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Fig. 1: In this paper, we compare three different classes of control policies for the task of agile quadrotor flight. From left to right: policies specifying
desired linear velocities (LV) (they rely on a control stack that maps the output velocities to individual rotor thrusts), policies commanding collective
thrust and bodyrates (CTBR) (they rely on a low-level controller that maps the output bodyrates to individual rotor thrusts), policies directly outputting
single-rotor thrust (SRT).

Abstract— Quadrotors are highly nonlinear dynamical sys-
tems that require carefully tuned controllers to be pushed to
their physical limits. Recently, learning-based control policies
have been proposed for quadrotors, as they would potentially
allow learning direct mappings from high-dimensional raw sen-
sory observations to actions. Due to sample inefficiency, training
such learned controllers on the real platform is impractical
or even impossible. Training in simulation is attractive but
requires to transfer policies between domains, which demands
trained policies to be robust to such domain gap. In this
work, we make two contributions: (i) we perform the first
benchmark comparison of existing learned control policies for
agile quadrotor flight and show that training a control policy
that commands body-rates and thrust results in more robust
sim-to-real transfer compared to a policy that directly specifies
individual rotor thrusts, (ii) we demonstrate for the first time
that such a control policy trained via deep reinforcement
learning can control a quadrotor in real-world experiments at
speeds over 45 km/h.

SUPPLEMENTARY MATERIAL

A narrated video illustrating our findings is available at

https://youtu.be/zqdfVq2uWUA

I. INTRODUCTION

Agile quadrotor flight is a challenging problem that re-

quires fast and accurate control strategies. In recent years,

numerous learning-based controllers have been proposed

for quadrotors. In contrast to their traditional counterparts,

learned control policies have the potential to directly map

sensory information to actions, alleviating the need for

explicit state estimation [1]–[4].

Prior work has proposed learned control policies that make

use of various control input modalities to the underlying
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platform: while some directly specify motor commands [1],

[5], [6], others, instead, output desired collective thrust and

bodyrates [2], [7] (that are then executed by a low-level

controller), or velocity commands [8], [9] (that are then

executed by a control stack), or even a sequence of future

waypoints [4]. Most published approaches do not justify their

choice of control input. This renders performance compar-

isons among them and, thus, scientific progress difficult.

Due to the high sample complexity of learning-based

policies, they are often trained in simulation, which then

requires transferring the policy from simulation to the real

world. This transfer between domains is known to be hard

and is typically approached by increasing the simulation

fidelity [10], [11], by randomization of dynamics [6], [12]

or rendering properties [13], [14] at training time, or by

abstraction of the policy inputs [2], [4]. Apart from simula-

tion enhancements and input abstractions, also the choice of

action space of the learned policy itself can facilitate transfer.

Policies that generate high-level commands, such as desired

linear velocity or future waypoints [4], have a reduced

simulation to reality gap, as they abstract the task of flying

by relying on an existing underlying control stack. However,

while facilitating transfer, such abstractions also constrain the

maneuverability of the platform. Approaches that do not rely

on such abstractions (like those specifying collective thrust

and body rates or even single-rotor-thrust commands) can

potentially execute much more agile maneuvers, but have so

far only been shown for near-hover trajectories [6] or require

a dedicated policy for each maneuver [2].

In this paper, we compare and benchmark learned control

policies with respect to their choice of action space. Specif-

ically, we compare them in terms of peak performance in

case of perfect model identification, as well as in terms of

their transferability to a new platform with possibly different

dynamics properties. We compare the learned policies with

respect to their flight performance, which we characterize by

the average tracking error on a set of predefined trajectories.

Our experiments, performed both in simulation and on
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a real quadrotor platform, show that control policies that

command collective thrust and bodyrates are more robust

to changes in the dynamics of the platform without compro-

mising agility. Additionally, compared to high-level action

parameterizations, specifying collective thrust and bodyrates

allows performing significantly more agile maneuvers.

