-
derlying system manifesting as poor numerical stability within
the optimization. Re-interpreting the DDP closed-loop rollout
policy as a sensitivity-based correction to a second-order search
direction, we demonstrate how to compute analogous closed-
loop policies (i.e., feedback gains) for constrained problems. Our
key theoretical result introduces a novel dynamic programming-
based constraint-set recursion that augments the canonical
“cost-to-go” backward pass. On the algorithmic front, we de-
velop a hybrid-SQP algorithm incorporating DDP-style closed-
loop rollouts, enabled via efficient parallelized computation of
the feedback gains. Finally, we validate our theoretical and
algorithmic contributions on a set of increasingly challenging
benchmarks, demonstrating significant improvements in
convergence speed over standard open-loop SQP.

I. INTRODUCTION

Trajectory optimization forms the backbone of model-
based optimal control with myriad applications in robot
mobility and manipulation [1]–[5]. The problem formulation
is as follows: consider a robotic system with state x ∈Rn,
control input u∈Rm, subject to the discrete-time dynamics:

xk+1=f(xk,uk), k∈N≥0. (1)

LetN∈N>0 be some fixed planning horizon. Given some ini-
tial state x0, the trajectory optimization problem is as follows:

min
u,x

N−1∑
k=0

lk(xk,uk)+lN(xN)=:J (u,x) (2a)

s.t. k=0,...,N−1:


xk+1=f(xk,uk)

cuk(uk)≥0

cxk+1(xk+1)≥0

, (2b)

where we use (u, x) to denote the concatenations
(u0, ... , uN−1) and (x0, ... , xN), respectively. Here,
lk :Rn×Rm→R≥0 is the running cost, lN :Rn→R≥0 is
the terminal cost, and cxk :Rn→Rnx,cuk :Rm→Rnu are the
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Fig. 1: Motion planning using our methods for a planar quadrotor with at-
tached pendulum, starting at rest with the pendulum in stable equilibrium (top-
left, green), and ending at rest with the pendulum upright (bottom-right, red).

vector-valued constraint functions on the state and control
input. We assume that the control constraint encodes simple
box constraints: u≤uk≤u, though, the results in this paper
may be generalized beyond this assumption.

Solution methods generally fall into one of two approaches:
optimal control-based (indirect methods), or optimization-
based (direct methods). The former leverages necessary
conditions of optimality for optimal control, such as dynamic
programming (DP), while the latter treats the problem as
a pure mathematical optimization program [6]. A further
sub-categorization of the direct method distinguishes between
a Full or a Condensed formulation, where the former treats
both the states and controls as optimization variables, subject
to dynamics equality constraints, while the latter optimizes
only over the control variables, with the dynamics implicit.

Lacking constraints beyond dynamic feasibility, ubiquitous
indirect methods [7]–[10] such as Differential Dynamic
Programming (DDP) and its Gauss-Newton relaxation, it-
erative Linear Quadratic Regulator (iLQR) rely upon the DP
recursion to split the full-horizon planning problem into a
sequence of one-step optimizations, and alternate between
a backward and forward pass through the time-steps. The
backward pass recursively forms quadratic expansions of the
optimal cost-to-go function and computes a time-varying
affine perturbation policy that is subsequently rolled out
through the system’s dynamics in the forward pass to yield
the updated trajectory iterate. Under mild assumptions, DDP
locally achieves quadratic convergence, and the proof relies
upon establishing the close link between DDP and the Newton
method, as applied to the condensed optimization-based
formulation [9]. The stability properties of the underlying
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nonlinear system manifest as numerical stability during the op-
timization process, and hence the closed-loop nature of the for-
ward pass in DDP typically leads to better performance [11]
than Newton’s method, which implements open-loop rollouts.

Computing DDP-style closed-loop updates within the con-
strained setting (beyond dynamics feasibility) is much more
challenging, since quadratization of the cost and linearization
of the dynamics and constraints yields constrained quadratic
programs (QPs) with piecewise-affine optimal perturbation
policies [12], and complexity growing exponentially in
the number of constraints and horizon of the problem.
Consequently, direct methods (featuring open-loop updates)
are the prevailing solution approach, typically combined
with interior-point or SQP algorithms. Aside from possessing
more variables, the direct formulation must additionally
resolve dynamic feasibility, which can be non-trivial and
lead to slower convergence even for unconstrained systems,
as compared to indirect methods. Moreover, while the
condensed formulation yields smaller problems, instabilities
have been observed [13] due to divergences between
the predicted step from the linearized dynamics, and the
open-loop nonlinear rollout, leading to vanishing step-sizes.
Contributions: Re-interpreting the canonical DDP closed-
loop rollout as a sensitivity-based correction to a second-order
search direction, we demonstrate how to compute a locally
affine approximation to the constrained perturbation policies,
i.e., a set of feedback gains similar to those employed by
the DDP rollouts. Our key theoretical result states that in
the constrained setting, one must first compute an optimal
perturbation sequence about the current trajectory iterate by
solving a full-horizon QP (as opposed to the one-step DP
backward recursion), and then augment the canonical cost-
to-go backward pass with a constraint-set recursion. We then
demonstrate how to approximate the desired feedback gains
using an efficient, parallelized algorithm, eliminating the back-
ward pass. The closed-loop rollout is integrated into an SQP
line-search, yielding a hybrid indirect/direct algorithm that
combines the theoretical foundations of SQP for constrained
optimization with the algorithmic efficiencies of DDP-style
forward rollouts. The method is rigorously evaluated within
several environments, where we confirm significant conver-
gence speed improvements over naı̈ve (i.e., open-loop) SQP.
Related Work: Quasi-DDP methods for constrained
trajectory optimization fall into one of three main categories:
control-bounds only [14], [15], modified backward pass
via KKT analysis [16]–[20], and augmented Lagrangian
methods [3], [4], [21]–[23]. We provide a comprehensive
overview of these approaches in Appendix A1.

1All appendices referenced herein may be found in the online version of
this work [24].

II. SHOOTING SQP

We detail below the core algorithmic steps for SQP, as
applied to the shooting formulation of problem (2), i.e., where
dynamics are treated implicitly and we optimize only over
the control sequence u. The three steps are [25], [26]: (i)
solving a QP sub-problem to compute a search direction, i.e.,
a sequence of control perturbations δu= (δu0,...,δuN−1),
(ii) performing line-search along δu using a merit function,
and (iii) monitoring termination conditions. We provide some
details regarding (i) and (ii) here, and refer the reader to
Appendices B and C for the rest.

