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Reproduction of Human Demonstrations with a Soft-Robotic Arm
based on a Library of Learned Probabilistic Movement Primitives

Paris Oikonomou1, Athanasios Dometios1, Mehdi Khamassi1,2 and Costas S. Tzafestas1

Abstract— In this paper we introduce a novel technique that
aims to control a two-module bio-inspired soft-robotic arm
in order to qualitatively reproduce human demonstrations.
The main idea behind the proposed methodology is based
on the assumption that a complex trajectory can be derived
from the composition and asynchronous activation of learned
parameterizable simple movements constituting a knowledge
base. The present work capitalises on recent research progress
in Movement Primitive (MP) theory in order to initially build
a library of Probabilistic MPs (ProMPs), and subsequently to
compute on the fly their proper combination in the task space
resulting in the requested trajectory. At the same time, a model
learning method is assigned with the task to approximate the
inverse kinematics, while a replanning procedure handles the
sequential and/or parallel ProMPs’ asynchronous activation.
Taking advantage of the mapping at the primitive-level that
the ProMP framework provides, the composition is transferred
into the actuation space for execution. The proposed control
architecture is experimentally evaluated on a real soft-robotic
arm, where its capability to simplify the trajectory control task
for robots of complex unmodeled dynamics is exhibited.

I. INTRODUCTION

Elderly population tends to increase according to World
Health Organization’s research on health and aging [1]. In
the frames of the I-SUPPORT project (EU H2020 grant
agreement no. 643666), a modular robotic system based
on a soft-robotic arm (Fig. 1) was developed to support
non-autonomous elderlies to independently complete various
bathing tasks. Such an interactive bathing application is
demanding in terms of safety since it involves human-
robot interaction. Hence, research effort was focused on soft
robots [2] with inherent or structural compliance, which gives
them the ability to actively interact with the environment
with drastically reduced risks of injuries. Many continuum
manipulators have already been presented with tendon [3] or
pneumatic actuation [4], or a combination of those [5]. Most
of these robots have a complex mechanical and actuation
structure, and require sophisticated kinematic analysis and
control schemes. To address these issues, analytic kinematic
models based on constant curvature assumption have been
established [6], and powerful control strategies for continuum
manipulators are still being developed [7].

In the context of an assistive bathing robot, learning of
bathing motions from expert’s demonstration is required to
ensure the execution of proper washing actions in a human-
friendly way. Complicated movements could be seen as a
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Fig. 1: The soft-robotic arm covered with nylon ensuring water
resistance, while performing water pouring (part of the showering
task) in a clinical environment. The colored lines depict the mean
value of the learned ProMPs in the task space, covering the desired
subspace of the robot’s workspace. A projection of the grid of
primitives on the human back is also illustrated at the bottom left.

composition of fundamental building blocks called primi-
tives, which is executed either in sequence, or with partial
or complete overlap. The fusion of such primitive actions
with different parameters (e.g. duration, amplitude etc.) can
reproduce more delicate and human-friendly actions. An
interactive version of Dynamic Movement Primitives was
proposed in [8], combined with a vision-based controller for
the adaptation of demonstrated washing actions on the user’s
body parts. However, this work addresses the problem only
in the task space and does not take into account the behaviour
of the soft-robotic arm.

Recent model-based approaches [9] have been specifically
developed to perform dynamic motion control with contin-
uum robots. Similarly, [10] presents suitable models that
combine feed-forward control and decoupled PD-controllers,
applied to a pneumatically actuated manipulator. A different
approach based on open-loop predictive controllers is pro-
posed in [11], using machine learning derived dynamic mod-
els directly from the actuation to the task space. The work
presented in [12] is based on a different set of techniques,
in which novel spatial dynamics are applied to variable
length multi-section continuum arms under the assumption
of circular arc deformation of continuum sections without
torsion. A relevant approach is presented in [13] where the
authors use a feed-forward neural network component to
compensate for dynamic uncertainties.
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However it is evident in the literature that the control
schemes proposed for soft robots are highly dependent
on the hardware set-up and actuation. Thus, attempting a
fair performance comparison, we focus on dynamic control
strategies applied onto the same soft robot. One of our
previous works [14] presents a model-free neurodynamic
controller based on Central Pattern Generators (CPGs) for
the generation and tracking of periodic motions by the end-
effector (EE) of a single module version of the soft-robotic
arm. In this work, we focus on a more robust implementation
that extends the capabilities of the soft arm by activating
two modules and thus allowing for tracking of more generic
and complex motions demonstrated by humans. In [15]
a closed-loop predictive controller was implemented using
trajectory optimization for training of a model-based policy
learning algorithm. The focus of this approach was to achieve
trajectory tracking accuracy at each time step, a requirement
rarely set for soft robots. Such control schemes require large
amount of data and many iterations for a single trajectory
reproduction, making training convergence time-consuming.
In our latest work [16] the proposed controller used ProMPs
to create a mapping at the primitive level between task
and actuation-space, whose proper combination aims for the
reproduction of a trajectory defined by sparse way-points
with time-constraints. However, the requested trajectories are
limited to be similar with the derived demonstrations, e.g. in
terms of trajectory direction/flow.

