
Unified Data Collection for Visual-Inertial Calibration via Deep
Reinforcement Learning

Yunke Ao∗, Le Chen∗, Florian Tschopp, Michel Breyer, Andrei Cramariuc, Roland Siegwart

Abstract— Visual-inertial sensors have a wide range of ap-
plications in robotics. However, good performance often re-
quires different sophisticated motion routines to accurately
calibrate camera intrinsics and inter-sensor extrinsics. This
work presents a novel formulation to learn a motion policy
to be executed on a robot arm for automatic data collection
for calibrating intrinsics and extrinsics jointly. Our approach
models the calibration process compactly using model-free
deep reinforcement learning to derive a policy that guides
the motions of a robotic arm holding the sensor to efficiently
collect measurements that can be used for both camera intrinsic
calibration and camera-IMU extrinsic calibration. Given the
current pose and collected measurements, the learned policy
generates the subsequent transformation that optimizes sensor
calibration accuracy. The evaluations in simulation and on a
real robotic system show that our learned policy generates
favorable motion trajectories and collects enough measurements
efficiently that yield the desired intrinsics and extrinsics with
short path lengths. In simulation we are able to perform cali-
brations 10× faster than hand-crafted policies, which transfers
to a real-world speed up of 3× over a human expert. 1

I. INTRODUCTION
In recent years, visual-inertial (VI) sensors, which include

one or more cameras and an inertial measurement unit (IMU),
have become a key component of many autonomous mobile
robot systems since they can provide precise motion estimates
and are well suited for use in various high-level robotic
tasks [1], [2], [3], [4], [5]. Precise calibration, which for VI
sensors refers to the parameters for the camera intrinsics,
the camera-IMU extrinsics, and the time offset between the
different sensors, are of great importance to the accuracy
and performance of VI systems [6], [7], [8]. However, it is
usually non-trivial to perform the calibration by hand or with
a manually pre-programmed operator, since it often requires
complex motion routines ensuring observability in controlled
environments [8], [9], [10], [11]. In order to guarantee high
calibration accuracy, typically large amounts of data are
recorded for optimization. But the calibration time for the
trajectory quickly grows as more measurements are collected,
which makes calibration a quite time-consuming process [12].
In addition, given the current pose and calibration data
collection state, the movement that renders the best calibration
results effectively and efficiently for the next step is not
obvious.

In early studies, several works applied reinforcement
learning (RL) to get the best sequence of trajectories for

*Authors contributed equally and both can be considered as first authors.
Authors are with the Autonomous Systems Lab, ETH Zurich, Leonhard-

strasse 21, 8092 Zurich, Switzerland. Email: yunkao,lechen@ethz.ch
1The code of this work is publicly available at: https://github.

com/ethz-asl/Learn-to-Calibrate/tree/master.

VI calibration. Nobre et al. [9] proposed using Q-learning to
select a sequence of motions from a predefined library aiming
to render sufficient observability of the calibration problem.
However, this approach only suggests which predefined
motions to choose from the empirically designed library
without exploring new possible motion primitives. To look
into new possible trajectories, Chen et al. [13] modeled the
calibration process as a Markov decision process (MDP) and
proposed a model-based deep RL calibration framework with
an adapted version of particle swarm optimization (PSO) [14]
for sampling to generate different trajectories for intrinsic
and extrinsic calibration. However, the MDP in this method
suffers from high dimensionality and the learned open-loop
trajectories do not adapt to the feedback of the current state.

To deal with the shortcomings of current systems (see
Section II), we model calibration as an MDP in a compact way
and use model-free deep RL [15] to learn a policy that guides
the movements of the VI sensors. A robot arm then executes
the motions. According to the current pose and collected
measurements, the policy generates the next transformation
that optimizes calibration accuracy and efficiency. Addition-
ally, we simulate different VI sensor configurations including
symmetric and asymmetric distortions to model the variability
that also exists in the real world, enabling better transferability
to real scenarios. Compared with other solutions, the action
space of our model has fewer constraints, making it possible
to learn a more general policy for calibration. Moreover, our
method obtains only one policy that can be used both for
intrinsic and extrinsic calibration. The main contributions of
this work are as follows:
• To the best of our knowledge, we are the first to use

model-free deep RL to learn a policy that generates
trajectories for efficiently collecting calibration measure-
ments.

