
Ada-Detector: Adaptive Frontier Detector for Rapid Exploration

Zezhou Sun†, Banghe Wu†, Chengzhong Xu‡, Hui Kong∗

Abstract— In this paper, we propose an efficient frontier
detector method based on adaptive Rapidly-exploring Random
Tree (RRT) for autonomous robot exploration. Robots can
achieve real-time incremental frontier detection when they are
exploring unknown environments. First, our detector adaptively
adjusts the sampling space of RRT by sensing the surrounding
environment structure. The adaptive sampling space can greatly
improve the successful sampling rate of RRT (the ratio of the
number of samples successfully added to the RRT tree to the
number of sampling attempts) according to the environment
structure and control the expansion bias of the RRT. Second,
by generating non-uniform distributed samples, our method
also solves the over-sampling problem of RRT in the slid-
ing windows, where uniform random sampling causes over-
sampling in the overlap area between two adjacent sliding
windows. In this way, our detector is more inclined to sample
in the latest explored area, which improves the efficiency
of frontier detection and achieves incremental detection. We
validated our method in three simulated benchmark scenarios.
The experimental comparison shows that we reduce the frontier
detection runtime by about 40% compared with the SOTA
method, DSV Planner.

I. INTRODUCTION

The frontier detection module is a key module for mo-
bile robots to autonomously explore unknown environments.
Frontiers are the boundaries separating known space from
unknown area. The frontier detection algorithms detect the
frontiers according to the map established in real-time during
the movement of the robot and send the frontier with the
highest priority to the path planning module. The ideal
frontier detection module deployed to an autonomous ex-
ploratory robot is expected to detect new frontiers within the
interval between two LiDAR scans and empowers robots to
replace humans to achieve efficient and robust autonomous
exploration in various environments.

Since the RRT algorithm [1] is heavily biased to grow
towards unknown regions of the map [2] and can easily be
extended to high-dimensional spaces, it is widely used for
frontier detection tasks in the field of autonomous explo-
ration. The original RRT-based frontier detector [3] extends

† School of Computer Science and Engineering, Nanjing University of
Science and Technology, Nanjing, Jiangsu, China.

‡ The State Key Laboratory of Internet of Things for Smart City (SKL-
IOTSC), Department of Computer Science, University of Macau, Macau,
China.
∗ The State Key Laboratory of Internet of Things for Smart City (SKL-

IOTSC), Department of Electromechanical Engineering (EME), University
of Macau, Macau, China.

This work is supported by National Key Research and Development
Program of China (No. 2019YFB2102100), the Science and Technology
Development Fund of Macau SAR (File no. 0015/2019/AKP), Guangdong-
Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-
Synergy Systems (No. 2019B121205007), and the National Natural Science
Foundation of China (No.61803083).

(a) (b) (c)

Fig. 1: An illustration of the dynamically expanded frontier
detector in DSV Planner [8]. (a) shows the RRT-based
frontier detection performed in a sliding window. (b) After
the sliding window is updated with the movement of the
robot, DSV Planner [8] discards the node that is beyond the
updated sliding window and continues expanding the RRT
tree. (c) In two adjacent sliding windows, the overlap area
is repeatedly sampled twice and the non-overlap area is the
new observation area.

an RRT in the free space (the space that has been observed
by sensors and is not occupied by obstacles) and treats the
nodes in the RRT as viewpoints. The exploration gain of each
viewpoint is calculated according to the sensor coverage. The
viewpoints whose exploration gain is greater than the preset
threshold are called frontiers. Thereafter, the robot sorts the
frontiers according to the exploration gain and drives to the
frontier with the highest priority.

Compared with path planning, since frontier detection
does not have a clear expansion target, it can only use the
RRT method to expand to the surrounding area uniformly
instead of using RRT improvement methods such as the
Informed RRT* [4], Batch Informed trees (BIT*) [5], and
Regionally accelerated batch informed trees (RABIT*) [6]
etc. Therefore, the problem of how to improve the effi-
ciency of frontier detection has attracted the attention of
researchers. The Graph-Based subterranean exploration path
Planner (GBPlanner) [7] uses a periodic sliding window to
restrict the sampling space of RRT to the surrounding region
of the robot. Compared to covering the entire exploration
area, RRT can fill the sliding window more quickly. Thus,
this method significantly improves the efficiency of frontier
detection.