Finally, we demonstrate the first learning-based controller,

trained via deep reinforcement learning, that is able to per-

form previously unseen agile maneuvers on a real quadrotor

flying at speeds over 45 kmh−1. The policy is trained purely

in simulation and transferred to the real platform without any

fine-tuning.

II. RELATED WORK

In this section, we give an overview of the related work

for learning-based quadrotor control while focusing on the

choice of action space. While there exists a comparison of ac-

tion spaces of learned policies for 2D locomotion [15], such

analysis is still lacking in the aerial robotics community. In

the following, we group learned control strategies according

to their action space into a) Linear Velocity Commands (LV),

b) Collective Thrust and Bodyrates (CTBR), and c) Single

Rotor Thrusts (SRT).

Linear Velocity. Control policies specifying high-level com-

mands, often in the form of receding-horizon waypoints

or velocity commands, have been proposed for a variety

of tasks, such as forest trail navigation [8], navigation in

city streets [9] and indoor environments [13], or even drone

racing [16]. Recently, [17] have used model-based meta

reinforcement learning to generate velocity commands that

adapt to unknown payloads. While these approaches have

been successfully deployed in the real world, only [16]

achieved flight speeds beyond 3m s−1, while the other

policies result in near-hover flight. As the control policy

does not take into account the dynamic constraints of the

platform, it can be easily transferred, but does not exploit

the platform’s full dynamic capabilities. Furthermore, such

approaches rely on an existing underlying control stack,

which itself is dependent on high-quality state estimation.

Collective Thrust and Bodyrates. Compared to specifying

linear velocity commands, controlling collective thrust and

bodyrates has been shown to allow performing significantly

more aggressive maneuvers. In [7], a racing policy directly

maps image observations to collective thrust and bodyrate

commands. Although the policy successfully races through

challenging race tracks in simulation, it is not deployed

on a real platform. In [18], the authors propose combining

a classical controller with a learned residual command to

correct for aerodynamic disturbances such as ground effect

during near-hover flight. In [2], the authors use privileged

learning to imitate a model predictive controller (MPC) to

perform acrobatic maneuvers. While this approach success-

fully showed acrobatic flight on a real platform, it was

constrained to a single maneuver and required a separate

policy for each trajectory. In contrast to generating high-level

commands, specifying collective thrust and bodyrates does

not necessitate estimation of the full state of the platform,

but only requires inertial measurements to perform feedback

control on the bodyrates. This information is readily available

at high frequency in today’s flight controllers, rendering

collective thrust and bodyrates the preferred control input

modality for professional human pilots.

Single-Rotor Thrusts. There are several works that propose

to directly learn to control individual rotor thrusts [1], [5],

[6], [19]–[22]. As this control input does not require any

additional control loop, it provides direct access to the actu-

ators and as a result correctly represents the true actuation

limits of the platform. It constitutes the most versatile control

input investigated in this work. In [5], [6], the authors

train a policy to map state observations directly to desired

individual rotor thrusts. While [5] required a PID controller

at data collection time to facilitate training, [6] demonstrated

training of a stabilizing quadrotor control policy from scratch

in simulation and deployment on multiple real platforms.

[19] trains a policy for autonomous drone racing. Their

approach demonstrates competitive racing performance in

simulation, but is not deployed on a real quadrotor. In [1],

the authors train a policy to perform obstacle avoidance using

guided policy search by imitating an MPC controller that has

access to privileged information about the environment. One

of the few works that does not rely on simulated data for

training is presented in [20], where the authors propose an

approach based on deep model-based reinforcement learning

to train a hovering policy for the Crazyflie quadrotor. The

trained policy managed to control the real platform in hover

for 6 s before crashing. A position controller is trained via

reinforcement learning in [21] and extended in [22] to be

robust against external disturbances such as wind. In [23],

the authors train an attitude controller via deep reinforcement

learning. They argue that their approach provides a better

flight performance compared to a PID controller, while still

being computationally lightweight. Although this method

outputs individual rotor thrusts, it is still dependent on a

higher-level controller that produces attitude setpoints to

achieve stable flight.