• We propose a novel formulation to jointly calibrate both
camera intrinsic and VI extrinsic parameters with only
one trajectory.

• The simulated evaluation shows that the trajectories
generated by the learned policy deliver more accurate and
efficient calibrations compared with other trajectories.
The real experiments confirm the transferability of our
approach to real scenarios.

II. RELATED WORKS

Calibrating a VI system can be divided into two parts:
camera calibration and camera-IMU calibration. The goal
of camera calibration is to determine the camera intrinsics
and the distortion model coefficients [16]. Camera-IMU

ar
X

iv
:2

10
9.

14
97

4v
1 

 [
cs

.R
O

] 
 3

0 
Se

p 
20

21

https://github.com/ethz-asl/Learn-to-Calibrate/tree/master
https://github.com/ethz-asl/Learn-to-Calibrate/tree/master


Fig. 1: Entire framework of our method. At each step, the agent first proposes an action based on the current state and policy. This action is then used to
compute the transformation of the pose of the end-effector. Given the next pose, the simulation platform executes the trajectory and records the resulting
sensor data. The calibrator then updates the data acquisition status based on the sensor measurements. If the step is the last step, the calibrator will also
perform a final calibration. All the results and data acquisition status are then transformed into new states and rewards by the MDP embedding module,
which is recorded in the replay buffer of the RL agent. The calibration, simulation, and MDP embedding modules can be jointly regarded as the environment
for the RL learner to interact. Apart from generating new interactions at each iteration, the agent also samples recorded interaction data from the replay
buffer to update the policy using the Soft Actor-Critic (SAC) algorithm [15].

calibration implies obtaining the camera-IMU extrinsics and
the time offset between different sensors [6], [7]. The classical
method for camera calibration is to construct constraints using
a known calibration pattern and formulate an optimization
problem to determine the parameters [17], [18]. For camera-
IMU extrinsic calibration, the most popular and reliable
methods also require a calibration board. Furgale et al.
[10], [11] proposed to parameterize the pose and IMU bias
trajectories using B-splines and applied continuous-time batch
estimation to jointly calibrate the time offsets and spatial
transformations between multiple sensors. Those methods
are able to retrieve the calibration parameters of the sensors
with good accuracy. However, the optimal trajectories for
measurement collection in terms of efficiency, observability,
and accuracy, remain unknown. Calibration still requires
expert knowledge to collect enough effective data and is
often a time-consuming process for inexperienced people.

In recent years, automatic calibration of VI sensors has
become an active research topic in robotics communities.
The approaches for automatic calibration can be divided into
two categories: trajectory optimization based and RL based.
Most of the trajectory optimization based methods focus on
optimizing the observability Gramian of the trajectories on
the calibration parameters [19], [20]. However, these methods
ignore some practical requirements of calibration, such as
minimizing path length, because they are difficult to model.

RL based methods can better include those general re-
quirements. Nobre et al. [9] defined a library containing
different motions and applied Q-learning to select a sequence
of motions from the library with the goal to obtain enough
observability for calibration. However, the performance,
as well as efficiency of calibration, is constrained by the
predefined library because many possible motion sequences
are not included or explored.

Chen et al. [13] addressed this problem by learning
continuous parameters of calibration trajectories using a
model-based RL algorithm with adapted PSO. This work
trained two networks, one for intrinsic and one for extrinsic
calibration. They define the action at each time as a looped

trajectory which is described by 36 parameters. The state is
defined as the concatenation of all actions and calibration
results of previous time steps. Its number of dimensions
thus grows with increasing time steps, resulting in a high
dimensional MDP that is difficult to solve. In addition, the
proposed method learns open-loop trajectories which do not
adapt to the feedback of the current state.

