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Abstract— In unstructured urban canals, regulation-aware
interactions with other vessels are essential for collision avoid-
ance and social compliance. In this paper, we propose a
regulations aware motion planning framework for Autonomous
Surface Vessels (ASVs) that accounts for dynamic and static
obstacles. Our method builds upon local model predictive
contouring control (LMPCC) to generate motion plans satis-
fying kino-dynamic and collision constraints in real-time while
including regulation awareness. To incorporate regulations in
the planning stage, we propose a cost function encouraging com-
pliance with rules describing interactions with other vessels sim-
ilar to COLlision avoidance REGulations at sea (COLREGs).
These regulations are essential to make an ASV behave in a
predictable and socially compliant manner with regard to other
vessels. We compare the framework against baseline methods
and show more effective regulation-compliance avoidance of
moving obstacles with our motion planner. Additionally, we
present experimental results in an outdoor environment.

I. INTRODUCTION

With a growing number of citizens and tourists, the scarce
public space, roads, and public transport in Amsterdam is
experiencing rising pressure [1]. A possible solution to this
problem is to use the 165 canals with a total length of 100 km
as an alternative to the conventional routes to transport goods
and people. This opens up the opportunity for developing
Autonomous Surface Vessels (ASVs) explicitly designed for
urban environments, such as Roboat [2].

However, urban canals are challenging for motion plan-
ning since the space can be narrow and contain other human-
operated boats. Also, ASVs have slow dynamics which lead
to limited agility. Therefore, navigation requires precision
and planning ahead to avoid any collision with both static
and dynamic obstacles. Moreover, interaction regulations
[3] apply to Amsterdam’s canals (Fig. 2), similar to those
described in the COLlision avoidance REGulations at sea
(COLREGs). These regulations are not only mandatory,
but adhering to them makes the ASV’s motion socially
compliant, and therefore, more predictable by other canal
users.

While there are many examples of autonomous cars [4]
and mobile robots [5] navigating in dynamic urban environ-
ments containing human agents, the examples for ASVs are
limited as they are primarily designed for marine or coastal
areas [6]–[9]. Furthermore, motion planning algorithms for
autonomous vehicles mostly rely on the road structure [4],
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Fig. 1: A visualization of two Roboats navigating Ams-
terdam’s canals. The blue arrows represent their planned
motion. ©MIT/AMS Institute.

Fig. 2: Two boats interacting in a (from left to right)
head-on, overtaking, and crossing scenario according to the
regulations. The starboard and port side of the boats are
denoted as respectively S and P.

[10], [11]. On urban waterways there are no traffic lanes or
traffic lights, leading to more interactions with other vessels.
In order to interact appropriately with obstacle vessels, the
motion planning method should be aware of the interaction
regulations. Mobile robots often have to deal with similar
unstructured dynamic environments [5], [12]–[14]. However,
compared to a mobile robot, a vessel has large inertia and
complex dynamics.

In this paper, we propose a motion planning framework for
ASVs in urban canals. Our method employs model predictive
contouring control (MPCC) [5] to generate regulation-aware
dynamically feasible motions in real-time. The complete
system overview is displayed in Fig. 3. Our main contribution
is a method for collision-free and regulations-aware motion
planning.
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Fig. 3: The proposed framework for priority regulations
aware motion planning for ASVs in urban canals. The
motion planner receives a global path, the current Roboat
position, a static obstacle map, and the position and predicted
trajectories of the dynamic obstacles. With this information,
it generates inputs for Roboat’s thrusters.

A. Related Work

Traditional motion planning methods employ a hierarchic
planning architecture decomposing the navigation pipeline
into a sequence of blocks performing different sub-tasks
such as motion planning and control [15]. For instance, [16]
employed A* to search a state lattice and motion primitives
for control and [17] employed A* for path planning and
Nonlinear Model Predictive Control (NMPC) as a tracking
controller. However, the first is a reactive method which
can be troublesome for collision avoidance in high inertia
systems. The second plans along a prediction horizon, but it
does not account for static or dynamic obstacles.