While some of these works show successful deployment

of their policies in the real world, none achieved agile flight,

only reaching maximum speeds below 4m s−1.

III. QUADROTOR DYNAMICS

To train a control policy for agile flight, we imple-

ment the quadrotor dynamics as an environment in Tensor-

Flow Agents1. The following section gives a brief overview

of the dynamics implemented in the simulator.

A. Notation

Scalars are denoted in non-bold [s, S], vectors in lowercase

bold v, and matrices in uppercase bold M . World W and

Body B frames are defined with orthonormal basis i.e.

{xW ,yW , zW}. The frame B is located at the center of

mass of the quadrotor. A vector from coordinate p1 to p2

1https://github.com/tensorflow/agents

https://github.com/tensorflow/agents
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Fig. 2: Diagram of the quadrotor depicting the world and body frames and
propeller numbering.

expressed in the W frame is written as: Wv12. If the vector’s

origin coincides with the frame it is described in, the frame

index is dropped, e.g. the quadrotor position is denoted as

pWB. Unit quaternions q = (qw, qx, qy, qz) with ‖q‖ = 1
are used to represent orientations, such as the attitude state

of the quadrotor body qWB.

Finally, full SE3 transformations, such as changing the

frame of reference from body to world for a point pB1, can

be described by WpB1 = WtWB + qWB ⊙ pB1. Note the

quaternion-vector product is denoted by ⊙ representing a

rotation of the vector by the quaternion as in q ⊙ v = qvq̄,

where q̄ is the quaternion’s conjugate.

B. Quadrotor Dynamics

The quadrotor is assumed to be a 6 degree-of-freedom

rigid body of mass m and diagonal moment of inertia matrix

J = diag(Jx, Jy, Jz). Furthermore, the rotational speeds of

the four propellers Ωi are modeled as first-order system with

time constant kmot where the commanded motor speeds Ωcmd

are the input.

The state space is thus 17-dimensional and its dynamics

can be written as:

ẋ =













ṗWB

q̇WB

v̇WB

ω̇B

Ω̇
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vW
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[
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ωB/2

]
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τprop − ωB × JωB
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kmot

(

Ωcmd −Ω
)

















, (1)

where gW = [0, 0,−9.81m/s2]⊺ denotes earth’s gravity,

fprop, τprop are the collective force and the torque produced

by the propellers, and fdrag is a linear drag term. The

quantities are calculated as follows:

fprop =
∑

i

fi , τprop =
∑

i

τi + rP,i × fi , (2)

fdrag = −
[

kvxvB,x kvyvB,y kvzvB,z

]⊤
, (3)

where rP,i is the location of propeller i expressed in the

body frame , fi, τi are the forces and torques generated by

the i-th propeller, and (kvx, kvy , kvz) [24], [25] are linear

drag coefficients. A commonly used [24], [26] model for the

forces and torques exerted by a single propeller is presented

in the following: the thrust and drag torque are assumed to

be proportional to the square of the propellers’ rotational

speed. The corresponding thrust and drag coefficients cl and

cd can be readily identified on a static propeller test stand. By

also measuring the rotational speed of the propeller during

those tests, the motor time constant kmot can be estimated.

Overall, the force and torque produced by a single propeller

are modeled as follows:

fi(Ω) =
[

0 0 cl · Ω
2
]⊤

, τi(Ω) =
[

0 0 cd · Ω
2
]⊤

(4)

The dynamics are integrated using a symplectic Euler

scheme with step size 1ms. For numerical values of the

identified mass, inertia, and thrust and drag constants, we

refer the reader to Section IV-C.