Usually, the size of the sliding window is set as the
sensing range limit of the sensor on the robot. However,
with the improvement of sensor manufacturing technology,
the sensing range limit of a modern multi-channel LiDAR

ar
X

iv
:2

20
4.

06
23

7v
1 

 [
cs

.R
O

] 
 1

3 
A

pr
 2

02
2



has exceeded 100m. Thus, the sliding window bounded by
the sensing range limit is too large for real-time frontier
detection. In addition, the use of a fixed-sized sliding window
cannot fully reflect the robot’s perception of the surrounding
structure of the environment. For example, when passing
through a narrow corridor, it is preferred that the RRT should
expand in the direction of the corridor. When passing an
intersection, it should pay more attention to the left and
right sides. When entering a room, the sampling space of
RRT should be limited by walls. In contrast, the fixed-
sized sliding window enables the RRT to expand uniformly
in all directions. Through the sensor’s perception of the
surrounding environment structure, we can adaptively reduce
the size of the sliding window to the smallest circumscribed
rectangle of LiDAR scan.

Furthermore, there is inevitably an overlap area between
two adjacent sliding windows. The non-overlap area of the
current sliding window actually corresponds to the new
observed (explored) area of the LiDAR sensor. The GB-
Planner [7] uniformly generates sampling points in each
sliding window. Thus, the overlap areas are twice as dense
as the non-overlap area due to repeated sampling. We call
this phenomenon an over-sampling problem, as shown in
Fig. 1(c). However, it is preferred that the detector should
focus more on detecting frontiers in the new observed
area. Obviously, the over-sampling problem can reduce the
tendency of extending the RRT tree to a new observed area.

Very recently, the Dual-Stage Viewpoint Planner (DSV
Planner) [8] proposed a dynamically extended frontier de-
tector. Figure 1 shows the dynamic expansion process. In
Fig. 1(a), the blue box is the sliding window, representing
the sampling space of RRT. It expands an RRT tree to detect
the frontiers in the sliding window. When the robot moves to
the new position in Fig. 1(b), the sliding window is moved
accordingly to the new position of the robot (the blue box in
(b)). Nodes in the RRT tree that is beyond the sliding window
are discarded. Iteratively, the robot continues expanding the
RRT tree in the updated sliding window. Once detecting
the frontiers, DSV Planner [8] selects the frontiers with
the highest priority and additionally increases the sampling
probability within the neighborhood of these frontiers. When
the number of nodes in the RRT tree exceeds a certain
threshold or the number of sampling attempts reaches the
upper limit, the robot considers that the frontier detection in
this sliding window is completed. Then the detector sends
the frontier with the highest priority to the path planning
module.

However, the DSV Planner [8] still makes lots of sampling
attempts in the overlap area, which is hardly helpful for the
robot to travel to the newly explored frontiers. In addition,
this method only increases the bias of the RRT expansion
toward some specific frontiers, causing the detector to pay
insufficient attention to the newly explored area that is be-
yond the neighborhood of selected frontiers. It can also make
RRT trapped into obstacle regions in a complex environment.
To deal with these issues, we counteract over-sampling and
achieve incremental detection by generating non-uniform

(a) (b)

Fig. 2: An illustration of the improvement of our method
from the previous method. Compared with the previous
methods that detect frontiers in fixed-sized sliding windows,
our method adaptively adjusts the sliding windows through
the perception of the surrounding structural environment. Our
detector also generates non-uniform distributed samples to
solve the over-sampling problem in the overlap area between
two adjacent sliding windows.

samples.
The main contributions of this paper are as follows. (1)

We propose an adaptive frontier detector with a varying-
sized sliding window, which can improve the efficiency of
frontier detection by limiting the sampling space of RRT. (2)
We generate non-uniform samples to avoid over-sampling
between two adjacent sliding windows, making RRT biased
to detect frontiers in newly explored areas and achieve
incremental detection.