In this paper, we present an architecture that aims to
control a two-module bio-inspired soft-robotic arm. The
designed controller exploits the enhanced parameterizability
of ProMPs, focusing on the qualitative reproduction of
human demonstrations, assuming that any trajectory might
be defined as the proper composition of individual primitives
obtained by a learned MP library. Apart from the common
ProMP framework, this work includes several novelties: a
path segmentation process is used to properly divide the
human demonstration into small linear segments; a learning-
based module with the ability to incrementally update its
model approximates the robot’s inverse kinematics; and
an auxiliary process handles the primitive’s asynchronous
activation through replanning. The efficiency of the proposed
methodology is evaluated experimentally on the same two-
module soft manipulator used in [16], and described in [17],
[18]. Each module is actuated by three radially symmetric
tendons driven by three servomotors (Hitec HS-422 Super
Sport - Supermodified Servo by 01TM Mechatronics) which
change the configuration of the module after modifying their
cable’s length. The experimental results highlight its capa-
bility to perform trajectory control using a complex robotic
system with unknown dynamics, in applications where high-
precision is not required.

II. PROBLEM STATEMENT

A soft robot like the one examined in this work is not
often assigned with the task of path following, especially
when high-precision is required; the mechanical properties
of its design are mostly exploited in tasks where safety must

be ensured, such as those involving human-robot interaction
or manipulation of fragile materials. Hence, our focus lies
on the qualitative reproduction of human motions defined in
a subspace of the robot’s workspace. In some approaches
like in [19], the desired motion’s mapping from the task
to the actuation space is accomplished through kinaesthetic
teaching, however this is not applicable here due to the
mechanical structure of the soft robot.

The static mapping between the task and joint space
is usually provided by a mathematical model based on
the known geometry of a rigid manipulator, like in [20].
However, in cases where the complexity of the robot’s
dynamics prevents the use of such approaches, alternative
solutions are recommended, like the ones reviewed in [21],
[22] focusing on model learning. On the other hand, most of
these methods lack the ability to adjust their behavior on-the-
fly, providing only offline training; this is a serious flaw since
changes in robot’s dynamics constitute a usual phenomenon
in bio-inspired systems. The learning-based approximation
of inverse kinematics designed in [16] does not sufficiently
exploit the available information, and rather focuses only on
the points of high interest - the so-called conditioning points
- which are sparse, hence it is rarely updated.

III. CONTROL ARCHITECTURE

The proposed methodology assumes that a requested tra-
jectory could be described as the composition of primitives
obtained by a learned MP library, and formed properly in
the task space by exploiting the ProMP’s properties, while
subsequently the composition’s parameters are transferred
unchanged to the actuation space, and applied to the corre-
sponding primitives provided by a learned mapping. A block
diagram briefly describing the control flow is illustrated in
Fig. 2.

A. Demonstration generation and MP training

In the scenario of washing the human back and its involved
sub-processes such as the water pouring task (Fig. 1), the
motion of the robot is limited to the quasi-plane defined
by the human back’s surface (assuming xy-plane, without
loss of generality), while the movement on the perpendicular
direction is considered to be negligible. Accordingly, a grid
of primitives built across the xy-plane is required, providing
the capability to plan and reproduce trajectories as a result
of primitives’ composition.