IV. METHODOLOGY

We address the challenge of robust and agile quadrotor

flight using learned control policies by identifying the best

choice of action space for the task. We train deep neural

control policies that directly map observations ot in the

form of platform state and a reference trajectory to control

actions ut. The control policies are trained using model-free

reinforcement learning (PPO [27]) purely in simulation on

a set of over 600 reference trajectories that cover the full

performance envelope of the quadrotor. We train policies of

three different types that only differ in their choice of action

space ut, as illustrated in Figure 1:

1) Linear Velocity & Yaw Rate (LV): Each action spec-

ifies a desired linear velocity and yaw rate, which are

then tracked by a full control stack with access to accu-

rate state estimation. πLV(ot) ⇒ ut = {vx, vy, vz , ωz}
2) Collective Thrust & Bodyrate (CTBR): Each ac-

tion represents desired collective thrust and bodyrates,

which are tracked by a low-level controller using

measurements from an inertial sensor. πCTBR(ot) ⇒
ut = {c, ωx, ωy, ωz}

3) Single-Rotor Thrust (SRT): Each action directly

specifies desired individual rotor thrusts, which are

then applied for the duration of a control step.

πSRT(ot) ⇒ ut = {f1, f2, f3, f4}

All policy types feature a 4-dimensional action space, are

fed the same observations ot, and are represented by the

same network architecture.

TABLE I: Input features to the policy and value networks. The state is
represented by a sliding window of length H of current and previous states,
the reference is represented by a receding-horizon window of length R of
current and future reference states. Both networks observe the same state
and reference, but only the value network observes privileged information,
such as biases in mass, inertia, drag and gravity applied during training with
domain randomization.

Input Components Dimensions Policy NW Value NW

State

z-Position H × 1 X X

Velocity H × 3 X X

Attitude H × 9 X X

Bodyrates H × 3 X X

Privileged Info. H × 7 ✗ X

Reference

Position R × 3 X X

Velocity R × 3 X X

Attitude R × 9 X X

Bodyrates R × 3 X X



TABLE II: Physical parameters of the simulation. At the start of each rollout,
the parameters are sampled from a uniform distribution around the nominal
values with the randomization specified above.

Parameter Nominal Value Randomization

Mass [kg] 0.768 ±30%
Inertia [kgm2] [2.5e-3, 2.1e-3, 4.3e-3] ±30%
Gravity [ms−2] [0.0, 0.0, -9.81] ±0.4
kvx [Nsm−1] 0.3 ±0.3
kvy [N sm−1] 0.3 ±0.3
kvz [Nsm−1] 0.15 ±0.15
cl [N rad−1 s−1] 1.563e-6 ±0.0
cd [Nmrad−1 s−1] 1.909e-8 ±0.0

A. Observations, Actions, and Rewards

An observation ot obtained from the environment at time t
consist of (i) a history of previous states and applied actions

and (ii) the future reference along the trajectory. Specifically,

the state information contains a history of length H = 10
of the z-position of the platform, its velocity, attitude rep-

resented as rotation matrix, and bodyrates. Even though

the simulator internally uses quaternions, we pass attitude

as rotation matrix to the networks to avoid discontinu-

ities [28]. The reference information consists of a sequence

of length R = 10 of future relative position, velocity, and

bodyrates as well as the full rotation matrix of the reference.

The position and velocity components of the reference states

are expressed as the residual from the current state of the

quadrotor. All observations are normalized before passing

them to the networks.

Since the value network is only used during training time,

it can access privileged information about the environment

that is not accessible to the policy network. Specifically, this

privileged information contains the mass and inertia biases

applied during randomization, as well as the sampled drag

coefficients and the additive gravity bias. An overview of the

observation provided to the policy and value network is given

in Table I. The value network and the policy network share

the same architecture but have different parameters. The

state and reference information are encoded by two separate

fully-connected neural networks with 3 hidden layers with

64 neurons each. The encodings are then concatenated and

fed to a final multilayer perceptron with two layers of 128

neurons each.

We use a dense shaped reward formulation to learn the

task of agile trajectory tracking. The reward rt at timestep t
is given by

rt =− (xt − xref,t)
⊤Q(xt − xref,t) (5)

− (ut − uref,t)
⊤R(ut − uref,t)− rcrash ,

where Q and R are diagonal matrices, xt the full state of

the quadrotor, ut the applied action, xref,t and uref,t their

respective references, and rcrash is a binary penalty that is

only active when the altitude of the platform is negative,

which also ends the episode.