The remainder of this paper is organized as follows.
Section II outlines the related works. The details of our
method are given in Section III. Experimental results are
shown in Section IV, followed by conclusions in Section V.

II. RELATED WORKS

Frontier detection divides the created occupancy map into
free area, unknown area, and occupied area according to the
confidence and searches for the boundaries between free area
and unknown area in the map [9]. According to two different
path planning algorithms, Dijkstra [10] and RRT, frontier
detection is mainly divided into two categories: search-based
and sampling-based.

1) The search-based frontier detectors: Yamauchi et al.
[9] proposed their seminal search-based exploration work
based on frontier detection and tracking. In order to detect
frontiers more efficiently, the following-up works are devoted
to reducing the search space of frontiers. The Wavefront
Frontier Detection (WFD) [11] reduces the search space from
the entire map to the known area. The Expanding-Wavefront
Frontier Detection (EWFD) [12] only incrementally searches
for the latest explored areas. The Dense Frontier Detec-
tion method (DFD) [13] performs frontier detection in the
submaps of Cartographer [14], reducing the search space to
the total frontier length of all previous submaps, so that the
detected frontiers are not affected by the graph optimization
to the map. The improved DFD method based on the sliding



Fig. 3: The system diagram of our Ada-detector.

window [15] reduce the search space to the frontier pool of
the latest modified submaps. These methods are designed to
detect all frontiers in the exploration area, however, they are
mostly used for 2D exploration and are difficult to extend to
high-dimensional spaces.

2) The sampling-based frontier detectors: The sampling-
based frontier detection methods are more suitable for robots
to explore in the 3D environment. Since the “next best view”
method was proposed [16], Oriolo [17] and Freda [18] intro-
duced a probabilistic planning method called Sensor-based
Random Tree (SRT), a variant of RRT, to effectively sample
the map. The Multiple Rapidly-exploring Randomized Trees
(multi-layer RRT) [2] improves the efficiency of frontier
detection by using global and local RRT trees. With more
applications of unmanned aerial vehicles (UAV), RRT-based
frontier detection methods have been widely used in UAV
exploration, such as the Receding Horizon Next-Best-View
method (NBVP) [3] and its variants [19] [20]. However, the
sampling space of these methods is the explored map that
expands with the progress of robot exploration, which means
that the efficiency of frontier detection continues to decrease.

Recently, the Graph-Based exploration path Planner (GB-
Planner) [7] and Motion-primitive Based exploration path
Planner (MBPlanner) [21] implement a fast frontier detector
based on periodic sliding windows. It limits the sampling
space from the free space of all explored areas to that of
the local map around the robot within the LiDAR sensing
range. However, GBPlanner‘s detector [7] cannot instantly
detect all frontiers within the LiDAR sensing range during
the interval of the periodic sliding window. Therefore, robots
can miss partial frontiers and leave some unexplored areas
to be ignored.

On this basis, the Dual-Stage Viewpoint Planner (DSV
Planner) [8] proposed an efficient exploration algorithm
based on a dynamically extended frontier detector. DSV
Planner [8] achieves SOTA frontier detection efficiency by
reusing part of the nodes in the previous sliding window and
additionally expanding toward specific frontiers.

For a fair comparison of different algorithms, Zhang et al.
[22] established a public simulation environment to evaluate
exploration methods and provided the best human practice
results [22]. The simulation environment provides 5 different
scenarios including multi-layer garage, indoor, forest, tunnel,
and campus environments. Zhang et al. tested their DSV
Planner [8] and TARE [23] with NBVP [3], GBPlanner [7],
MBPlanner [21], and the best human practice results [22] in
these simulation environments.

(a) (b)

Fig. 4: (a) shows the sampling space of a fixed-sized sliding
window and (b) shows the sampling space of an adaptive
sliding window of our method. With the same number of
sampling attempts (green points), our method has a higher
successful sampling rate.