Let ck(xk,uk) denote the concatenation (cxk(xk),c
u
k(uk)),

k = 0, ... , N (where cuN is null), and let yk denote the
corresponding dual variable. Consider the Lagrangian at
current primal-dual iterate (u,y):

L(u,x,y)=

N−1∑
k=0

lk−yTk ck+lN−yTNcN (3)

For brevity, we omit the explicit arguments (xk,uk) where
possible. As we are only optimizing overu, letx[u] represent
the state trajectory starting atx0 obtained from propagating the
open-loop control sequence u through the discrete-time dy-
namics in (1) for k=0,...,N−1. Define the “reduced” objec-
tive and Lagrangian asJR(u)=J (u,x[u]) andLR(u,y):=
L(u,x[u],y), respectively, and define the sets {δXk}Nk=1 and
{δUk}N−1k=0 as δXk :={δx :cxk+Jxk δx≥0} and δUk :={δu :
cuk+Juk δu≥0}. Then, the QP sub-problem takes the form:

min
δu,δx

〈δu,∇uJR(u)〉+ 1

2
〈δu,∇2

uLR(u,y)δu〉 (4a)

s.t. δxk+1=Akδxk+Bkδuk, k=0,...,N−1 (4b)
δuk∈δUk, δxk+1∈δXk+1, k=0,...,N−1, (4c)

where δx0 = 0 and 〈·, ·〉 denotes the standard Euclidean
dot product; (Ak, Bk) are the dynamics Jacobians
(∂f/∂x, ∂f/∂u)(xk, uk), and (Juk , J

x
k ) are the constraint

Jacobians (∂cuk(uk)/∂u, ∂c
x
k(xk)/∂x). The sub-problem

objective (4a) has the form:

N−1∑
k=0

:=l̃k(δxk,δuk)︷ ︸︸ ︷[
qTk δxk+rTk δuk+

1

2

[
δxk
δuk

]T
Zk

[
δxk
δuk

]]
+

+
1

2
δxTNZNδxN+qTNδxN︸ ︷︷ ︸

:=l̃N(δxN)

(5)

where the terms {qk,rk,Zk} are provided in Appendix C. Let
(δu∗,δx∗) represent the optimal primal, and ŷ the optimal
inequality dual solutions for (4), and define the dual search
direction δy∗ :=ŷ−y.
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A. Line-Search

For α ∈ (0, 1], define u[α] := u + αδu∗ and
x[u[α]] :=x[α]. The line-search merit function is defined as:

φ(α;ρ)=MI(u[α],y+αδy∗,s+αδs∗;ρ), x=x[α], (6)

where MI is the augmented Lagrangian function for
problem (2), s is a vector of slack variables for the inequality
constraints with search direction δs∗, introduced solely
for the line-search, and ρ = {ρk}Nk=0 is a set of penalty
parameters. Please see Appendix C for details on {s,δs,ρ}.

III. DYNAMIC PROGRAMMING SQP

Implicit within the line-search is the open-loop rollout
along the search direction δu∗, i.e., x[α] = x[u+αδu∗].
For unstable nonlinear systems, this state trajectory may differ
significantly fromx+δx∗, the “predicted” sequence from the
QP sub-problem, forcing the line-search to take sub-optimal
step-sizes and slowing convergence. This observation is cor-
roborated in [11] in context of comparing DDP and Newton
methods for unconstrained problems, and within [13] in the
constrained context. Our objective therefore, is to efficiently
compute a set of feedback gains to perform DDP-style closed-
loop rollouts within the SQP line-search. We hypothesize that
such an enhancement will (i) improve the numerical stability
of the line-search, and (ii) accelerate convergence of Shooting
SQP. We first demonstrate how the classical DP recursion is
ill-posed in the context of constrained trajectory optimization,
and propose a correction inspired from sensitivity analysis.

A. Sensitivity-Based Dynamic Programming

The starting point for the derivation of iLQR and DDP
algorithms for unconstrained problems is with the Bellman
form of the optimal cost-to-go function:

Vk(x):=min
πk

[lk(x,πk(x))+Vk+1(f(x,πk(x)))], k=0,...,N−1

VN(x):=lN(x),

where πk : Rn→Rm is a policy for time-step k, mapping
states to controls. For a non-optimal state-control sequence
(x,u), consider the local expansion of the optimal cost-to-go
function:
δVk(δxk):=Vk(xk+δxk)

=min
δπk

lk(xk+δxk,uk+δπk(δxk))+δVk+1(δxk+1)︸ ︷︷ ︸
:=Qk(δxk,δπk)

,
where δxk+1 = f(xk + δxk,uk + δπk(δxk))− xk+1, and
δπk :Rn→Rm is a perturbation policy for time-step k at xk,
as a function of δxk. Now, by recursively (in a backward pass)
taking quadratic approximations of the state-action variation
function Qk about (δxk,δuk) = (0,0), one can solve for an
affine approximation to the minimizing perturbation policy.

In particular, let Q̆k represent the quadratic approximation
ofQk, and define δπ̆∗k(δxk):=argminδuQ̆k(δxk,δu). Then
δπ̆∗k(δxk) = δuk+Kkδxk. For step-length α, this perturba-
tion policy is rolled out to obtain the new trajectory iterate:

δxk+1[α]=f(xk+δxk[α],uk+δuk[α])−xk+1,

δuk[α]=αδuk+Kkδxk[α], α∈(0,1],
(7)

where δx0[α] = 0. Notice that one may interpret the terms
of the unconstrained perturbation policy δπ̆∗k as follows:

δuk :=δπ̆∗k(0), Kk :=
∂δπ̆∗k(0)

∂δxk
. (8)

Remark 1. Since δπ̆∗k(δxk) is the solution of an
unconstrained convex quadratic, the argument 0 is
redundant for the sensitivity matrixKk. This will not be the
case in the constrained setting.

Consider now the constrained setting, and define for
k∈{0,...,N−1}:

δπ∗k(δxk):= argmin
δuk∈δUk

l̃k(δxk,δuk)+δVk+1(δxk+1) (9)

where l̃k is the stage-k term in (5), δxk+1=Akδxk+Bkδuk,
and δVk+1 is the optimal “cost-to-go” for problem (4). That is,
for k+1=N , δxN ∈δXN , δVN(δxN)= l̃N(δxN), while for
k+1∈{1,...,N−1}, δxk+1∈δXk+1, δVk+1(δxk+1) is the
optimal value of the tail-truncation of QP sub-problem (4),
starting at time-step k+1 at δxk+1.

Notice that since δVk+1 is the optimal value of a con-
strained QP, δπ∗k(0) and the sensitivity matrix ∂δπ∗k(0)/∂δxk
(paralleling the terms defined in (8)) may be ill-defined, for
instance when the tail sub-problem is infeasible at δxk = 0.
This is a consequence of the linearized constraints, irrespective
of the objective function used to define the DP recursion.

Instead, consider the following equivalent re-arrangement
of the unconstrained DDP control law in (7):

δuk[α]=αδuk+Kkδxk[α]

=αδuk+Kkαδx
L
k +Kk(δxk[α]−αδxLk )

=αδuLk +Kk(δxk[α]−αδxLk )

(10)

where, the sequence (δxL,δuL) is defined by the rollout of
δπ̆∗k via the linearized dynamics:

δxLk+1=Akδx
L
k +Bkδu

L
k , δxL0 =0

δuLk :=δπ̆∗k(δx
L
k ).