In contrast, our proposed approach models the calibration
process in a compact way. We define an action as the
transformation to the next pose, which only requires 6
dimensions. And the state, consisting of the information status
and the current pose, now has a fixed number of dimensions.
Thanks to the compactness and efficiency of the proposed
MDP, we are able to apply a model-free algorithm [15]
to learn policies. Moreover, our current approach includes
symmetric as well as asymmetric distortion in the experiment
and trains only one network which can be used for both
intrinsic and extrinsic calibration.

III. METHOD

Our goal is to generate a sequence of direct transformations
that form a trajectory for the end-effector with the VI-sensor
fixed on it, based on which accurate intrinsic and extrinsic
parameters can be calibrated using the acquired sensor data.
We solve this problem by learning a policy for generating the
step-by-step transformation based on feedback information
at each step. The whole proposed learning framework is
shown in Figure 1, including the simulator, calibrator, MDP
embedding module, and the RL agent.

A. Visual-Inertial Calibration

In our method, both camera intrinsic and camera-IMU
extrinsic calibration are performed using the Kalibr [10], [11]
framework. In Kalibr, calibration is formalized as a large-
scale optimization problem, using the Levenberg-Marquardt
algorithm, to minimize the error between the predicted and
obtained measurements. Other outputs from the framework
also provide useful information for estimating the calibration
quality, e.g. reprojection error distribution, motion bias curve,



Fig. 2: Illustration of image coverage. The left image shows the division of the 4 regions of the image view and their corresponding vertices. The right part
shows an example of propagation of image coverage with increasing steps. The orange polygon defined by the four yellow vertices always covers the
positions swept by the target board. The red arrows show the approximated movement of the target board in the image view during each step.

etc. In each episode of interaction for the agent, we only
call Kalibr once at the last step if the data acquisition status
fulfills our predefined requirements, in order to reduce the
computational cost for training.

B. MDP Model for Calibration

a) Action Definition: As the whole trajectory consists
of a sequence of direct transformations, we define the action
of each step as a translation and rotation of the pose of the
end-effector A = [ρ,θ ,φ ,α,β ,γ]. Here ρ is the length of
translation, θ , and φ are azimuth and polar angles indicating
the direction of translation. α , β , and γ are Euler angles that
determine the rotation. We also set constraints on ρ , α , β ,
and γ to guarantee feasible motions.

b) State Definition: Regarding the problem formulation
of calibration, the final calibration results depend on all the
data acquired from the whole trajectory. In [13], all the
trajectories and calibration outputs of the previous steps are
used as a description of the status of the data acquired so
far. To simplify the modeling and reduce the difficulty of
learning, we only use a fixed number of variables that define
the range of the previously acquired data as our state, rather
than using the whole history.

For image data, we use the coverage of the center position,
change in size, and skew of the target board in the image
view to indicate the calibration progress. For the coverage
of the target board center position, instead of only recording
the maximum and minimum value of X and Y coordinates
of the center position, we use a polygon with four vertices to
describe the 2D range in a more specific way. As is shown
in Figure 2, we divide the image equally into four parts:
left-up, right-up, right-down and left-down, denoted by the
R1,R2,R3, and R4 respectively. In each region Ri, we place
one vertex Vi that has to stay inside the respective region.
Given all the positions that the center of the target board has
covered {[u j,v j]}N

j=1, the update rules for the vertices at each
step are:

V1 =
[

min
[u j ,v j ]∈R1

u j, min
[u j ,v j ]∈R1

v j
]
,V2 =

[
max

[u j ,v j ]∈R2
u j, min

[u j ,v j ]∈R2
v j
]

V3 =
[

max
[u j ,v j ]∈R3

u j, max
[u j ,v j ]∈R3

v j
]
,V4 =

[
min

[u j ,v j ]∈R4
u j, max

[u j ,v j ]∈R4
v j
]

(1)

The range of the target board sizes is encoded by the
minimum and maximum proportion of the area of the target
board in the image view, denoted by Amin and Amax. For skew
coverage, we use the range of angles between two fixed edges
of the target board in the image view ηmin and ηmax.