The process through which the demonstrations are gener-
ated is quite similar to the one described in [16]. Concretely,
a subspace WSub within the robot’s workspace is initially
defined as a region of interest for the requested trajectories,
where the demonstrations should lie in. Subsequently, all mo-
tors are fed with actuation that result in the EE’s movement
from a starting point lying on the border of WSub towards
another one, defining a direction of motion. In contrast to
[16] where the MP library is formed by demonstrations of a
single direction, here the aforementioned process is executed
four times so that the resulting MPs cover all directions
of xy-plane - SD = {x+, x−, y+, y−}. These trajectories



Fig. 2: The overall architecture of the proposed controller [CPs : Conditioning Points, PoC : Parameters of Composition]

are grouped into classes under a similarity criterion, before
proceeding to MP training. Eventually, a grid of primitives
is formed as shown in Figs. 1 and 3.

Even though each formed ProMP constitutes a trajectory
distribution, which implies that it is defined by a mean vector
and a covariance matrix, from now on it is supposed that the
second is the identity matrix. Hence only the mean vector
affects the resulting trajectory. In that sense, the stochasticity
introduced by the demonstrations’ variation is eliminated,
and the resulting trajectory extracted by each primitive does
not differ from one execution to the other.

B. Human-Hand Demonstration

During the human motion’s recording, the hand is mainly
moved on the xy-plane - defined by the human’s back
surface - while the movement on the z-axis is negligible.
Before computing the controller’s parameters, a set of pre-
processing steps takes place in order to ensure that the
trajectory’s execution is feasible by the robot. The first one
is to scale it on the xy-plane so that it lies within the limits
of the subspace WSub. At the same time, the robot’s motion
must start and finish at points lying on the border of subspace
WSub where the primitive blocks that will compose the
requested trajectory have zero velocity. As a consequence,
two additional points pCS and pCE should be determined on
the limit of WSub where the robot’s motion will start from
and stop at, respectively, as shown in Fig. 3. Subsequently,
for each (x,y) pair, the corresponding z coordinate that sets a
feasible target in 3D-space for the robot should be estimated,
using the method described in Section III-D.

C. Path Segmentation

In [23], the authors present a variety of algorithms for
segmentation of paths lying on a plane with application in
animal movement patterns’ change detection, ranging from
time to topology-based methods. Focusing on the second
category, the Change Point Test (CPT) method [24] optimally
divides the path into linear segments by detecting significant
changes in the movement direction. As a result, a set
SCP of conditioning points is derived after neglecting any

changes on z-axis. Subsequently, our implementation inserts
intermediate points into SCP where the distance h between
two consecutive ones exceeds a predefined threshold hmax.
Eventually, the two corner points pCS and pCE defined in
Section III-B are also added to SCP . It should be noted that
each point in SCP is accompanied by its velocity, as this
is captured motion during the hand’s motion. An illustrative
example of path segmentation is depicted in Fig. 3.

D. Model learning for inverse kinematics

Focusing on the approximation of the robot’s inverse
kinematics, the implemented algorithm should be capable
of exploiting the total available information. In [25] a
novel data-driven method is presented, called Incremental
Sparse Spectrum Gaussian Process Regression (I-SSGPR).
The authors capitalised on the exhaustively studied Gaussian
Process Regression aiming at designing a method that cope
with unstructured and non-stationary environments where
adaptability to changing conditions is required - as in our
application. At the same time, low computational complexity
is achieved, while automated hyperparameter optimization
is provided. Another interesting feature is the capability to
perform both offline training using an existing dataset, as
well as online updates as soon as new data is available.

Apart from the I-SSGPR-based module that approximates
the inverse kinematics, the operation of an additional one
is required to provide the robot with a feasible target by
computing the z coordinate when an (x,y) pair is received, as
explained in Section III-B. Both modules are initially trained
offline using the dataset derived during the demonstration
generation described in Section III-A, while online updates
are performed during trajectory execution by the robot.