(11)

In light of the homogeneity of the above recursion (i.e., the
sequence αδuL rolled out via the linear dynamics yields
αδxL), eq. (10) suggests interpreting δuL as a search-
direction,αδuL as the search step, and the feedback term as a
sensitivity-based correction. Thus, we may interpret the DDP
rollout as a local sensitivity-based correction to the Newton
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search direction (δuL). Generalizing this interpretation to
the constrained setting, consider the following control law:

δuk[α]=clip
u−uk
u−uk

[
αδπ∗k(δxLk )+

∂δπ∗k(αδxLk )

∂δxk
(δxk[α]−αδxLk )

]
,

where similarly to (11), δxL is obtained from rolling-out
{δπ∗k(δxLk )}N−1k=0 through the linearized dynamics. Now,
it follows from Bellman’s principle of optimality that
δπ∗k(δx

∗
k) = δu∗k, where (δx,δu)∗ are the optimal solution

to (4). Further since δxL0 =δx∗0=0, it follows inductively that
δxL=δx∗. Thus, the final control law for δuk[α] becomes

clipu−uk
u−uk

[
αδu∗k+

∂δπ∗k(αδx
∗
k)

∂δxk
(δxk[α]−αδx∗k)

]
. (12)

Given that δπ∗k, as defined in (9), is implicitly the solution
of a variable-horizon optimization, it is computationally pro-
hibitive to compute the sensitivity matrices above via explicit
differentiation. Instead, we next define a DP recursion to ex-
actly compute these sensitivities about the fixed sequence δx∗.

Remark 2. Since problem (9) is a multi-parametric QP in
δxk, δπ∗k is a piecewise-affine function of δxk [12]. Thus, for
α= 1, the expression inside the brackets in (12) lies within
δUk only for δxk[1] in a local region around δx∗k, thereby
necessitating the clipping operation (i.e., projection onto δUk).

B. DP Recursion for Computing Sensitivity Gains

We outline the DP recursion first and characterize its
correctness in Theorem 1.

Initialization: Set PN = ZN , pN = qN , vN = 0,Gcr
N =

−JxN ,hcrN =cxN .

Time-step k = N − 1, ... , 0: Define the function
δṼk+1(δxk+1) := (1/2)δxTk+1Pk+1δxk+1 + pTk+1δxk+1 +
vk+1. For δxk∈δXk, consider the one-step QP:

min
δuk
δxk+1

l̃k(δxk,δuk)+δṼk+1(δxk+1)

s.t. δxk+1 =Akδxk+Bkδuk[
−Juk 0

0 Gcr
k+1

]
︸ ︷︷ ︸

:=Ḡk

[
δuk
δxk+1

]
≤
[
cuk
hcrk+1

]
:=h̄k.

(13)

Let δπ̂∗k(δxk) and ŷ∗k(δxk) denote the optimal control
perturbation and inequality dual solutions for the above
one-step QP, as a function of δxk. Define the sensitivity
matrices Ku

k and Ky
k as the Jacobians [27] of δπ̂∗k and ŷ∗k

respectively, evaluated at δx∗k, and define the affine functions:

δπ̂∗k,a(δxk)=δπ̂∗k(δx
∗
k)+Ku

k (δxk−δx∗k) (14a)

ŷ∗k,a(δxk)= ŷ∗k(δx
∗
k)+Ky

k(δxk−δx∗k). (14b)

Recurse: Compute:

Gcr
k :=


−Jxk

Ḡk

[
Ku
k

Āk

]
−Ky

k

, hcr
k =


cxk

h̄k−Ḡk
[
I
Bk

]
δπ̂∗k,a(0)

ŷ∗k,a(0)

, (15)

where Āk :=Ak+BkK
u
k , and:

r̄k=rk+BTk pk+1 R̄k=Zk,uu+BTk Pk+1Bk (16a)

M̄k=Zk,xu+ATkPk+1Bk (16b)

pk=qk+ATk pk+1+KuT

k r̄k+(KuT

k R̄k+M̄k)δπ̂
∗
k,a(0) (16c)

Pk=Zk,xx+ATkPk+1Ak+KuT

k R̄kK
uT

k +

+M̄kK
u
k +KuT

k M̄T
k (16d)

vk= r̄Tk δπ̂
∗
k,a(0)+

1

2
δπ̂∗k,a(0)T R̄kδπ̂

∗
k,a(0)+vk+1. (16e)

We now characterize the correctness of this DP recursion in
the following theorem; the proof is provided in Appendix D.

Theorem 1. Suppose that for each k ∈ {N −1,...,0}, the
solution of the one-step QP in (13) at δxk = δx∗k satisfies
Linear Independent Constraint Qualification (LICQ). Then,
the recursion in (15)–(16) is well-defined. Define the sets
CRk :{δxk :Gcr

k δxk≤hcrk }, for k=N,...,0. It holds that:

δx∗k∈CRk k=N,...,0 and{
∀δxk∈CRk : δπ∗k(δxk)=δπ̂∗k,a(δxk)

∀δxk+1∈CRk+1 : δVk+1(δxk+1)=δṼk+1(δxk+1),

for k=N−1,...,0.

Remark 3. A notable consequence of Theorem 1 is that the
canonical cost-to-go recursion is ill-posed in the presence
of constraints. One must back-propagate both the cost-to-go
terms and a set of constraints (i.e., the sets {CRk}) that define
the regions where the quadratic models of the cost-to-go
functions are precise.

Despite the exactness of the DP recursion, there are some
computational drawbacks. First, one must solve both the
“full-horizon” QP defined in (4) and the one-step QPs defined
in (13), serially. Second, back-propagating sets {CRk} is
not numerically robust, particularly if the sensitivity Ky

k is
ill-defined. This occurs when the LICQ condition fails and
the resulting matrix solve computation for the sensitivities
is singular. Thus, in the next section, we outline a parallelized
and tuneable approximation to the sensitivity gains, derived
from the viewpoint of interior point methods.

C. Approximating the Sensitivity Gains

For k = N − 1, ... ,0, define problem Pk((δx) as the
tail portion of QP sub-problem (4), starting at time-step k
at δx. Let δu∗k((δx) represent the optimal solution as a
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function of δx, i.e., the optimal control perturbation sequence
starting at time-step k. Notice that δπ∗k(δx), as defined in (9),
corresponds to the first element of the sequence δu∗k((δx).

Now define the QP problem Pk(δx) as QP sub-
problem (4), subject to an additional equality constraint:
δxk=δx, and let δu∗k:(δx) represent the optimal tail control
perturbation sequence starting at time-step k.

Notice then that for all δx where Pk(δx) is feasible, we
have that δu∗k((δx)=δu∗k:(δx). Thus, δπ∗k(δx) is equal to
the optimal control perturbation at time-step k for problem
Pk(δx), hereby denoted as the function δπ̂∗k(δx). Further,
since Pk(δx∗k) is feasible, one may compute the desired
sensitivity gainsKu

k as the Jacobian ∂δπ̂∗k(δx
∗
k)/∂δx.

Note the distinction: the sensitivity ∂δπ̂∗k/∂δx corresponds
to the Jacobian of the solution of a fixed-horizon QP
(problem Pk(δx)) w.r.t. a parameter (δx) that defines the
equality constraint δxk = δx. In comparison, the sensitivity
∂δπ∗k/∂δx corresponds to the Jacobian of the solution
of a variable-horizon QP (problem Pk((δx)) w.r.t. a
parameter (δx) that defines the “initial condition.” The former
computation is easily parallelized.