To encode the range of motion, we use the maximum
differences between the current and the next poses in the
previous steps ∆pmax,∆Θmax, where p and Θ denote the
position and orientation of the sensor, respectively. This
corresponds to the span of acquired IMU sensor data
because larger differences will results in larger velocities
and accelerations for direct transformations with the default
controller. For orientation, we approximate the difference as
the difference of Euler angles. Note that the coverages are all
normalized between 0 and 1 to benefit training and terminal
condition design. In addition to the range of acquired data,
we also include the current pose of the end-effector p,Θ in
the state. In this way, the full state of data acquisition is
defined as:

St = [V t
1 ,V

t
2 ,V

t
3 ,V

t
4 ,A

t
min,A

t
max,η

t
min,η

t
max,

∆pt
max,∆Θ

t
max, pt ,Θt ] ∈ R24.

(2)

c) Terminal Condition: In contrast to the approach
proposed by Chen et al. [13], we additionally define a
terminal condition to assist the agent in learning a desired
policy that could generate trajectories with fewer steps. This
could also alleviate unnecessary further data collection and
reduce the time cost for calibration

The MDP process is terminated if all the coverage param-
eters have reached predefined thresholds, and an additional
terminal reward is given. This design is intended to encourage
the agent to maximize the coverage of all properties, rather
than only extremely cover one or two of them. Although the
values for the thresholds are set to be not too difficult to
achieve to stabilize the learning process, in practice the agent
will also learn to achieve as much coverage as possible by
maximizing the total rewards.

d) Reward Design: The rewards include step-wise
rewards Rt and a terminal reward RT . For the step-wise
rewards Rt , we assign a positive reward for increased coverage
and a negative reward for higher path length. Here we include
path length because the shortness of the calibration sequence
heavily reduces the run time of the calibration software that



is a non-linear optimization process. For the step-wise reward
we have a weighted sum

Rt = ‖St [0 : 18]−St−1[0 : 18]‖1

−c1‖pt − pt−1‖2− c2‖Θt −Θ
t−1‖2,

(3)

where c1 and c2 are tunable positive hyperparameters. The
terminal reward RT is designed to favor behavior that reaches
the terminal condition. In our case, RT includes a positive
constant reward and dynamic rewards for accurate and less
uncertain calibration results. Given the ground truth and
estimated calibration parameters Φ and Φ̂ respectively, the
terminal reward is defined as

RT = c3 +
c4‖Φ‖2

‖Φ− Φ̂‖2
, (4)

where c3 and c4 are tunable positive hyperparameters. High
terminal rewards are given for low calibration errors to
encourage the agent to learn accurate calibrations.

C. Soft-Actor Critic Reinforcement Learning

In our framework, we apply SAC [15] to train the agent to
learn the optimal policy. During the online training process,
our agent jointly learns a policy network, a Q-network,
and a value network together. The parameters of networks
are updated using the maximum entropy framework, which
introduces entropy into the original actor-critic update to
improve exploration of the environment. Furthermore, this
framework also enables off-policy learning that improves the
sample efficiency. Due to the high computational cost for
calibration, we chose SAC as it requires few experiences to
reach high performance.

IV. EXPERIMENTS

A. Evaluation with real platform

In this section, we conduct experiments to train and
evaluate our learned policy. The whole pipeline includes
policy training, simulation evaluation, and validation on a real
platform. The results show that our learned policy performs
best among all the candidate trajectories and policies for both
intrinsic and extrinsic calibration. We also verify that our
policy can be applied on a real robot arm to calibrate a real
VI-sensor.