Receding-horizon approaches such as Model Predictive
Control (MPC) [4], [5], [18], [19] can be directly deployed
in real environments by dealing with the model inaccuracies
and environments changes by continuous re-planning online.
However, when navigating in urban canals, ASVs must
comply with the inland waterways police regulations [3]
which these methods neglect.

COLlision avoidance REGulations at sea (COLREGs)
describe the same rules for interactions with other vessels.
Several methods implement COLREGs compliance for ASVs
in oceanic and coastal environments [20]–[24]. Nevertheless,
these approaches are not feasible for a crowded and complex
environment like Amsterdam’s urban waterways. [20] relies
on virtual obstacles for COLGRES compliance which makes
the problem unfeasible in crowded canals. [21] and [22] use
a small set of motions primitives that would not be rich
enough to navigate dense environments. [23] and [24] em-
ploy geometrical rules resulting in highly reactive motions.
Hence, in this paper, we propose a regulations-aware motion
planning framework employing receding-horizon trajectory
optimization for static and dynamic collision avoidance.

B. Contribution

The main contribution is Regulations Aware Model Pre-
dictive Contouring Control (RA-MPCC), a motion planning
framework for an ASV in urban canals, which includes a
cost function that encourages adherence to the interaction

Fig. 4: The Roboat and an obstacle vessel. Angles ψ and φ

denote the orientation of the boats. a and b are the width
and the length of the Roboat. ai and bi are the semi-major
and minor axis respectively of obstacle boat i. The Roboat’s
thrusters can exert force f in two directions, the white arrows
denote the positive direction.

regulations in four different scenarios: overtaking, head-on
encounter, and crossing with a vessel from starboard or port.

The system is compared in simulation with LMPCC [5]
and the current motion planning and control method for the
Roboat, Breadth First Search (BFS) in combination with
NMPC [17] (Section IV-B). Moreover, the framework is
demonstrated in an outdoor environment with disturbances
(Section IV-C).

II. PRELIMINARIES

Vectors are denoted with bold lowercase symbols, matrices
with bold uppercase symbols, and sets with scripted symbols.
Superscript W denotes coordinates in World frame, while B
indicates the body-fixed frame.

A. Robot Description and Dynamics

Let B represent an ASV on the plane W = R2. The
vessel is visualized in Fig. 4. pW denotes the position of the
Roboat, and RW

B is the rotation matrix corresponding to its
orientation. The area occupied by the Roboat is represented
with a union of nd = 3 discs. Each disc j is centered at a
position pW

j = pW +RW
B (z)pB

j in the inertial frame, where
pB

j is the position of the center of disk j in the body
frame B. Moreover, port will describe the left side of a boat
looking forward, and starboard will be used for the right.
Additionally, the ASV’s dynamics are defined by a discrete-
time nonlinear differential equation, as described in [17].

η(t +1) = R(ψ)v(t)
v(t +1) = M−1Bu(t)−M−1(C(v(t))+D(v(t)))v(t)

(1)

Where the state vector of the vessel is z(t) = [ x y ψ u v r ]T .
η(t) = [ x y ψ ]T represents the configuration given by the
position and the orientation of the robot in the inertial frame,
and v(t) = [u v r ]T is respectively the surge velocity, sway
velocity, and yaw rate of the vehicle in the body-fixed frame.
Converting a state from body frame to inertial frame can be
done by the rotation matrix R(ψ). The inputs are given by
the four thrusters, the applied forces are described in the
control vector u = [ f1 f2 f3 f4 ]

T . The control matrix B de-
scribes the thruster configuration. M = diag{m11,m22,m33}



is the positive-definitive symmetric added mass and inertia
matrix. C(v) ∈ R3×3 is the skew-symmetric vehicle matrix
of Coriolis and centripetal terms. It is assumed that the
origin Ob corresponds to the center of mass of the Roboat.
D(v)∈R3×3 is the positive-semi-definite drag matrix-valued
function with linear damping terms on its diagonal. In short,
the dynamics can be summarized as:

z(t +1) = f (z(t),u(t)) (2)

B. Static Obstacles

Ostatic ⊂W is the area that is occupied by static obstacles.
This area is represented in an occupancy grid map. This map
can either be created beforehand based on map segments of
Amsterdam or can be generated in real time from sensor
readings.