Leveraging a recent result in [28], we approximate
∂δπ̂∗k(δx

∗
k)/∂δx by the Jacobian of the solution of the

following unconstrained barrier re-formulation of problem
Pk(δx) w.r.t. δx at δx=δx∗k:

min
δu,δx

N−1∑
j=0

[̃
lj−γ1T log(cxj +Jxj δxj)−γ1T log(cuj +Juj δuj)

]
+

1

2γ
‖δxk−δx‖2+l̃N−γ1T log(cxN+JxNδxN),

subject to the linear dynamics in (4b); where γ > 0 is the
barrier constant. Denote Ku

k (γ) to be the barrier-based
Jacobian with parameter γ and let Ku

k be the true Jacobian.
Under appropriate conditions on the solution of QP
sub-problem (4),Ku

k (γ)→Ku
k as γ→0 [28].

Practically, we compute the Jacobians Ku
k (γ) efficiently

using iLQR and a straightforward application of the Implicit
Function Theorem [29]. We initialized the solver with the
QP sub-problem (4) solution δu∗, and found only a handful
of iterations were needed to converge, particularly since
problem (17) is convex.

D. Hybrid SQP Algorithm
We formally state the Hybrid SQP algorithm as a line-

search modification of Shooting SQP, introduced in Section II.
Thus, at the current primal-dual iterate (u,x[u],y):

Step 1: Solve QP-subproblem (4) to obtain the optimal
perturbation sequence pair (δu∗,δx∗).

Step 2: Compute the sensitivity gains {Kk}N−1k=0 , using
either the DP recursion in Section III-B (i.e., Kk =Ku

k ), or

the smoothed approximation method in Section III-C (i.e.,
Kk=Ku

k (γ) for some γ>0).

Step 3: Perform line-search using (6), where
x[α] :=x+δx[α] is now defined by the closed-loop rollout:

δuk[α] :=clipu−uk
u−uk

[αδu∗k+Kk(δxk[α]−αδx∗k)]
δxk+1[α]=f(xk+δxk[α],uk+δuk[α])−xk+1, δx0[α]=0.

Notice that if α= 1, the rollout corresponds with the ideal
DDP rollout in (12), while for α < 1, we end up with an
approximation2 stemming from using a fixed gain matrix.

IV. EXPERIMENTS

We compare the naı̈ve, open-loop, Shooting SQP
implementation introduced in Section II (referred to as
OL) with the DDP-style closed-loop variation developed in
Section III (referred to as CL and CLγ) on two environments.
The identifiers CL and CLγ distinguish between the exact DP
recursion and the smoothed barrier-based approximation for
computing the forward rollout gains. Please see Appendix E
for details regarding problem setup, SQP hyperparameters,
additional plots, and an extra worked example.

A. Motion Planning for a Car

The first example is taken from [17], featuring a 2D car
(n=4,m=2) moving within the obstacle-ridden environment
shown in Figure 2. The objective is to drive to the goal position
(3,3) with final velocity 0 and orientation aligned with the
horizontal axis inN=40 steps, while avoiding the obstacles.

Figure 2 shows the computed trajectories by the three
methods for three different initial conditions, while Table I
provides the solver statistics. Notice that the OL method
fails to converge within 100 iterations (the limit) for two of
the three cases. In contrast, both closed-loop variations are
quickly able to converge to stationary solutions.

In Figure 3, we plot the re-construction error ‖δπ̂∗k(δx∗k)−
δu∗k‖ for CL and CLγ over the course of the SQP iterations.
Observe that for most iterations, the error is negligible for CL,
with occasional spikes resulting from the numerical instability
of the constrained DP recursion. In contrast, the error remains
sufficiently low for all iterations of CLγ, even leading to a bet-
ter quality (lower objective) solution for Case #2. We hypoth-
esize that the better numerical stability of CLγ stems from a
smoothing of the computed Jacobians (i.e., feedback gains),
courtesy of the unconstrained barrier re-formulation. Finally,

2As the sensitivity gains are only valid in a neighborhood of δx∗, it is
possible (though rare in our experiments) that the computed step-length α
falls below the user-set threshold α for a specific iteration. As a backup, we
compute a set of TV-LQR gains {Klqr

k } using the linearized dynamics and
the Hessian of the objective function J (u,x), and perform the closed-loop
rollout with these gains. This strategy is motivated by the goal of tracking
the perturbation αδx∗ during the rollout [13].
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Method Case Converged Iter Obj Viol Time/it [s]

OL
1 7 100 278.53 -0.0346 0.34
2 7 100 2.17 0.0061 0.30
3 X 12 21.49 3.25e-6 0.30

CL
1 X 19 3.19 7.87e-6 13.17
2 X 19 6.98 1.43e-6 19.19
3 X 13 21.58 1.12e-5 17.90

CLγ
1 X 19 3.19 1.34e-5 0.40
2 X 16 2.06 1.28e-5 0.41
3 X 11 21.58 -4.67e-6 0.38

TABLE I: Solver statistics for the car planning example. Baseline: OL,
Ours: {CL,CLγ}. Iter, Obj, and Viol report the number of iterations,
objective, and max state constraint violation (negative value indicates
infeasibility), respectively, for the final solution. Time/it reports the average
(over the course of the optimization) computation time per SQP iteration.

Fig. 2: Solution trajectories for all solvers on the car planning example.
Start/end locations shaded green/red.

Fig. 3: Re-construction error between open-loop solution δu∗ and
perturbation policy solution δπ̂∗k(δx

∗
k) as a function of time-step across all

SQP iterations. Top: CL; Bottom: CLγ , γ=10−4; Left-to-right: Case index.
Colorbar identifies the SQP iteration.

a notable advantage of CLγ over CL is the computation time.
While CL involves differentiating through the KKT condi-
tions of one-step horizon QPs, this computation must happen
serially in the backward pass. In contrast, CLγ computes
the required Jacobians across all time-steps in parallel using
an efficient adjoint recursion associated with problem (17).

Consequently, the computation times-per iteration are much
closer together for OL and CLγ than for OL and CL. For
the remaining experiments, we only compare OL and CLγ.

B. Quad-Pendulum

Consider a quadrotor with an attached pendulum (n= 8,
m = 2) moving within an obstacle-cluttered 2D vertical
plane, subject to viscous friction at the pendulum joint. The
system is subject to operational constraints on the state and
control input, as well as obstacle avoidance constraints. The
task involves planning a trajectory starting at rest with the
pendulum at the stable equilibrium, to a goal location, with
the pendulum upright and both quadrotor and pendulum
stationary. Table II provides the solver statistics for CLγ and
OL (up until the algorithm stalls due to infeasibility of the
QP sub-problem). Figure 1 shows a timelapse of the solution
for the more difficult of the two cases, highlighting the ability
of CLγ in solving challenging planning tasks.

Method Case Converged Iter Obj Viol Time/it [s]

OL 1 7 stall (2) 2272.8 -7.33 1.49
2 7 stall (4) 488.9 -0.58 1.35

CLγ
1 X 39 9.31 -2.73e-10 6.25
2 X 59 11.57 -4.33e-10 5.65

TABLE II: Solver statistics for the Quad-Pendulum example. Algorithm
OL stalls within a handful of iterations..