III. METHODOLOGY

A. Adaptive Sliding Window

In the simulation environment, since it is necessary to
detect slopes so that the robot can explore in 3D space,
the maximum range of LiDAR sensing that can be used for
mapping is set to 15m. Therefore, as did in DSV Planner
[8], we do not consider the LiDAR points beyond this limit.
Specifically, we first align the filtered LiDAR scan with
the map coordinates. Then, by traversing the LiDAR points,
we calculate the four corners of the smallest circumscribed
rectangle of the LiDAR scan. The rectangle formed by the
corners is the current sliding window and the RRT regards
it as the sampling space. We update the sliding window by
updating the corners.

Generally, the successful sampling rate (the ratio of the
sampled points that can be successfully added to the RRT
tree to the number of sampling attempts) is directly related
to the proportion of free space to the total sampling space.
It can be seen from Fig. 4 that the successful sampling rate
is generally much higher in an adaptive sliding window than
in a fixed-sized one.

B. Non-uniform Sampling within an Adaptive Sliding Win-
dow

To deal with the over-sampling problem of DSV Planner
[8] as mentioned before, we give the non-uniform sampling
strategy. In each new adaptive sliding window, let θ be
the ratio of the number of successful samples (samples
successfully added to the RRT tree) to the size of the
sampling space, called the successful sampling density. Let
Ntotal be the number of RRT tree nodes, So and Sn be the
area of the overlap and non-overlap region, respectively, No
and Nn be the number of RRT nodes in the overlap and non-
overlap region, respectively. The motivation of the proposed
non-uniform sampling is that, for an efficient detector, the
value of θ should be the same no matter in the non-overlap or
overlap area in each adaptive sliding window, i.e., No

So
= Nn

Sn
=

θ . Let τ be the maximal number of successful samples in the
whole adaptive sliding window, and thus we have θ = τ

Stotal
,

where Stotal is the area of the sliding window. Therefore, once
the condition θ = τ

Stotal
= No

So
= Nn

Sn
is satisfied, it is guaranteed

to solve the over-sampling problem in the DSV Planner [8].



(a) (b) (c)

Fig. 5: An illustration of non-uniform sampling process. (a)
Just after the sliding window is updated, the nodes that
exceed the sliding window in the RRT tree are discarded and
the remaining No nodes are all located in the overlap area.
(b) According to Alg. 1, we calculate how many points are
needed to be sampled in the overlap area and the non-overlap
area, respectively, to make the density of RRT nodes in the
two areas equal and both larger than θ . We then perform a
non-uniform sampling based on this. (c) We expand the RRT
tree based on the non-uniform sampling.

Note that τ is a constant for each adaptive sliding window,
but Stotal , So and Sn are not, meaning that No and Nn are both
variables. Generally, So and Sn are different. Therefore, No
and Nn are not equal as well. This explains why we need
a non-uniform sampling within each new adaptive sliding
window, where we treat the sampling in the overlap and non-
overlap region differently.

Specifically, given the area of a new updated sliding
window Stotal , we can obtain θ . We can get the overlap area
So and non-overlap area Sn based on the four corners of
the previous and the current sliding window, respectively,
(lines 2-3 of Alg. 1). In turn, we can get the number of RRT
nodes that should be successfully sampled from the overlap
area, Neo, and from the non-overlap area, Nen, respectively,
(lines 4 of Alg.1), as shown in Fig. 5. Therefore, we can get
the sampling probability ηn of non-overlap area and ηo of
overlap area in the current sliding window to be Nen

Neo+Nen
and

Neo
Neo+Nen

(line 4-5 of Alg.1), respectively . Once again, when
the number of RRT nodes in the current sliding window
equals τ or the successful sampling density is larger than
θ , we update the sliding window. Meanwhile, we discard
the nodes in the RRT tree that are beyond the new sliding
window and reserve the ones in the overlap area (line 1 of
Alg.1).
C. Frontier Detection

Given ηn and ηo, we expand RRT in the current adaptive
sliding window in a non-uniform sampling mode (Alg.2). We
randomly generate a number r, with r ∈ [0,1]. If r > ηn, we
sample in the overlap area. Instead, we sample in the non-
overlap area (lines 3-6). After obtaining the sample Prand , we
expand the RRT tree. Lines 7-11 of Alg. 2 are the standard
RRT process [1].