C. Dynamic Obstacles

The area occupied by dynamic obstacles, such as boats,
is described by Odyn

k ⊂ W . These dynamic obstacles are
represented by ellipsoids with a semi-major axis a and
semi-minor axis b. For each dynamic obstacle i the current
position, rotation matrix Ri(φ) and velocity vi are assumed
to be known. Future positions of the dynamic obstacles are
obtained using a constant velocity model.

D. Global Reference Path

A global reference path P is given to our local planner. A
global planner could generate this path. The reference is built
up from M way-points pr

m = [xp
m,y

p
m] ∈ W with m ∈M :=

{1, ....,M}. As described in [5], cubic polynomials describe
the path segments for smoothness. A variable θ represents
the traveled distance along the reference path.

III. MOTION PLANNING

This section presents the Regulation Aware Model Predic-
tive Contouring Control (RA-MPCC) method, based on [5].
This method is used for planning collision-free, dynamically
feasible, and regulation-aware motion plans.

At every time step t, a receding horizon constrained
optimization problem with an N length prediction horizon
Thorizon is solved.

J∗ = min
z0:N ,u0:N−1,θ0:N

N−1

∑
k=0

J(zk,uk,θk)+ JN(zN ,θN)

s.t. zk+1 = f (zk,uk), θk+1 = θk + vkτ,

B(zk)∩
(
Ostatic∪Odyn

k

)
= /0,

uk ∈U , zk ∈Z , z0,θ0 given.

(3)

J is the cost function with U and Z the sets of admissible
inputs and states and z0:N , u0:N−1 the sequence of state and
control inputs, respectively, for the prediction horizon. B(zk)
is the space occupied by the Roboat at time-step k. The
predicted progress along the reference path is θk. vk denotes
the forward velocity of the Roboat and τ is the time-step’s
length. The output of the optimization is an optimal control
input sequence [u∗t ]

t=N−1
t=0 .

Fig. 5: The position of an obstacle boat with respect to the
Roboat can be categorized in one of the four regions: head-
on, crossing port, crossing starboard or overtaking.

A. Cost Function

The cost function consists of four elements: the tracking,
the speed, the input, and the regulations costs (Section III-B).

Jtracking(zk,θk) = eT
k Qε ek (4a)

Jspeed(zk,uk) = Qv(uref−uk)
2 (4b)

Jinput(zk,θk) = uT
k Quuk (4c)

The tracking cost penalizes error vector ek containing the
estimated contour ε̃c and lag ε̃ l error. Second, Jspeed contains
the deviation of the surge velocity uk from the reference ve-
locity uref. Furthermore, the inputs are penalized with Jinput.
Qε , Qv, and Qu denote design weights. The tracking, veloc-
ity, and input costs are further described in [5]. The stage
cost and the terminal cost are, respectively, J(zk,uk,θk) :=
Jtracking+Jspeed+Jinput+Jreg and JN(zN ,θN) := Jtracking+Jreg,
where Jreg is the regulation cost described in the next section.

B. Priority Regulation Compliance

In the city of Amsterdam, the inland waterways police
regulations [3] apply. Humans operating the other vessels
will assume that the Roboat will behave according to these
regulations. Thus, complying with these rules will result in
social compliance, and therefore, in fewer collisions. In this
work, we consider the specific regulations that describe in-
teractions with other vessels. The first interaction regulation
describes specific boats to which a small motorboat like the
Roboat should always give way. So-called priority boats are
sailboats, boats powered by muscle, commercial vessels such
as canal cruises, and vessels longer than 20 meters. Still,
most of the vessels on the canals are of the same type as the
Roboat. When encountering another small motorboat, there
are three different situations (Fig. 2). First, when having a
head-on encounter with another boat, both boats should move
to their starboard side. Second, overtaking another boat has
to be done, in principle, on their port side. Furthermore, in
a crossing, one should give way to a boat from starboard.