B. Policy Training

We use Gazebo [21] for dynamics and sensor simulation.
Our simulation environment includes a checkerboard and a VI
sensor consisting of a pinhole camera and an IMU mounted
on the end-effector of a FRANKA EMIKA Panda robot arm1.
The detailed sensor settings are shown in Table I and II.
We include noise and drift for the IMU and distortion for
the camera to achieve a more realistic simulation. During
training, the parameters for camera intrinsics and camera-IMU
extrinsics are re-sampled from Gaussian distributions after
each episode, to ensure that the model learns to generalize
well also to other similar sensors. Our target board is a

1https://erdalpekel.de/?p=55

Parameters Values
frequency 200 Hz

accelerometer drift 0.006m/s2

accelerometer noise 0.004m/s2

gyroscope drift 0.000038785rad/s
gyroscope noise 0.0003394rad/s

TABLE I: Simulation settings for the IMU.

Parameters Values
frequency 10 Hz

width 640px
height 480px

nominal horizontal FOV 1.0rad
model pinhole-radtan

TABLE II: Simulation settings for the camera.

Parameters Mean Std.
Intrinsics FOV [rad] 1.00 0.05

Distortion k1, k2 0.00 0.02
center 0.00 0.05

Extrinsics

X [m] 0.06 0.01
Y [m] 0.00 0.01
Z [m] -0.10 0.01

Roll [rad] 0.00 0.10
Pitch [rad] 0.00 0.10
Yaw [rad] 1.57 0.10

TABLE III: Gaussian distribution settings for intrinsics and extrinsics
parameters during training. The variances are within tolerance to specialize
to one sensor model (e.g., for high throughput factory calibration), and in
Section IV-D we show that our model also works on out of distribution
parameters.

7×6 checkerboard with 7cm×7cm squares. The distance
from the target to the robot arm’s initial pose is 1.5m. In
each step, the direct transformation is executed by the robot
arm using the MoveIt motion planning package [22]. If the
terminal condition is satisfied at the last step, both intrinsic
and extrinsic calibration will be performed using Kalibr,
where the intrinsic result is used as input for the extrinsic
calibration.

With these environment settings and predefined MDP, we
perform SAC to learn the optimal policy for calibration. For
the value network, Q-network, and policy networks of the
agent, we use fully connected networks with 2 hidden layers
and a size of 256. We restrict the maximal number of steps
for each episode to be 20 and train the agent for nearly 15000
steps. At that stage, the performance of the agent converges,
and it can achieve the terminal condition for most of the
episodes.

C. Evaluation in Simulation

In the simulation evaluation experiments, we test 6 different
types of policies or trajectories for 3 calibration tasks: pure
intrinsic calibration, pure extrinsic calibration with known
intrinsic ground truth, and calibration of both intrinsic and
extrinsic parameters. For comparison, we obtained baselines
that include handcrafted trajectories for intrinsic and extrinsic
calibration from expert knowledge (a short and a long
version) and trajectories learned with model-based RL [13]. In
addition, our learned policy is also compared with randomly
parametrized trajectories introduced in [13] and a random
policy of direct transformations that parametrizes movement
similarly to our proposed approach.



Fig. 3: Simulation (left) and real experiment setup (right) for VI calibration. The example images from the camera sensor are shown respectively.

a) Intrinsic calibration: The intrinsics are calibrated
using the Kalibr [10] toolbox, with a pinhole camera
projection model and a radial-tangential distortion model. For
each policy and trajectory we randomly sample 20 camera
settings under the same Gaussian distribution specified in
Section IV-B, except for the center of distortion. For testing
we keep the center of distortion fixed as [0.5,0.5] to ensure
the ground truth of the camera parameters is known.

The results are shown in Table IV, in which we compare the
average path length, calibration time and intrinsic calibration
error. The results show that our policy, learned with model-
free RL, achieves close performance with the long hand-
crafted trajectory, that is more than 4 times longer and
requires 3 times more time to calibrate. The short hand-
crafted trajectory that has a more comparable length to our
method performs significantly worse, while still taking double
the time to calibrate.