If the sample can be successfully added to the RRT tree,
we calculate the exploration gain of this node and increase
the number of successful samples by one (line 12-14). The
method of calculating exploration gain is the same as the

Algorithm 1: Non-uniform sampling within an adap-
tive sliding window

Input:
corners of the previous sliding window Precorners
corners of the new sliding window Pcorners
list of RRT tree nodes RRTnodes
expected sampling density θ

Output:
sampling probability in the non-overlap area ηn
sampling probability in the overlap area ηo

1 (RRTnodes, No) ← Discard(RRTnodes,Pcorners)
2 (So, Sn) ← overlapArea(Prescorners, Pcorners)
3 Precorners = Pcorners
4 Neo = θ ∗So−No; Nen = θ ∗Sn

5 ηn =
Nen

Neo+Nen
; ηo =

Neo
Neo+Nen

one used in DSV Planner [8]. Since we want to keep the
successful sampling density greater than or equal to θ in each
adaptive sliding window. Once an adaptive sliding window is
updated, the successful sampling density of the overlap area
of the new adaptive sliding window is approximately equal
to θ . From this point of view, our method is about equivalent
to an incremental frontier detection.

Algorithm 2: Frontier Detection
Input:

probability of sampling in non-overlap area ηn
list of RRT tree nodes after discarding RRTnodes
the adaptive sliding window area Stotal
number of RRT tree nodes after discarding No
occupancy map M
min exploration gain MinExplorationGain
expected sampling density θ

the upper limit of the RRT nodes in each sliding
window τ

Output:
detected frontiers Pf rontier

1 Ntotal = 0
2 while Ntotal < τ and Ntotal/Stotal < θ do
3 if rand() > ηn then
4 Prand ← Sample in overlap area
5 else
6 Prand ← Sample in non-overlap area
7 Pnearest = nearest(RRTnodes, Prand)
8 Psteer = steer(Pnearest , Prand)
9 if checkingObstacle(Pnearest , Psteer, M) then

10 RRTnodes.push back(Psteer)
11 Ntotal = Ntotal + 1
12 if explorationGain(Psteer, M)

> MinExplorationGain then
13 Pf rontier← Psteer

D. Time Complexity Comparison with DSV Planner [8]

If N points are successfully sampled in the non-overlap
area, we suppose k∗N successful samples are needed in the
whole sliding window. We suppose a successful sampling in



a sliding window requires p sampling attempts. Therefore,
the total number of required sampling attempts is pk ∗N.
The time cost of expanding N nodes in the non-overlap area
(regardless of the initialization step) can be calculated as
pk ∗N times the cost of a single while-loop in Alg. 2.

T (pk ∗N) = Tsample(pk ∗N)+Tnearest(pk ∗N)+

Tsteer(pk ∗N)+TcheckingObstacle(pk ∗N)+Tadd(k ∗N)
(1)

where Tsample, Tsteer are simple operations in linear time with
a complexity of O(pk∗N). According to [24], the complexity
of finding the nearest vertex in a kd-tree and adding a
vertex to the tree is O(n1− 1

d ) and O(logn), respectively,
where d represents the search dimension. Therefore, the
complexity of Tnearest and Tadd is about O((pk ∗N)

3
2 ) and

O((k ∗ N) log(k ∗ N)), respectively. Tadd only needs to be
executed k ∗ N times because the remaining unsuccessful
sampling attempts are discarded in the “checkingObstacle”
step. TcheckingObstacle is related to the “steer” step, which
takes constant time. Thus, the complexity of TcheckingObstacle is
O(pk∗N). In addition, the preprocessing of the LiDAR point
cloud takes constant time and can be easily integrated into
the point cloud processing module, and is ignored. Therefore,
the overall complexity of our approach is

O(pk ∗N)+O((pk ∗N)
3
2 )+O(pk ∗N)+O(pk ∗N)+

O((k ∗N) log(k ∗N))≈ (pk)
3
2 ∗O(N

3
2 )+3pk ∗O(N)+

(k ∗N)∗O(log(k ∗N)).