V. CONCLUSIONS

In this work, we re-interpret DDP rollout policies from a
perspective of sensitivity-based corrections, and use this in-
sight to develop algorithms for computing analogous policies
for constrained problems. We incorporate the resulting closed-
loop rollouts within a shooting-based SQP framework, and
demonstrate significant improvements in convergence speed
over a standard SQP implementation using open-loop rollouts.

Our work opens several avenues for future research. First, a
key bottleneck of SQP involves solving the QP sub-problem at
each iteration to compute a “nominal” perturbation sequence.
This may be achieved with fast, but potentially, less-accurate
unconstrained solvers (e.g., augmented-Lagrangian iLQR),
that additionally compute the desired sensitivity gains using an
efficient Riccati recursion. Second, leveraging recent results
on differentiating through the solution of general convex prob-
lems, the sensitivity-based computations may be applied to
the sequential-convex-programming algorithm. Finally, while
the SQP algorithm was studied in the shooting context, recent
work [30] has demonstrated how to incorporate nonlinear
rollouts with both states and controls as optimization variables,
albeit in an otherwise unconstrained setting. The sensitivity-
based gain computation can be extended to this setting,
potentially boosting the efficiency of “full” direct methods.
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APPENDIX A
RELATED WORK

iLQR/DDP-like methods for constrained trajectory optimization fall into one of three main categories: control-bounds
only [14], [15], modification of the backward pass via KKT analysis [16]–[20], and augmented Lagrangian methods [3], [4],
[21]–[23]. In the first category, only control-bound constraints are considered. For instance, [14] leverage the box-constrained
DDP algorithm where the projected Newton algorithm is used to compute the affine perturbation policy in the backward
pass, accounting for the box constraints on the control input. On the other hand, [15] composes a “squashing” function to
constrain the input, and augments the objective with a barrier penalty to encourage the iterates to stay away from the plateaued
regions of squashing function.

More general constraints are considered in the second and third categories [3], [4], [16]–[23]. The work in [16] features
equality constraints. The update step leverages constraint linearization and a nullspace projection to reduce the problem to
a singular optimal control problem in an unconstrained control input lying within the nullspace of the linearized constraints.
The works in [17]–[20] formulate a constrained backward pass, where the one-step optimization problems now feature
general state and control inequality constraints, linearized about the current trajectory iterate, yielding constrained one-step
QPs. The algorithm in [18] extracts a guess of the active inequality constraints at each time-step by looking at the current
trajectory iterate, and formulates the backward pass using linearized active constraints as equalities. The resulting KKT system
is solved using Schur’s complement and using the dual variable extracted from the “feedforward” perturbation (i.e., the control
perturbation computed assuming zero state perturbation) to yield an affine perturbation policy. The work in [19] formulates
the theoretical underpinnings of such a constrained backward pass by introducing the stage-wise KKT conditions, and
implements a very similar algorithm to [18], but where the active set is guessed to be equal to the active set at the feedforward
solution, computed using linearized inequality constraints. [20] implements an identical backward pass, but with the active set
guessed by extracting the violating constraints from implementing the feedforward perturbation (computed using a trust-region
constraint). More recently, [17] leverages a slack-form of the linearized inequality constraints in the one-step optimization
problems and uses an iterative procedure to refine the dual variable assuming zero state perturbation. A final solve of the KKT
system using Schur’s complement yields the affine perturbation policy. The forward pass of all these methods discard this
affine policy and instead use the one-step QPs to compute the control perturbation trajectory. In similar spirit, [23] introduced
an interior-point variation of the backward pass, where the one-step optimization is re-written in min-max form w.r.t. the
Lagrangian, and linearization of the associated perturbed KKT conditions is used to compute the affine perturbation policy.

The algorithms in [3], [4], [21], [22] incorporate the constraints by forming the augmented Lagrangian, and alternate
between unconstrained trajectory optimization (with the augmented Lagrangian as the objective), and updating the dual
variables and penalty parameter – loosely mimicking the method of multipliers [6]. [21] implements this in combination
with a sampling-based construction of the optimal cost-to-go approximation; [4] dovetails the multipliers algorithm with
Newton-based projections to project the intermediate solution onto the current active set; [3] adopts an ADMM-based solution,
by leveraging indicator function representations of the constraints and alternates between an unconstrained TV-LQR problem,
linearized constraint projection, consensus update, and dual update.

In contrast to the methods above, our approach does not involve guessing active constraint sets for the one-step QPs and
instead re-interprets the DDP-style control law from the lens of sensitivity analysis about a known feasible perturbation
sequence. We use this interpretation to derive an augmented “backward pass” where we additionally back-propagate a
“next-step” constraint set, along with the quadratic cost-to-go parameters. Further, we demonstrate how to approximate the
desired feedback gains across all time-steps in parallel, dispelling the need for backward passes which are numerically less
robust. Finally, we embed the closed-loop rollout within a theoretically sound SQP framework.

APPENDIX B
SQP PRELIMINARIES

In this appendix, we outline the main steps of the SQP algorithm. These steps represent a simplified version of the
commercial code NPSOL [25], and use the termination conditions from the commercial code SNOPT [26]. Consider the
following smooth optimization problem:

P : min
x∈Rn

f(x)

s.t. c(x)∈Rm≥0,
(17)
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where the functions f and c are at least C2. Define the Lagrangian as:

L(x,y)=f(x)−yT c(x).

A standard SQP iteration consists of the following steps:
• Solve a quadratic problem (QP) at current primal-dual point (x,y):

δx∗=argmin
δx

g(x)T δx+
1

2
δxTH(x,y)δx

s.t. c(x)+J(x)δx≥0.

where g(x) = ∇xf(x), H(x,y) = ∇2
xxL(x,y), and J(x) = ∂c(x)/∂x. Let ŷ be the optimal dual variable for the

inequality constraint above, and define the primal-dual search directions (δx∗,δy∗), where δy∗ := ŷ−y.
• Define the Merit function to be the augmented Lagrangian:

M(x,y,s;ρ)=f(x)−yT (c(x)−s)+
1

2
ρ‖c(x)−s‖2,

where s∈Rm≥0 is the inequality “slack,” defined only for the line-search, and ρ is a non-negative penalty parameter.
At the current iterate (x,y) and penalty value ρ, set s as follows:

s=

max(0,c(x)) if ρ=0

max

(
0,c(x)− 1

ρ
y

)
otherwise

,

where the max operator is component-wise, and set the slack search direction δs∗ as c(x)+J(x)δx∗−s.
• Define the line-search function φ(α;ρ) :=M(x+αδx∗,y+αδy∗,s+αδs∗;ρ) and pick the updated penalty parameter
ρ+ s.t. φ′(0;ρ+)≤−(1/2)∆∗, where ∆∗ is the decrement, defined as: δx∗

T

H(x,y)δx∗. A simple update rule is given
below [31]:

ρ+←


ρ if φ′(0;ρ)≤−1

2
∆∗

max

{
2ρ,

g(x)T δx+ 1
2∆∗+(2y−ŷ)T (c(x)−s)
‖c(x)−s‖2

}
otherwise.

(18)

• Compute (e.g., using backtracking, safe-guarded polynomial interpolation, etc.) the largest step length α∈ [α,1], where
α is a user-specified lower-bound, s.t. the following line-search conditions are satisfied:

φ(α;ρ+)−φ(0;ρ+)≤σαφ′(0;ρ+), and |φ′(α;ρ+)|≤−ηφ′(0;ρ+), (19)

where 0<σ≤η< 1
2 .