E. ProMP composition in task space and skill transfer to
actuation space

As already stated, the qualitative reproduction of a com-
plex trajectory could be accomplished with the asynchronous
activation and combination of MPs drawn from an existing
library. Passing through the sparse way-points should be done
with the appropriate velocity at a specific time-instance, as



Fig. 3: Left: An illustrative example showing how some algorith-
mic components (ProMP training, Path Segmentation and ProMP
composition in task-space) operate. The black curves forming the
grid in xy-plane indicate the primitives of MP library obtained after
training. The cyan solid curve is the human demonstration. The cyan
dashed curves connect the human demonstration with the artificial
conditioning points. The circles (o) denote the conditioning points
[Red: CPT, Green: where distance between consecutive red exceeds
a threshold, Blue: artificial conditioning points lying on the WSub].
The remaining colored curves are 4 primitives of different directions
passing through the same conditioning point. Right: The desired
velocity g⃗d is computed as the linear combination of the velocities
g⃗x+, g⃗x−, g⃗y+ and g⃗y− of the corresponding primitives at a specific
conditioning point.

these are determined by the human hand’s motion. To cope
with such a challenge, each conditioning point should acti-
vate independently each selected primitive with the required
features (conditioning and duration). The transition between
consecutive points is realized with the replanning property,
initially introduced in [16].

The following process applies to each conditioning point
pi in SCP , except for the two corners pCS and pCE . At the
first step, pi is classified to one primitive for each direction
{x+, x−, y+, y−} - eventually classified to 4 primitives
according to its distance from their closest point. As de-
picted in Fig. 3, all primitives, where pi is classified to,
are executed in the task space passing through pi and the
corresponding corner points of the primitive for which the
conditioning property is also applied. After each selected
primitive is (virtually) executed with a reference duration
dref , a resulting velocity at pi is derived.

The purpose here is to compute how slower/faster with
respect to dref a primitive should be executed, so that the
combination of all velocities at point pi results in the desired
one - noting that the duration is inversely proportional to the
velocity. The velocities gm with m = {x+, x−, y+, y−, d}
depicted in Fig. 3 could be written as follows:

g⃗x+ = ax+x̂+ bx+ŷ

g⃗x− = ax−x̂+ bx−ŷ

g⃗y+ = ay+x̂+ by+ŷ

g⃗y− = ay−x̂+ by−ŷ

g⃗d = adx̂+ bdŷ

(1)

where am and bm are the projections’ coefficients of gm

onto axes x and y respectively. The desired velocity gd is
defined as the linear combination of velocities gn with n =
{x+, x−, y+, y−} as follows:

g⃗d = lx+g⃗x+ + lx−g⃗x− + ly+g⃗y+ + ly−g⃗y− (2)

The goal then is to find the coefficients ln for which
Equation 2 holds. It should be noted that, since each velocity
is derived from a primitive with a specific direction, negative
coefficients ln are not allowed. In this way, a system of linear
equations is formulated that requires non-negative solutions,
constituting a linear programming (LP) problem.

A common technique that treats such constrained systems
is the simplex method described in [26]. Initially, two new
artificial variables are introduced, as the number of equations
derived by Equation 2. Proceeding to the solution, L =
[lx+, lx−, ly+, ly−, l1, l2]

T is requested that minimizes the
linear objective function cTL with respect to L, where
c = [0, 0, 0, 0, 1, 1]T , subject to AeqL = beq and L ≥ 0,
where beq = [ad, bd]

T and

Aeq =

[
ax+ ax− ay+ ay− 1 0
bx+ bx− by+ by− 0 1

]
(3)

As a result, coefficients lx+, lx−, ly+ and ly− are de-
rived, implying how slower/faster the corresponding primi-
tive should be executed with respect to its reference velocity
gn at point pi so that the desired velocity is accomplished as
a linear combination of all primitives’ velocities. Then each
primitive’s duration is computed by d

(i)
n = dref/ln. The last

parameter that is deduced is the starting time-instance t
(i)
n of

each primitive in the global time-frame.
Subsequently, the skill transfer process takes place where

all derived parameters are transferred unchanged to the motor
space, the MP library provides the corresponding primitives
in the actuation-space (Section III-A), and the I-SSGPR mod-
ule interprets all conditioning points into motor commands
(Section III-D). Eventually, given that all primitives are
formed, the execution takes place, where they are activated
independently and asynchronously as determined by their
starting time-instance t

(i)
n , as long as the replanning property

handles the transition between primitives of consecutive
conditioning points, as explained in the next section.

F. Replanning at the ProMP-level

In this work, the replanning at the primitive-level property
(introduced in [16]) is assigned with the task of handling
the transition between primitives of consecutive conditioning
points by gradually decreasing the power of the last con-
ditioning point’s primitives, while increasing the power of
the next one. Here, the replanning differs from blending in
the sense that the primitives are not necessarily executed in
parallel under synchronous activation, as it is assumed in
[27]. Additionally, in this application the intuition behind
replanning is that it ensures smooth transition between se-
quential primitives formed by consecutive transition points,
rather than blending them.