(2)

Since N is not extremely large, the first-order items of
N are not neglectable, we thus keep them. Note that the
complexity of the DSV Planner [8] can also represented
as above. But p and k are different in our method and
the DSV Planner. Generally, the successful sampling rate is
proportional to the ratio of the free space to the total space in
the sliding window. From Section III.A, it is known that the
sliding windows of both our method and the DSV Planner
cover the same free space (the space that has been observed
by sensors and is not occupied by obstacles). Let the sliding
window area of our method and the DSV Planner is Stotal and
Sdsv, respectively, then the ratio of the successful sampling
rate of our method to that of the DSV Planner [8] is equal
to Sdsv/Stotal . When N points are successfully sampled in
the non-overlapping area, our method needs to sample N

ηn
points successfully in the whole sliding window, while DSV
Planner [8] needs to sample 0.2 ∗N + 0.8 ∗N ∗ Stotal

Sn
points,

where 0.2 and 0.8 is the bias sampling parameter of DSV
Planner [8].

Based on the analysis above, the p value is significantly
larger in the DSV Planner [8] than the one in our method,
especially in narrow passageways. In wide open regions
with obstacles, our method is still more favorable with quite
much improved efficiency. In the worst case where there is
no obstacle around, the adaptive sliding window method is
equivalent to the fixed-sized sliding window scheme. For
k, we mainly save the calculation of sampling in overlap
and redundant regions. Our method almost never performs
sampling in overlap or redundant area that beyond the current
LiDAR scan range, as shown in Fig. 2(a).

IV. EXPERIMENTS

We obtain our evaluation results using the default settings
of the Autonomous Exploration Development Environment
[22], which are the same as in the DSV Planner [8]. We
compare our method with DSV Planner [8] in three sce-
narios: the indoor corridors, forest, and multi-storage garage
scenes 1. Our algorithm’s run-time is evaluated based on a
2.6GHz i7-9750H CPU. We evaluate the average exploration
efficiency ε , the average exploration volume V , the average
exploration distance L, the average sampling attempts in each
sliding window, the average successful samples (the samples
successfully added to the RRT tree) in each sliding window,
and the average sliding window duration of two methods in
Table. I.

The vehicle navigates at 2m/s. Like the DSV Planner
[8], we run our methods 10 times. The average exploration
efficiency ε(m3/s) = mean of (total explored volume of a
run)/(total time of a run) of 10 runs. The average exploration
volume V and distance L are the mean of the final exploration
volume and distance of 10 runs, respectively. The exploration
data ε,V and L of DSV Planner [8] are provided by the
author [22]. The average sampling attempts, the average
successful samples, and the average sliding window duration
in each sliding window of the two methods are the mean
values of 10 runs in each sliding window, respectively. We
draw them and the best exploration trajectories of three
scenes in Fig. 7.

Table. I shows that the successful sampling rate of our
method in each sliding window is 73% (indoor), 116%
(forest), and 139% (garage) of that of the DSV Planner
[8], respectively. In the indoor environment, due to dense
obstacles, the fixed-sized sliding windows of DSV Planner
[8] often cover the free space of other rooms (Fig. 7(a)), i.e.,
the free space covered by the fixed-sized sliding window
of DSV Planner [8] is larger than that covered by the
adaptive sliding window. Although higher in this case, these
samples are not helpful for frontier detection because they
are in other rooms, still reducing the frontier detection
efficiency. In the forest and garage environments, our method
adaptively adjusts the size of the sliding window according
to the surrounding environment structure to obtain a higher
successful sampling rate.

The average number of RRT nodes added in each adaptive
sliding window of three environments is 49.4% (indoor),
87.8% (forest), and 68.3 (garage) of that of the DSV Planner
[8], respectively. In three different types of scenarios, our
exploration efficiency is very close to that of DSV Planner
[8], as shown in Fig. 6. It indicates that both our method
and the DSVP method can adequately fill the respective
sliding windows. We believe that for a fully filled sliding
window, both methods using the same exploration gain reach
the upper limit of exploration efficiency.