• Update (x,y) using the computed step length, and set ρ←ρ+.
Note that this stripped-down version of SQP does not account for infeasibility detection, which involves slackened forms
of the QP sub-problem.

The termination conditions are based upon specified relative tolerances τp,τd ∈ R>0. Define τx := τp(1 + ‖x‖), and
τy :=τd(1+‖y‖). Then, convergence to a KKT stationary point is declared and the algorithm terminated if:

minici(x)≥−τx
minjyj≥−τy
‖c(x)◦y‖∞≤τy
‖g(x)−J(x)Ty‖∞≤τy

(20)

where ◦ denotes the Hadamard product.

APPENDIX C
DETAILS FOR SHOOTING SQP

We provide here the explicit expressions used within various stages of Shooting SQP.
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A. QP Sub-Problem
The linear term in (4a) and (5) is given as follows:

〈δu,∇uJR(u)〉=
N−1∑
k=0

∇xlTk δxk+∇ulTk δuk+∇xlTNδxN

:=

N−1∑
k=0

qTk δxk+rTk δuk+qTNδxN

(21)

where δxk is defined recursively using the linearized dynamics:

δx0=0, δxk+1=Akδxk+Bkδuk, k=0,...,N−1. (22)

The Hessian term in (4a) and (5) is given by:

〈δu,∇2
uLR(u,y)δu〉=

N−1∑
k=0

[
δxk
δuk

]T :=Zk︷ ︸︸ ︷[
∇2
xxĤk ∇2

xuĤk
∗ ∇2

uuĤk

][
δxk
δuk

]
+δxTN

:=ZN︷ ︸︸ ︷
∇2
xxl̂NδxN ,

where:

l̂k(xk,uk,yk):=lk(xk,uk)−yTk ck(xk,uk), k=0,...,N−1

l̂N(xN ,yN):=lN(xN)−yTNcN(xN)

Ĥk= l̂k(xk,uk,yk)+ν̂Tk+1f(xk,uk), k=0,...,N−1{
ν̂N =∇xl̂N(xN ,yN)

ν̂k=∇xl̂k(xk,uk,yk)+ATk ν̂k+1, k=N−1,...,1

(23)

Remark 4. The matrices Zk above may not be positive semi-definite. To ensure problem (4) is convex, we project Zk to
the positive semi-definite cone with some ε>0 tolerance.

B. Line-Search
Define sk = (sxk,s

u
k) where sxk and suk have the same dimensionality as cxk and cuk respectively. We use the augmented

Lagrangian function as the merit function for line-search:

MI(u,y,s;ρ)=

N−1∑
k=0

lk−yTk (ck−sk)+
ρk
2
‖ck−sk‖2+lN−yTN(cN−sN)+

ρN
2
‖cN−sN‖2, (24)

where the dependence on x is implicit, i.e., x=x[u]. The non-negative constants {ρk}Nk=0 are a set of penalty parameters,
which for brevity, we denote by ρ. The vectors sk represent a set of slack vectors, used only for the line-search. At the current
iterate (u,x) and set of penalty parameters ρ, set sk as

sk=

{
max(0,ck) if ρk=0

max(0,ck−yk/ρ) otherwise
,

and set δs∗k=(δsx
∗

k ,δs
u∗

k ), the slack-search directions, as:

δsx
∗

k =cxk(xk)+Jxk δx
∗
k−sxk

δsu
∗

k =cuk(uk)+Juk δu
∗
k−suk.

As in Appendix B, we now must compute an updated set of penalty parameters ρ+ so that φ′(0; ρ+) ≤
−(1/2)〈δu∗,∇2

uLR(u,y)δu∗〉 :=−(1/2)∆∗. To derive this update, let us consider an abstract optimization problem of the
form:

min
x∈Rn

f(x)

s.t. ck(x)≥0, k=0,...,N,
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where {ck : Rn → Rmk , k = 0, ... ,N} is a set of vector-valued inequality constraints, with corresponding Jacobians
Jk(x) :=∂ck(x)/∂x. Let y=(y0,...,yN) be the stacked dual vector for the inequality constraints, H(x,y) the Lagrangian
Hessian, and g(x) the objective gradient. The QP sub-problem is then defined as:

δx∗=argmin
δx∈Rn

ψ(δx):=g(x)T δx+
1

2
δxTH(x,y)δx

s.t. ck(x)+Jk(x)δx≥0, k=0,...,N.

Let ŷk be the optimal dual vector for the QP-subproblem for constraint k and define δy∗k := ŷk−yk. Consider the Augmented
Lagrangian,M, defined as:

M(x,y,s;{ρk}Nk=0)=f(x)−
N∑
k=0

yTk (ck(x)−sk)+

N∑
k=0

1

2
ρk‖ck(x)−sk‖2 (sk≥0),

where sk ∈Rmk

≥0 is the “slack” for the kth constraint, and s denotes the concatenatation (s0,...,sN). At the current iterate
(x,y) set the slack vectors sk as follows:

sk=

{
max(0,ck) if ρk=0

max(0,ck−yk/ρ) otherwise
,

and set the slack search directions δs∗k=ck(x)+Jk(x)δx∗−sk. Define the line-search function φ(α;ρ) as:

φ(α;ρ):=M(x+αδx∗,y+αδy,s+αδs;ρ).

Now, we wish to choose the set of penalty parameters {ρ+k }Nk=0 s.t. φ′(0;ρ+)≤−1

2
δx∗

T

H(x,y)δx∗ :=−1

2
∆∗. Consider

the gradient φ′(0;ρ+):

φ′(0;ρ+)=gT δx∗+

N∑
k=0

[
−δx∗

T

JTk yk+ρ+k δx
∗TJTk (ck−sk)−(ck−sk)T δy∗k+yTk δs

∗
k−ρ+k δs

∗T
k (ck−sk)

]
=gT δx∗+

N∑
k=0

(2yk−ŷk)T (ck−sk)−ρ+k ‖ck−sk‖
2,

where we have used the definitions of δs∗k and δy∗k. Notice now that if ck−sk =0 for all k, then since sk≥0, δx=0 is a
feasible solution to the QP sub-problem. Thus, ψ(δx∗)≤ψ(0), from which one obtains the desired inequality. Consider then
the case that the set I :={k :‖ck−sk‖>0} is non-empty. Then, we can re-write φ′(0;ρ+) as:∑

k∈I

1

|I|
gT δx∗+(2yk−ŷk)T (ck−sk)−ρ+k ‖ck−sk‖

2

Now, for ρ+k = ρ̂k,k∈I, defined as:

ρ̂k :=

1
|I|ψ(δx∗)+(2yk−ŷk)T (ck−sk)

‖ck−sk‖2
,

we obtain:
φ′(0;{ρ̂k}k∈I∪{ρk}k/∈I)=−1

2
∆∗.

Thus, the update equation for {ρk}may be written as:

ρ+k =

{
max(2ρk,ρ̂k) if k∈I
ρk otherwise.