While in [25] and [22], discrete parameterized cost func-
tions of different shapes were defined with respect to ob-
stacles, a continuous cost function with a simple shape is
constructed for our method to facilitate the optimization. We



Fig. 6: Geometry of the regulations cost function (7). A
higher cost is allocated to the obstacle’s starboard and front
by shifting the ellipse’s center from the center of the obstacle
pobs by some parameters c and d in the x- and y-direction of
the obstacle, respectively. The standard deviation of the 2D
Gaussian for x and y axes are respectively σx and σy.

have selected an off-center ellipsoidal 2D Gaussian function
(7) as displayed in Fig. 6. The idea is to use this smooth
function to penalize specific positions with respect to the
obstacle boats. We define two types of costs: JHO for Head-
on and Overtaking encounters and JRoW for Right of Way
(RoW). Both use the same cost function but with different
parameters. These two costs together make the regulation
costs Jreg = JHO + JRoW .

1) Head-On and Overtaking: First, the cost function JHO
is used to allocate a higher cost to both the starboard side and
the front of the obstacle boat. This asymmetric cost will help
to achieve the desired trajectories for head-on encounters and
overtaking, displayed in Fig. 2. The ellipsoid is shifted from
the pobs with c in the x-direction of the vessel and with d
in the negative y-direction. This results in the origin of the
ellipse oell, W in world frame W .

oell, W
k,i = R(φk,i)

[
c
d

]
+pobs

k,i =

[
xell

k,i
yell

k,i

]
(5)

The standard deviation of the 2D Gaussian ellipsoid in the
x- and y-direction are σx and σy, respectively. These values
are dependent on the size of the obstacle (major-axis ai and
minor-axis bi) and the disc representing the Roboat, and are
scaled with parameters g and h.

σx,i = g(ai + rdisc)

σy,i = h(bi + rdisc)
(6)

The cost function JHO can be constructed using scalars λ ,
µ and ν to shape and rotate the ellipsoid with the obstacle’s
size and orientation φi.

JHO(zk) = QHO

n

∑
i=1

exp(−(λ (xRoboat
k − xell

k,i)
2

+2µ(xRoboat
k − xell

k,i)(y
Roboat
k − yell

k,i)

+ν(yRoboat
k − yell

k,i)
2))

(7)

λ =
cos(φi)

2

2σ2
x

+
sin(φi)

2

2σ2
y

µ =
sin(2φi)

4σ2
x
− sin(2φi)

4σ2
y

;

ν =
sin(φi)

2

2σ2
x

+
cos(φi)

2

2σ2
y

;

(8)

2) Right of Way: The RoW costs will only be allocated
to priority vessels depending on their type and length.
Additionally, a vessel will also be marked as a priority boat if
the Roboat sees the obstacle vessel in the crossing starboard
giving way area and the Roboat is seen by the obstacle
vessel in the crossing port stand-on area (Fig. 5). The cost
function will be allocated to the boat for the full prediction
horizon. The cost function is similar to the function for JHO,
but with different parameters. In this case, a long ellipsoidal
cost JRoW weighted with QRoW will be placed in front of the
priority boat to discourage Roboat to stand in its way. For
this scenario, the ellipsoid’s center will only be shifted in
the x-direction of the vessel by parameter f . Moreover, σx
is equal to parameter e, and σy is bi + rdisc.