TABLE III: Training hyperparameters.

Hyperparameter Value

γ (discount factor) 0.98
Actor learning rate 3e-4
Critic learning rate 3e-4
Entropy regularization 1e-2
ε (importance ratio clipping) 0.2

B. Policy Learning

All control policies are trained using Proximal Policy Op-

timization (PPO) [27]. PPO has been shown to achieve state-

of-the-art performance on a set of continuous control tasks

and is well suited for learning problems where interaction

with the environment is fast. Data collection is performed by

simulating 50 agents in parallel. At each environment reset,

every agent samples a new trajectory from the set of training

trajectories and is initialized with bounded perturbation at the

start of the trajectory.

Inspired by prior work on simulation to reality transfer,

we perform randomization of the dynamics of the platform

during training time and apply Gaussian noise to the pol-

icy observations. Specifically, we randomize mass, inertia,

aerodynamic drag, and thrust variations of the quadrotor.

C. Training Details

The policies are trained in a simulated quadrotor environ-

ment implemented using TensorFlow Agents. The nominal

quadrotor parameters such as mass and inertia are identified

from the real platform and are summarized in Table II

together with the amount of randomization applied at training

time. Training hyperparameters specified in Table III.

During trajectory tracking, the agent receives at

each timestep a reward that penalizes tracking error

and deviation from the reference action as laid out

in Eq. (5). The matrices Q and R have nonzero

elements only on the diagonal. Specifically, we use

Q = diag{0.1 · 13×1, 0.02 · 19×1, 0.002 · 13×1, 0.01 · 13×1}
and R = diag{0.001 · 14×1}. The episode is terminated

when the quadrotor crashes (i.e. pz ≤ 0.0) with a reward of

rcrash = −500.

V. EXPERIMENTS

We design our experimental setup to investigate the in-

fluence of the choice of action space on flight performance.

Specifically, we design our experiments to answer the follow-

ing research questions: (i) How is the peak control perfor-

mance in situation of perfect model identification affected by

the actuation model? (ii) How does the choice of action space

affect the robustness against model mismatch? (iii) What is

the impact of the choice of action space on training data

requirement?

We evaluate the performance of all policies on a set of

test trajectories of varying agility, spanning from a hover

trajectory up to a racing trajectory [29] that requires to

perform accelerations beyond 3g to track. All test trajectories

are within the distribution of training trajectories and are

feasible, i.e. they do not exceed the platform limits. Table IV

shows the key metrics of all test trajectories.



A. Simulation Experiments

In a set of controlled experiments in simulation, the track-

ing performance of each policy is investigated. We compare

performance with respect to average positional tracking error.

Experiments are performed on the test trajectories in two

settings: (i) in the Nominal setting, the test environment

perfectly matches the training environment; (ii) in the Model

Mismatch setting, the environment at test time is differ-

ent from the training environment. Specifically, we use in

setting (ii) a quadrotor simulation that was identified from

real flight data and uses blade-element momentum theory to

accurately model the aerodynamic forces acting on the plat-

form [11]. We also apply a control delay of 20ms to simulate

wireless communication latency. Note that we can only use

this simulation at test time, since it is computationally too

expensive to run it at training time.

While setting (i) is focused on the maximum possible per-

formance achievable by a method and its training data re-

quirement, setting (ii) investigates the robustness of policies

against model mismatch. All policies tested in setting (i) have

been trained specifically for the nominal environment without

any randomization, while the policies tested in setting (ii)

have been trained on a distribution of environments as ex-

plained in Section IV-B. We also compare against two state-

of-the-art classical control approaches: MPC-SRT represents

an optimization-based controller [30] that directly controls at

individual rotor thrust level, while MPC-CTBR makes use

of a low-level controller. All learned policies are run at a

constant frequency of 50Hz, while the traditional controllers

are executed at 100Hz.