In context of Section II-A, the term ψ(δx∗) is equivalent to the optimal objective of problem (4), while the correspondences
for the dual and slack vectors follows straightforwardly. The line-search acceptance conditions are as given in (19).
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C. Termination Conditions

Let τp,τd∈R>0 be user-specified relative tolerances, and define τx=τp(1+‖u‖) and τy=τd(1+‖y‖). Then, the KKT
stationarity termination conditions are given as:

k=0,...,N :


ck≥−τx
yk≥−τy
‖ck◦yk‖∞≤τy

k=0,...,N−1:‖∇uk
Ĥk‖∞≤τy

(25)

where ◦ denotes the Hadamard product, and Ĥk, the Hamiltonian, is defined in (23).

APPENDIX D
COMPUTING SENSITIVITY GAINS USING DP

Proof of Theorem 1. We will prove the result via induction. Notice that for the base case k = N − 1, the cost-to-go
function δVN(δxN) is defined only for δxN ∈ XN , which by construction, is the set CRN . Thus δx∗N ∈ CRN and
δṼN(δxN)=δVN(δxN) for δxN ∈CRN . It follows that problem (13) for k=N−1 coincides exactly with the definition
for δπ∗N−1 given in (9). Thus, δπ̂∗N−1(δxN−1)=δπ∗N−1(δxN−1) for all δxN−1∈δXN−1 where the problem is feasible.

Now, notice that problem (13) for k=N−1 is a multi-parametric QP in the “parameter” δxN−1. Thus, by Theorem
2 in [32], linear independence of the active inequality constraints at δπ̂∗N−1(δx

∗
N−1) implies that the solution functions

δπ̂∗N−1(δxN−1) and ŷ∗N−1(δxN−1) are locally3 affine in a region containing δx∗N−1, taking the form in (14). This region
containing δx∗N−1 is precisely the set:

{δxN−1∈δXN−1 :δπ̂∗N−1,a(δxN−1)=δπ̂∗N−1(δxN−1)}.

A second consequence of the aforementioned theorem is that the above set is defined by the intersection of the following
two sets:

{δxN−1∈δXN−1 :ḠN−1

[
δπ̂∗N−1,a(δxN−1)

AN−1δxN−1+BN−1π̂
∗
N−1,a(δxN−1)

]
≤h̄N−1}

{δxN−1∈δXN−1 : ŷ∗N−1,a(δxN−1)≥0},

that is, the subset of δXN−1 where the locally affine solutions satisfy the primal-dual feasibility constraints of problem (13)
for k = N − 1. This however is precisely the definition of the set CRN−1 in (15). Thus, we have established that
δπ̂∗N−1,a(δxN−1) = δπ∗N−1(δxN−1) for δxN−1 ∈CRN−1 and by construction, δx∗N−1 ∈CRN−1. Substituting the affine
feedback law into the objective for problem (13) for k=N−1 gives the recursion for {PN−1,pN−1,vN−1}, as defined
in (16). Thus, δṼN−1(δxN−1)=δVN−1(δxN−1) for δxN−1∈CRN−1, completing the proof for k=N−1.

Suppose then that the following statements are true for some k + 1 ≤ N − 1: (i) δx∗k+1 ∈ CRk+1, and (ii)
δVk+1(δxk+1)=δṼk+1(δxk+1) for δxk+1∈CRk+1. Consider the definition of δπ∗k given in (9), and define:

Pre∗(CRk+1):={δxk∈δXk :Akδxk+Bkδπ
∗
k(δxk)∈CRk+1}

Since δx∗k+1∈CRk+1 by the inductive hypothesis, it follows that δx∗k∈Pre∗(CRk+1) and hence, the set is non-empty. Now,
for all δxk∈Pre∗(CRk+1), one may add the redundant constraint: δxk+1∈CRk+1 and equivalently re-write δπ∗k as:

argmin
δuk∈δUk

l̃k(δxk,δuk)+δVk+1(δxk+1)

s.t. δxk+1∈CRk+1.

Now, leveraging the inductive hypothesis that δṼk+1(δxk+1)=δVk+1(δxk+1) for all δxk+1∈CRk+1, we can re-write δπ∗k as:

argmin
δuk∈δUk

l̃k(δxk,δuk)+δṼk+1(δxk+1)

s.t. δxk+1∈CRk+1.

3One can actually show that the solution function δπ̂∗N−1 is in fact piecewise affine over δXN−1 however this is not necessary for the proof.
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Comparing with problem (13), this is precisely the definition of δπ̂∗k. Thus, we have that δπ̂∗k(δxk) = δπ∗k(δxk) for
δxk∈Pre∗(CRk+1).

Now, consider the fixed affine feedback law δπ̂∗k,a in (14), that is well-defined thanks to the linear independence assumption
at δx∗k. Once again, applying Theorem 2 in [32], we have that δπ̂∗k(δxk) = δπ̂∗k,a(δxk) for δxk ∈CRk, as defined in (15).
Substituting the affine law into the objective of problem (13) yields the recursion in (16); thus, δṼk(δxk)=δVk(δxk) for all
δxk∈CRk∩Pre∗(CRk+1). Further, by construction, δx∗k∈CRk; thus, the intersection CRk∩Pre∗(CRk+1) is non-empty.

To finish the proof, we must show that CRk⊆Pre∗(CRk+1). By doing so, we establish the equivalency between the fixed
affine feedback law δπ̂∗k,a and δπ∗k and consequently, the equivalency of δVk and δṼk for δxk∈CRk.

To show this last part, notice that for any δxk that lies on the boundary ∂Pre∗(CRk+1), it holds thatAkδxk+Bkδπ
∗
k(δxk)

lies on the boundary ∂CRk+1. This follows from the continuity of δπ∗k(δxk). Then, by the equivalence of δπ∗k and δπ̂∗k for
δxk ∈Pre∗(CRk+1) and the equivalence of δπ̂∗k and δπ̂∗k,a for δxk ∈CRk, for any δxk ∈CRk∩∂Pre∗(CRk+1), it holds
thatAkδxk+Bkδπ̂

∗
k,a(δxk)∈∂CRk+1. It follows that δxk∈∂CRk.

Thus, since the intersection CRk ∩Pre∗(CRk+1) is non-empty, then either (i) CRk ⊂ Pre∗(CRk+1), or (ii) CRk ∩
∂Pre∗(CRk+1) is non-empty. In the latter case, we have shown that is the set ∂CRk∩∂Pre∗(CRk+1), completing the proof.

APPENDIX E
EXPERIMENT DETAILS

The following hyperparameters were held fixed for all Shooting SQP variations over all environments:

Parameter Value

Line-search decrease ratio: σ 0.4
Line-search gradient ratio: η 0.49
Line-search step-size lower-bound: α 1e-5
Termination Primal tolerance: τp 1e-3
Termination Dual tolerance: τd 1e-3*

TABLE III: Hyperparameters for Shooting SQP. (*) For the Quad-Pendulum example, the dual tolerance τd was set as 10−2.

In the following, we give details specific to each environment case-study.