C. Static Collision Avoidance

The static obstacles are represented with an occupancy
grid map, which is then divided into convex shapes. After
that, the points of these convex shapes that are the closest
to the Roboat are selected. At last, the linear constraints are
determined such that they are normal to the vector pointing
from the Roboat to the closest points. These constraints
are defined by a vector A and a scalar b. Resulting in the
following equation, in which pW

j denotes the position of disc
j representing Roboat and δ is a safety margin.

cstat, j(z0) = A∗pW
j −b+ rdisc +δ ≤ 0 (9)

D. Dynamic Collision Avoidance

For dynamic collision avoidance, it is assumed that the
moving obstacles can be represented with an ellipse, having
semi-axes ai and bi. The position and rotation of each
obstacle i ∈ {1, ...,n} are pi(t) and Ri(φ). ∆x j

k,i and ∆y j
k,i

denote the distance in x and y-direction between the center of
the disc j and the obstacle i. The semi-major axis αi = ai+δ

and semi-minor axis βi = bi + δ are defined such that any
collision will be avoided. The inequality constraint for each
disc of the robot with respect to the obstacle is

cdyn, j
k,i (zk,i) =

[
∆x j

k,i

∆y j
k,i

]T

R(−φi)
T

[ 1
α2

i
0

0 1
β 2

i

]
R(−φi)

[
∆x j

k,i

∆y j
k,i

]
> 1

(10)

IV. RESULTS

This section presents simulation results for different nav-
igation scenarios. First, we introduce the experimental setup
used. Then, in Section IV-B, we compare our framework with
two baseline approaches. We present results demonstrating



our method’s ability to perform collision avoidance and reg-
ulation compliance. Moreover, in Section IV-C, we present
experimental results on the MIT’s Roboat platform [17].

A. Experimental Setup

1) Hardware Setup: We use the quarter-scale Roboat
described in [17] for real-world experiments. The entire
framework can run on one onboard computer equipped
with an Intel i7 CPU. A Velodyne LiDAR is used for
perception, and a Swift Nav GPS in combination with a
LORD Microstain IMU is used for localization.

2) Software Setup: The motion planner is implemented as
a ROS node in C++ and Python. The planner runs onboard
at 5 Hz. We rely on FORCES PRO [26] for solving the
non-convex model predictive contouring control equation (3).
If the solver does not find a feasible solution within the
maximum number of iterations, a zero command will be
sent towards the thrusters, resulting in a deceleration of the
Roboat. We use a planning horizon of 10 s and 20 steps.
Further, we employ OpenCV [27] to divide the occupancy
grid into convex shapes for static collision avoidance.

B. Simulation

We compare our approach (RA-MPCC) with the following
baseline methods:

• LMPCC [5] without regulation awareness. A repulsive
cost similar to JHO is still employed, but centered on
the obstacle.

• Breadth First Search (BFS) local planner and an NMPC
tracking controller [17]. Since BFS does not allow for
dynamic obstacles in its planning, the space occupied
by obstacle boats is added to the static occupancy grid.

To simulate the other boats, we replay real vessel trajecto-
ries navigating the in the Amsterdam canals, as presented in
Fig. 7, collected using the Automatic Identification System
(AIS) [28]. The global path is designed such that the Roboat
has to interact with the obstacle boat. The eight situations in-
clude head-on encounters, taking over other vessels, crossing
from starboard, and crossing from port, evenly represented.
Furthermore, we show multi-robot coordination with RA-
MPCC in Fig. 10 where two vessels run our method and
perform a head-on (left figure) and a crossing scenario (right
figure) while respecting the regulations.

1) Dynamic Collision Avoidance: The results presented
in Table I demonstrate that our approach outperforms the
baseline methods in terms of percentage of collisions. Qual-
itative results presented in Fig. 8, shows that RA-MPCC and
the original LMPCC method can avoid dynamic obstacles in
different situations. However, the head-on and take over cost
function JHO can help the solver choose between avoidance
on the starboard or the port side, therefore starting the
manoeuvre earlier on and resulting in a safer motion. In con-
trast, the BFS combined with the NMPC closely follows the
global path without considering the future obstacle positions,
resulting in a high number of collisions.