Higher successful sampling rate and fewer added RRT
nodes lead to higher frontier detection efficiency. The average

1A representative exploration result of the indoor corridors environment
can be found at: https://youtu.be/jEY3mSrxRoU



(a) Indoor Corridors Environment (b) Forest Environment (c) Multi-storage Garage Environment

Fig. 6: In (a), upper left: the view of the indoor corridor environment. upper right: the chart of instant exploration efficiency
of two methods, where the vertical axis is the exploration space volume and the horizontal axis is the exploration time.
lower left: the chart of instant exploration distance of two methods, where the vertical axis is the traveling distance and the
horizontal axis is the exploration time. lower right: the chart of instant algorithm runtime (including the frontier detection
module and the path planning module) of two methods, where the vertical axis is total running time and the horizontal axis
is the exploration time. (b) and (c) show the results in the forest and multi-storage garage scenarios, respectively.

(a) Indoor Corridors Environment (b) Forest Environment (c) Multi-storage Garage Environment

Fig. 7: In (a), upper left: the best exploration trajectory of our method in the indoor corridors simulated environments.
upper right: the chart of the average sampling attempts of two methods, where the vertical axis is the number of sampling
attempts in each sliding window and the horizontal axis is the sliding window update times. lower left: the chart of the
average successful samples of two methods, where the vertical axis is the number of successful samples added into the
RRT tree in each sliding window and the horizontal axis is the sliding window update times. lower right: the chart of
the average sliding window duration of two methods, where the vertical axis is the time of sliding window duration and
the horizontal axis is the sliding window update times. (b) and (c) show the results in the forest and multi-storage garage
scenarios, respectively.

TABLE I: The efficiency of different methods in the simulated benchmark environments.

DSV Planner [8] Ada-detector

ε V L Sampling
Attemps

Successful
Samples

Sliding window
duration ε V L Sampling

Attemps
Successful
Samples

Sliding window
duration

Indoor 6.8 5711 1384 89062 83 0.64 7.0 5703 1380 61943 41 0.29
Forest 37.7 43647 2159 56798 98 0.47 37.7 42571 2124 41123 86 0.37
Garage 16.4 43311 4952 51558 63 0.31 16.3 43216 4946 25212 43 0.18

duration of each sliding window is 0.29, 0.37 and 0.18
seconds, which is 45.3%, 78.7% and 58.1% of that of DSV
Planner [8] in the indoor, forest, and garage environments,
respectively. We reduce the frontier detection runtime by

about 40% compared with the DSV Planner [8].



V. CONCLUSION

In this paper, we propose an adaptive RRT-based frontier
detector for autonomous exploration. Our main contributions
include an adaptive sliding window of RRT to improve
successful sampling rate and a non-uniform sampling strat-
egy to solve the over-sampling problem of RRT between
two adjacent sliding windows. We validated our method
in three simulated benchmark scenarios. The experimental
comparison shows that we reduce the frontier detection
runtime by about 40% compared with the SOTA method.

REFERENCES

[1] Steven M LaValle et al. Rapidly-exploring random trees: A new tool
for path planning. 1998.

[2] Hassan Umari and Shayok Mukhopadhyay. Autonomous robotic
exploration based on multiple rapidly-exploring randomized trees. In
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1396–1402. IEEE, 2017.

[3] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and
Roland Siegwart. Receding horizon” next-best-view” planner for 3d
exploration. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 1462–1468. IEEE, 2016.

[4] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot.
Informed rrt*: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2997–3004. IEEE, 2014.

[5] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot.
Batch informed trees (bit*): Sampling-based optimal planning via
the heuristically guided search of implicit random geometric graphs.
In 2015 IEEE international conference on robotics and automation
(ICRA), pages 3067–3074. IEEE, 2015.

[6] Sanjiban Choudhury, Jonathan D Gammell, Timothy D Barfoot, Sid-
dhartha S Srinivasa, and Sebastian Scherer. Regionally accelerated
batch informed trees (rabit*): A framework to integrate local in-
formation into optimal path planning. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 4207–4214.
IEEE, 2016.

[7] Mihir Dharmadhikari, Tung Dang, Lukas Solanka, Johannes Loje,
Huan Nguyen, Nikhil Khedekar, and Kostas Alexis. Motion primitives-
based path planning for fast and agile exploration using aerial robots.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 179–185. IEEE, 2020.