Fig. 4: Experimental results presenting the whole reproduction sequence of human hand motion demonstrations. Left: Human Hand
Demonstration - A rectangular motion demonstration is captured using a 3D magnetic tracker attached to the user’s hand. Center: Path
Segmentation in Subspace - Adaptation of the demonstrated motion to the desired subspace of the robot’s workspace visualized in 2D.
The robot demonstrations along with the learned ProMP’s mean trajectories are depicted with the respective colors. The result of the
trajectory segmentation algorithm along with the extra conditioning points are shown with black dots. Right: Execution of trajectory #1
by the soft-robotic arm - The desired conditioning points are depicted with colored x symbol, while the executed points at the same
timestep are depicted with the respective colored dots.

Fig. 5: Experimental results presenting the execution (solid black line) of the demonstrated trajectories (pale red line) by the soft-robotic
arm. Left: Execution of trajectory #2 - The desired conditioning points are depicted with colored x symbols, while the executed points
at the same timestep are depicted with the respective colored dots. The red symbols (x and dot) indicate the first conditioning point of
the trajectory. Center: Execution of trajectory #3. Right: Execution of trajectory #4.

TABLE I: Mean error measurements for ten (10) consecutive executions of the human demonstrated trajectories by the soft-robotic arm,
depicted in (Figs. 4-5). The position error ep (cm), the velocity direction error ev̂xy (deg) and the ratio of the actual velocity to the desired
one e|v⃗|xy

(dimensionless) are all measured in each conditioning point CP## at the corresponding time-step.

Traj. ID error type CP01 CP02 CP03 CP04 CP05 CP06 CP07 CP08 CP09 CP10 CP11 CP12 average

ep(cm) 0.23 0.38 1.41 2.39 1.34 2.16 2.02 1.54 1.98 0.54 1.01 1.23 1.35

1 ev̂xy (deg) - 7.66 4.91 2.67 0.63 23.34 18.11 0.47 2.25 0.32 2.55 - 6.29

e|v⃗|xy
- 0.76 0.94 0.79 0.90 0.75 0.77 0.73 1.18 0.88 0.62 - 0.80

ep(cm) 1.24 1.01 1.27 2.40 2.12 2.03 1.82 1.18 1.01 2.51 2.57 1.12 1.69

2 ev̂xy (deg) - 5.44 13.14 2.21 14.87 5.73 5.32 0.13 15.04 17.25 17.18 - 9.63

e|v⃗|xy
- 0.79 0.76 0.84 0.81 0.76 0.78 0.78 0.79 0.76 0.74 - 0.78

ep(cm) 1.02 0.80 1.74 1.82 1.29 0.82 1.93 3.03 2.5 3.39 1.45 - 1.80

3 ev̂xy (deg) - 8.22 22.70 1.43 3.67 0.48 18.88 17.68 2.41 12.98 - - 9.83

e|v⃗|xy
- 0.84 0.82 0.68 0.77 0.98 0.81 0.71 0.77 0.73 - - 0.79

ep(cm) 0.65 0.74 0.85 1.25 1.89 2.37 0.73 0.67 0.91 0.90 0.15 - 1.01

4 ev̂xy (deg) - 3.05 26.95 10.76 12.27 13.37 0.47 16.97 23.77 9.73 - - 13.04

e|v⃗|xy
- 0.77 0.82 0.79 0.98 0.76 0.85 0.78 0.75 0.75 - - 0.81



IV. EXPERIMENTAL EVALUATION

In this work, the evaluation should focus on the various
components’ capability to perform as an entity in a collab-
orative way. Initially, directed demonstrations are generated
by the robot, grouped into classes and trained to form the
MP library (Section III-A). The resulting grid of primitives
is illustrated in Fig. 4. Additionally, the collected data - the
EE’s positions along with the corresponding actuations - are
used to offline train the two I-SSGPR modules (Section III-
D). Note that, ten trigonometric basis functions are used to
construct each I-SSGPR module. From now on, the learned
models (ProMP library and I-SSGPR modules) are used as
knowledge base by the planner in order to perform some
desired tasks; the content of the ProMP library for both the
actuation and the task-space is fixed, while both I-SSGPR
modules are constantly updated as new data are obtained in
the course of the robot’s execution.