Nominal Model. Table V shows the results of the experi-

ments in the Nominal setting (i). SRT and CTBR policies

perform comparable in this setting, with CTBR marginally

outperforming on slower trajectories, while SRT performs

slightly better on the more aggressive maneuvers. These

results confirm previous findings from experiments in the

domain of 2D locomotion [15]: policies that operate in

concert with an underlying low-level controller outperform

end-to-end policies. The policies that produce linear velocity

commands (LV) perform inferior especially for agile maneu-

vers. This can be explained by the fact that the action space

of linear velocity commands does not correctly represent the

dynamic constraints of a quadrotor platform, which leads to

a reduced maneuverability. This result extends the findings

of [15] and shows that more abstraction does not necessarily

TABLE IV: Maxima of velocity, mass-normalized collective thrust and
bodyrates of the test trajectories.

Trajectory ‖v‖max[m s−1] cmax[m s−2] ‖ω‖max[rad s−1]

Hover 0.0 9.81 0.0
RandA 3.87 12.68 1.27
RandB 6.36 13.54 1.52
RandC 8.92 14.52 1.93
RaceA 10.48 16.18 5.74
RaceB 11.97 24.94 8.37
Split-S 12.40 26.35 6.11
RaceC 14.22 33.04 11.56

TABLE V: Average positional tracking error in centimeter on each test
trajectory in case of no model mismatch. The table reports results for learned
policies (SRT, CTBR, LV), and traditional approaches (MPC-SRT, MPC-
CTBR). Results report mean and standard deviation for 10 trained policies.

SRT CTBR LV MPC-SRT MPC-CTBR

Hover 1.0±0.2 0.6±0.2 7.0±1.6 0.1 0.2
RandA 1.5±0.2 0.9±0.1 15.4±3.0 0.2 0.3
RandB 2.4±0.2 1.6±0.1 61.5±21.0 0.2 0.4
RandC 3.0±0.3 2.0±0.2 85.7±11.5 0.2 0.4
RaceA 5.0±1.2 5.0±1.0 121.1±25.8 0.3 1.3
RaceB 7.1±1.8 6.9±1.5 170.2±16.3 0.7 3.0
Split-S 3.5±0.4 6.6±1.1 92.1±20.8 1.0 2.1
RaceC 9.2±3.2 12.3±2.2 197.9±38.1 1.2 3.9

TABLE VI: Average positional tracking error in centimeter on each test
trajectory obtained in a quadrotor simulator based on blade-element mo-
mentum theory with a control delay of 20ms. Results report mean and
standard deviation for 10 trained policies.

SRT CTBR LV MPC-SRT MPC-CTBR

Hover 11.3±4.5 0.6±0.5 6.7±2.0 1.0 0.5

RandA 12.0±4.0 1.2±0.5 17.8±1.4 3.3 1.1
RandB 14.4±2.4 2.2±0.8 57.0±12.0 7.0 2.0

RandC 17.6±5.9 2.6±0.8 78.9±13.4 8.5 2.6

RaceA crash 5.6±1.7 144.0±20.1 12.6 4.8

RaceB crash 10.0±4.0 171.4±17.0 crash 6.3
Split-S crash 6.9±2.6 83.8±9.7 11.3 11.4
RaceC crash 14.9±5.5 176.7±22.0 crash 7.5

lead to better performance. Compared to the learned policies,

the traditional control approaches (MPC-SRT, MPC-CTBR)

perform significantly better in the Nominal setting. This

results is expected, as the system dynamics implemented

in the MPC exactly match the simulated dynamics of the

platform. We still provide these results to allow a comparison

with traditional control approaches.