A. Motion Planning for a Car

This is a system with 4 states: x=(px,py,θ,v), where (px,py)∈R2 is the 2D position, θ∈S1 is the orientation, and v∈R
is the forward velocity. The continuous-time dynamics are given by:

ṗx=vsinθ, ṗy=vcosθ, θ̇=vuθ, v̇=uv,

where (uθ,uv) are the steering and acceleration inputs. As in [18], we use Euler integration with a time-step of 0.05s to yield
the discrete-time model. The control limits are taken from [17]: uθ∈ [−π3 ,

π
3 ] rad/s, and uv∈ [−6,6] s−2.

The stage cost is lk(x,u)=0.05uTRu with R=diag(0.2,0.1), and terminal cost is lN(x)=(x−xg)TQN(x−xg) with
QN =diag(50,50,50,10) and xg =(3,3,π2 ,0). The horizon N is 40 steps. The initial control sequence guess was all zeros.
The constant γ for CLγ was set to 10−4.

Figure 4 shows the solver progress for all algorithms and cases.
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Fig. 4: Step-size, objective, constraint violation (positive indicates strict feasibility), and computation time per iteration, as
a function of iteration. Left-to-right: Case index.

B. Acrobot

We study the classic acrobot “swing-up” task with n = 4 states and m = 1 control input. The state is defined as
x=(q1,q2,v1,v2) where q1 the root joint angle, q2 is the relative elbow joint angle, and v1,v2 are their respective angular rates.
The dynamics were taken from [33]. Starting from an initial state x0=0, we require the acrobot to swing up to the goal state
xg=(π,0,0,0), subject to the control limits u∈ [−2,2]. The stage cost is lk(x,u)= 1

2

[
w1(cosq1+cos(q1+q2)+2)+w2u

2
]
,

and the terminal cost is lN(x)= 1
2w3‖x−xg‖2, with weights (w1,w2,w3)=(0.1,0.01,10). Additionally, we enforce the limit

constraints4 (q1,q2)∈ [−π,π]2 and the terminal constraint: ‖xN−xg‖2≤0.22. The discrete-time dynamics were obtained
using explicit Euler integration with a time-step of 0.05s, and the horizonN was 150 steps.

To generate the initial guess, we set χ0, the initial guess for the state-trajectory to be a linear interpolation between x0 and
xg, and µ0, the initial guess for the controls as all zeros. Then, the following rollout was used to generate the initial control
trajectory for SQP:

xk+1=f(xk,clipuu[µk+Klqr
k (xk−χk)]), x0=0, k=0,...,N−1,

where the gains {Klqr
k } were computed via a TV-LQR solve, with cost defined by the Hessian of the objective and dynamics

linearized about (χ0,µ0).
We found that for this problem, the Gauss-Newton Hessian approximation was more stable for both algorithms. This entails

dropping the second-order gradients stemming from ν̂Tk+1f(xk,uk) in (23). The constant γ for CLγ was set to 10−4. Figure 5
illustrates solver progress.

4Due to the fact that these two state components really live on S1×S1, we employ chart switching to smoothly handle this constraint near the boundary
−π/π. This is achieved by adjusting the boundary constraints for each angle to lie in [−π±δk,π±δk] for the next iterate, where the per time-step adjustment
δk is chosen based on the current values for q1 and q2 at time-step k. We also wrap both angles back to the interval [−π,π] at the end of each iteration.
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Fig. 5: Step-size, objective, constraint violation (positive indicates strict feasibility), and computation time per iteration.

Despite sub-optimal step-sizes for both algorithms (due to the natural instabilities of the dynamics), CLγ successfully
converges within 33 iterations while OL is still struggling to resolve the Lagrangian stationarity residual at 100 iterations.

C. Quad-Pendulum

The state is defined as x=(px,pz,θ,φ,ṗx,ṗz,θ̇,φ̇), where (px,pz)∈R2 is the CoM position of the quadrotor in the vertical
plane, θ∈S1 is its orientation, and φ∈S1 is the orientation of the attached pendulum w.r.t. the vertical. The two control inputs
u=(u1,u2) corresponding to the rotor thrusts are subject to the limits [0.1,3]mqg, where mq is the mass of the quadrotor
and g is the gravitational acceleration.

We provide the Lagrangian characterization of the dynamics. The mass matrix M(q), as a function of the generalized
coordinates q=(px,pz,θ,φ) is given by: 

mq+mp 0 0 mpLcosφ
0 mq+mp 0 mpLsinφ
0 0 J 0

mpLcosφ mpLsinφ 0 mpL
2

,
wheremp is the mass of the pendulum (assumed concentrated at the endpoint),L is the pendulum length, and J is the quadrotor
moment of inertia. The kinetic energy is thus: T(q,q̇)= 1

2 q̇
TM(q)q̇; the potential energy is V (q)=mqgpz+mpg(pz−Lcosφ),

and the mechanical Lagrangian is L(q,q̇)=T(q,q̇)−V (q). The dynamics are thus given as:

d

dt

(
∂L(q,q̇)

∂q̇

)
−∂L(q,q̇)

∂q
=F(q),

where F(q), the generalized force vector is given as:

F(q)=


−(u1+u2)sinθ
(u1+u2)cosθ
(u1−u2)l−τf

τf

,
where 2l is the quadrotor wing-span, τf is the viscous frictional torque:−ν(φ̇−θ̇), where ν is the constant friction coefficient.
We used the constants: mq = 0.486, mp = 0.2mq, l= 0.25, L= 2l, g= 9.81, J = 0.00383, ν= 0.01, and employed Euler
discretization with time-step 0.025 s.

The stage cost is lk(x,u) = 1
2(w1(‖(px,pz,θ)− (gx,gz,gθ)‖2 + (1 + cosφ)) +w2‖u−uh‖2), and the terminal cost is

lN(x) = 1
2(x−xg)TQN(x−xg), where xg = (gx,gz,gθ,gφ,0,0,0,0) is the goal state with: (gx,gz,gθ,gφ) = (3,−1.5,0,π).

The vector uh = 0.5(mq +mp)g1 is the hover thrust setpoint, and QN = diag(10,10,1,1,1,1,1,1). The weights are
(w1,w2,w3)=(0.01,0.05,5). The horizonN was 160 steps.

In addition to the obstacle avoidance constraints, we also set the operational constraints (px,pz)∈ [−4,4]× [−2,2] and
θ∈ [−3π

4 ,
3π
4 ]. The initial control sequence guess was set to uh, the hover setpoint, for all timesteps.
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Due to the difficulty of this problem, the constant γ for CLγ was initialized at 10−3 and reduced by a factor of 10 every
SQP iteration, until a lower-bound of 10−5.

Figure 6 shows a timelapse for the first case solution from CLγ, and in Figure 7 we plot the re-construction error
‖δπ̂∗k(δx∗k)−δu∗k‖ for both cases for CLγ.

Fig. 6: Timelapse of the solution obtained by CLγ for Case #1. Robot snapshots are 0.1s apart at the beginning and expand
to 0.3s towards the end; initial render is in green, final render is in red. Light shaded circle centered on the quadrotor is the
circumscribing disc used for the collision-avoidance constraint for the quadrotor body (in addition to the avoidance constraint
w.r.t. the pendulum pole).

Fig. 7: Re-construction error between open-loop solution δu∗ and perturbation policy solution δπ̂∗k(δx
∗
k) as a function of

time-step across all SQP iterations. Left: Case #1; Right: Case #2. Colorbar identifies the SQP iteration.
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