Fig. 7: Map of the Amsterdam canals and trajectories col-
lected using the Automatic Identification System (AIS). The
canals are depicted in black and in red the vessel’s trajec-
tories. Segments of these canals were used as simulation
environments.

Method % Right-Handed Violations % Collisions
LMPCC 64.20 1.23

BFS + NMPC 68.32 36.36
RA-MPCC 19.38 0.00

TABLE I: Results for eight different scenarios, each ran ten
times. These test cases include head-on, overtaking, crossing
from port and starboard. Out of all violations (left and right-
handed), the percentage of right-handed ones is calculated
for each run. The percentage shows the mean over all runs.

2) Compliance to Regulations: Similar to [25], we define
situations where the regulations are breached for both the
right-handed and the left-handed rules. Right-handed regu-
lations are the norm for vessels, for example, giving way to
someone from starboard. In contrast, left-handed regulations
require giving way to a vessel nearing from port. Violations
to these regulations are registered when an obstacle vessel is
in one of the rectangular regions with a specific orientation
with respect to the Roboat (see Fig. 9) for more than dt
seconds. For this experiment we have used dt = 0.17.

The quantitative results presented in Table I and qualitative
results displayed in Fig. 8, show that RA-MPCC incurs in the
lower number of right-handed violations relative to the left-
handed ones. RA-MPCC mainly produces paths that pass the
other boat on their port side when facing head-on encounters
or overtaking. LMPCC and BFS, instead, are more likely to
cross with the obstacle vessel’s starboard side, not complying
with the inland waterway regulations. Moreover, our method
will plan a trajectory that does not cross the trajectory of an
obstacle approaching from starboard. Furthermore, Fig. 10
shows two decentralized multi-robot coordination scenarios
where all agents ran our RA-MPCC without communicating
with each other. In both the head-on and crossing situations,
the vessels avoid each other while complying with the
regulations.

C. Real-World Experiments

RA-MPCC was implemented on a quarter-scale Roboat
[17] for testing at the Marineterrein in Amsterdam (Fig. 11).



(a) RA-MPCC achieves successful obstacle avoidance and compli-
ance to the priority regulations.

(b) LMPCC also results in successful obstacle avoidance but does
not generate regulation-aware trajectories.

(c) BFS combined with NMPC follows the global path closely and is
not able to anticipate the moving obstacles. We see more dangerous
situations and no regulation compliance.

Fig. 8: The Roboat (orange-yellow) avoiding an obstacle boat
(green-blue) while following a global reference path. The
obstacle boat is executing a trajectory taken from a real-
world data set. Timestamps are displayed in seconds, and
the static obstacles are represented in black.

Fig. 9: Violations of the right-handed priority regulations.
The Roboat should never be in a situation where an obstacle
boat is in one of the configurations shown in the figure.

For more details on the real-world experiments, we refer the
reader to the accompanying video.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a motion planning framework called
RA-MPCC for ASVs in urban canals based on LMPCC.
This framework is able to plan local trajectories that avoid
dynamic obstacles according to the regulations. We compare
our method to the original LMPCC method and a BFS
local planner combined with an NMPC tracking controller.
Simulated experiments, executed on Amsterdam’s canal seg-
ments with real vessel trajectory data, have shown that RA-

Fig. 10: Two vessels both running the proposed RA-MPCC
method. On the left, the two vessels encounter each other
head-on. On the right, a crossing is performed. In both sce-
narios the regulations are satisfied. Timestamps are displayed
in seconds.

Fig. 11: The quarter-scale Roboat [17] using RA-MPCC at
the Marineterrein in Amsterdam.

MPCC outperforms both methods in urban canals. Moreover,
we have shown that RA-MPCC also performs well in a
two-agent coordination scenario where all vessels run the
proposed method. As future work, better predictions of
the obstacle vessels’ motion can be incorporated into the
framework to plan more efficient trajectories in crowded
environments.
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