Model Mismatch. Table VI shows the results of the Model

Mismatch scenario. Controllers that directly specify single

rotor thrusts exhibit a significant reduction in performance,

especially for agile trajectories: SRT has a significantly

higher tracking error for slow trajectories and often crashes

on the faster maneuvers; MPC-SRT also has higher tracking

error and even crashes on RaceB and RaceC. We report

crash, as soon as one policy crashes on the maneuver. The

CTBR policies (as well as MPC-CTBR) are less affected

by the model mismatch and can still execute all maneuvers

with a modest increase in tracking errors. The LV policies

show a smaller sensitivity to the model mismatch, but are

still consistently outperformed by the CTBR policies on all

trajectories.

Training Data Requirement. Figure 3 depicts the learning

curves of all policies in case of no domain randomization

(left) and with domain randomization (right). All policies

have been trained for a total of 50M environment inter-

actions. The learning curves also show the robustness of

CTBR and LV to changes in the platform dynamics, we even

observed that training with a randomized platform acceler-

ates learning in the early stages of training. In contrast, the

learning curves of SRT in case of domain randomization

initially exhibit a high variance, train slower, and converge

to a final performance substantially lower than in case of no

domain randomization.
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Fig. 3: Learning curves of policies trained without (left) and with (right) domain randomization. All policies are trained for a total of 50M environment
interactions. Learning curves show mean performance and standard deviation computed over all trained policies.
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Fig. 4: Sensitivity to control delay on three trajectories of increasing agility. The results show that policies that operate on single rotor thrust (SRT) are
less robust against control delay.

Influence of Delay. Our experiments show that the per-

formance of the tested control policies varied significantly

in case of unknown control delay. Figure 4 shows that

policies that operate at higher abstraction levels such as LV or

CTBR are less sensitive to such delay. Furthermore, accurate

identification of control delay is more important for agile

trajectories; while hover is possible for CTBR without a

noticeable decrease in performance for latencies up to 60ms,
the same latency leads to a crash on the racing trajectory.

B. Real World Experiments

We assess the performance of different control policies

when deployed on a real quadrotor platform. As in the

simulation experiments, we execute a set of trajectories

and compare tracking performance between the methods

presented in Section IV. We encourage the reader to watch

the supplementary video to understand the dynamic nature

of these experiments.

The results of the real world experiments are shown in

TABLE VII: Positional tracking error in centimeter on a set of test
trajectories executed in the real world. Results report mean and standard
deviation for 5 trained policies.

CTBR LV MPC-CTBR

Hover 4.4±1.4 6.2±2.0 3.0
RandA 8.1±1.0 60.0±16.8 8.0
RandB 8.6±0.8 87.0±30.3 8.0
RandC 47.8±9.9 134.8±19.6 14.0
Circle 31.8±4.4 170.7±11.6 25.0
Lemniscate 26.8±4.4 189.5±13.7 16.0
Racing 53.0±9.2 200.8±14.5 20.0

Table VII. Due to its significant sensitivity to control delays

and a communication latency of 60ms imposed by the real

system, the SRT policies could not be deployed. The CTBR

policies instead manage to fly unseen maneuvers on the real

platform despite the control delay. The LV policies transfer to

the real platform as well, but CTBR significantly outperforms

on agile trajectories. Compared to the results in the BEM

simulator, tracking errors are higher in the real world mainly

due to unmodelled effects such as varying battery voltage,

imperfect motor thrust mappings, and torque imbalances

due to imperfect mass distribution. Throughout the tested

trajectories, the CTBR policies reach accelerations of up to

3g and speeds beyond 45 kmh−1, which outperforms the

previous state of the art in learning-based quadrotor control

by a factor of 3 in terms of speed.

VI. CONCLUSION

We presented a comparison of learning-based controllers

for agile quadrotor flight. We compared policies that specify

individual rotor thrusts, collective thrust and bodyrates, and

linear velocity commands. While all tested policy types

were able to learn a universal flight controller, they differed

strongly in terms of peak performance and robustness against

dynamics mismatch. We identified that policies producing

collective thrust and bodyrates exhibit strong resilience

against dynamics mismatch and transfer well between do-

mains while retaining high agility. This work can serve as

guideline for future work on learning-based quadrotor control

by identifying the control input modality that is best suited

for agile flight.
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