Four different captured hand’s motions are chosen to be
reproduced by the robot’s EE, in such a way that each one
introduces a variation in terms of complexity, while they are
all indicative of the trajectories performed by humans during
showering tasks. Concretely, trajectory #1 shown in Fig. 4 is
the simplest one, consisting of linear segments whose corners
are close to the corresponding primitives’ edges. Hence they
might be reproduced by the sequential activation of different
primitives. On the other hand, trajectory #2 depicted in
Fig. 5 uses just a small part of y-direction’s primitives,
while trajectory #3 constitutes a combination of the previous
trajectories - it starts as the trajectory #2 and continues as the
#1. Eventually, trajectory #4 is more complex, consisting of
arbitrary movement blocks, including diagonal motion with
respect to the primitives’ direction forming the grid.

Figs. 4 and 5 depict the trajectories executed by the real
robot projected onto the xy-plane, along with the correspond-
ing desired and resulting conditioning points in the task
space. The proximity level between the desired and the per-
formed trajectories implies that the proposed methodology
has the capability to successfully reproduce demonstrated
hand’s motions, since it manages to handle the movement
not only close to the conditioning points but also in the
intermediate space. Both the CPT algorithm (Section III-C)
and the optimal composition of primitives for approximating
the recorded velocity (Section III-E) contribute to the spatial
similarity of the two motions.

On the other hand, it seems that the execution of trajecto-
ries #1, #2 and #3 is disturbed due to the following reason:
from the moment the I-SSGPR modules are trained offline
until the execution of each trajectory, many experiments took
place resulting in loose cables (driven by the motors), and
thus biased trajectory execution towards some directions.
This phenomenon indicates the necessity for more active
continuous update/tuning of the inverse kinematics model.

Despite the loose cables, from Table I it can be seen
that the mean position error in each conditioning point
after ten executions for all four trajectories is still relatively
small, demonstrating the capability of the I-SSGPR model to

approximate the complex kinematics of a soft-robotic arm,
while ensuring qualitative reproduction of the hand’s motion.
At the same time, the measured velocity at each conditioning
point is close to the targeted one - in terms of both magnitude
and direction - even though it corresponds to different
locations, indicating the robustness of our implementation.

The experimental evaluation shows that the proposed
methodology is capable of reproducing complex movements
out of simple demonstrations on a soft-robotic arm. A more
illustrative presentation of the robot’s performance is given
in the video accompanying the manuscript (Suppl. Mat. 1).

V. DISCUSSION AND CONCLUSION

In the frames of this work, several methods operate in a
collaborative way under the same control architecture whose
performance is highly dependent on the efficiency of each
component individually, as well as on their cooperation. The
novelty of our work relies on exploiting the enhanced prop-
erties of ProMPs in order to control a soft-robotic arm, while
avoiding the use of complex fixed models. The key principle
here is to build a mapping at the primitive level between
the task and the actuation space, enabling the capability of
planning in the task and transferring the skill to the actuation
space. At the same time, the auxiliary algorithms, namely
CPT for path segmentation, I-SSGPR for model learning and
the replanning at the ProMP-level, contribute towards this
direction. The results show that the proposed architecture is
able to qualitatively reproduce human demonstrations.

To the best of our knowledge, this is the first attempt
that focuses on the composition of complex movements by
asynchronously blending discrete building blocks such as the
movement primitives in a parallel or a sequential way. The
proposed architecture constitutes a one-shot approach since
it manages to successfully execute the targeted trajectories
after only one iteration without demanding big amount of
data nor high computational effort.

In future work, we plan to implement a dynamic control
scheme on top of the present methodology, assigned with
the task to ensure active online correction to errors during
execution. In addition, the capability to replan on-the-fly
the trajectory with focus on coping with changes in the
environment during execution (e.g. posture change of the
human back) would provide added value. The action set
could also be extended to include the pneumatic actua-
tion, offering the ability to physically interact with the
environment, handling external loads and applying forces.
Eventually, we are planning to adapt this methodology in
other soft robotic mechanisms, such as a soft robotic gripper
developed in the frames of the EU-funded SoftGrip project.
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