[8] Hongbiao Zhu, Chao Cao, Yukun Xia, Sebastian Scherer, Ji Zhang,
and Weidong Wang. Dsvp: Dual-stage viewpoint planner for rapid
exploration by dynamic expansion. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE.

[9] Brian Yamauchi. A frontier-based approach for autonomous explo-
ration. In Proceedings 1997 IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation CIRA’97.’Towards
New Computational Principles for Robotics and Automation’, pages
146–151. IEEE, 1997.

[10] Philip L Frana and Thomas J Misa. An interview with edsger w.
dijkstra. Communications of the ACM, 53(8):41–47, 2010.

[11] Matan Keidar and Gal A Kaminka. Robot exploration with fast frontier
detection: theory and experiments. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pages 113–120. International Foundation for Autonomous
Agents and Multiagent Systems, 2012.

[12] Phillip Quin, Alen Alempijevic, Gavin Paul, and Dikai Liu. Expanding
wavefront frontier detection: An approach for efficiently detecting
frontier cells. In Australasian Conference on Robotics and Automation,
ACRA, 2014.

[13] Juraj Oršulić, Damjan Miklić, and Zdenko Kovačić. Efficient dense
frontier detection for 2-d graph slam based on occupancy grid
submaps. IEEE Robotics and Automation Letters, 4(4):3569–3576,
2019.

[14] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-
time loop closure in 2d lidar slam. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 1271–1278.
IEEE, 2016.

[15] Zezhou Sun, Banghe Wu, Cheng-Zhong Xu, Sanjay E. Sarma, Jian
Yang, and Hui Kong. Frontier detection and reachability analysis
for efficient 2d graph-slam based active exploration. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS
2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021,
pages 2051–2058. IEEE, 2020.

[16] Cl Connolly. The determination of next best views. In Proceedings.
1985 IEEE international conference on robotics and automation,
volume 2, pages 432–435. IEEE, 1985.

[17] Giuseppe Oriolo, Marilena Vendittelli, Luigi Freda, and Giulio Troso.
The srt method: Randomized strategies for exploration. In IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 5, pages 4688–4694. IEEE, 2004.

[18] Luigi Freda and Giuseppe Oriolo. Frontier-based probabilistic strate-
gies for sensor-based exploration. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 3881–
3887. IEEE, 2005.

[19] Tung Dang, Christos Papachristos, and Kostas Alexis. Visual saliency-
aware receding horizon autonomous exploration with application to
aerial robotics. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 2526–2533. IEEE, 2018.

[20] Christos Papachristos, Shehryar Khattak, and Kostas Alexis.
Uncertainty-aware receding horizon exploration and mapping using
aerial robots. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 4568–4575. IEEE, 2017.

[21] Tung Dang, Marco Tranzatto, Shehryar Khattak, Frank Mascarich,
Kostas Alexis, and Marco Hutter. Graph-based subterranean explo-
ration path planning using aerial and legged robots. Journal of Field
Robotics, 37(8):1363–1388, 2020.

[22] Chao Cao, Hongbiao Zhu, Fan Yang, Yukun Xia, Howie Choset,
Jean Oh, and Ji Zhang. Autonomous exploration develop-
ment environment and the planning algorithms. https://www.
cmu-exploration.com/development-environment.

[23] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. Exploring
large and complex environments fast and efficiently. In 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.

[24] Howie M Choset, Kevin M Lynch, Seth Hutchinson, George Kantor,
Wolfram Burgard, Lydia Kavraki, Sebastian Thrun, and Ronald C
Arkin. Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005.

https://www.cmu-exploration.com/development-environment
https://www.cmu-exploration.com/development-environment

	I INTRODUCTION
	II Related works
	II-.1 The search-based frontier detectors
	II-.2 The sampling-based frontier detectors


	III Methodology
	III-A Adaptive Sliding Window
	III-B Non-uniform Sampling within an Adaptive Sliding Window
	III-C Frontier Detection
	III-D Time Complexity Comparison with DSV Planner dsvp 

	IV Experiments
	V Conclusion
	References