We can also see that the random direct moving policy, in
which we randomly pick a pose within the constraints to move
to at each time step, achieves a high performance compared
with other trajectories. This could be because the random
moving policy is less constrained than the previous baselines
which had to perform cyclical motions and could therefore
not easily achieve such a good coverage. In addition, the
baselines proposed by Chen et al. [13] were trained without
randomizing the distortion model, possibly causing them to
have lower generalizability.

b) Extrinsic calibration with known intrinsic ground-
truth: We first test the extrinsic calibration performance
separately by using known camera intrinsic ground truth.
We mainly compare the extrinsic calibration accuracy, the
variance of calibration error, path length, and calibration time.
Same as before, we evaluate each policy with 20 randomly
sampled intrinsics and extrinsics with the same distribution
used for training except for the distortion center, which we
keep fixed. After each resampling of sensor settings, the true
sensor intrinsic parameters are input directly to Kalibr.

The results are shown in Table V. Our learned policy using
model-free RL outperforms all the baselines on extrinsic
calibration accuracy. Our path length is not the shortest in
this case, but our policy is jointly trained also for intrinsic
calibration which requires higher coverage. Even so, the
calibration time for our proposed policy is the best, most
likely due to the simpler motion patterns of a direct movement
policy which makes the optimization problem easier. Model-
based learned trajectory and random moving policy have
similar performance in this task, and they are both better than

predefined trajectories. The poor performance of hand-crafted
policies is simply a matter of time, given enough time to
collect data any sane calibration policy will eventually reach
the same optimal result.

c) Joint intrinsic and extrinsic calibration: Finally,
we evaluate the joint intrinsic and extrinsic calibration
performance for each policy. Specifically, for each category
of policies to test, we use the policy trained for intrinsic and
extrinsic calibration to calibrate the intrinsics and extrinsics
respectively, where the calibrated intrinsic is input to the
extrinsic calibration step. As for our learned policy, we
just use one single policy for both calibrations. Here, we
include the randomization of the center of distortion as
well as asymmetric distortion as we do not depend on
ground truth intrinsics. We evaluate the performance of
policies only based on their extrinsic calibration results.
This is because the ground truth for intrinsic is not known
if asymmetric distortions are introduced in the simulation.
Finally, the accuracy of intrinsic results also influences
extrinsic calibration. Therefore, the final extrinsic calibration
accuracy corresponds to the overall evaluation of both intrinsic
and extrinsic calibration.

The results of the simulation evaluation are shown in
Table VI. Our policy obtains the lowest extrinsic calibration
error with the lowest total path length and calibration time,
even though we use the same trajectory for both intrinsic and
extrinsic calibration. In addition, it is interesting to see that
when considering asymmetric distortions, the hand-crafted
trajectory also achieve nearly the highest accuracy. What we
show is that different calibration policies can reach an optimal
result given enough time, but our proposed policy is able to
learn better motion primitives that human experts. We are
able to do in less than 5 minutes what would take a human
more than 50 minutes.

D. Evaluation on Real Platform

With satisfactory results in the simulation, we continue to
further evaluate our learned policy on the real platform. We
use a tightly time-synchronized VI sensor system including
an ADIS IMU and a global shutter fisheye camera [6]. We
calibrate the intrinsic of the monochrome camera and extrinsic
between the fisheye camera and the IMU sensor. To evaluate
our approach, we fix it on the end-effector of a real FRANKA
EMIKA robot arm and run the learned policy online to
generate a calibration trajectory, as is shown in Figure 3.

We add an additional automatic adjustment stage before
each episode when the robot tries to align the center of the



Intrinsic calibration Mean error [%] Error std [%] Path length [m] Calibration time [s]
random trajectory 14.81 7.27 2.27 67

hand-crafted trajectory (long) 3.27 1.90 4.05 148
hand-crafted trajectory (short) 8.79 2.39 2.77 63
model-based learned trajectory 7.65 7.59 2.04 133

random moving policy 6.60 6.33 1.16 44
model-free learned policy (ours) 3.90 2.83 0.86 39

TABLE IV: Evaluation results of different trajectories and policies for intrinsic calibration.

Extrinsic calibration Mean error [%] Error std [%] Path length [m] Calibration time [s]
random trajectory 9.48 6.87 2.27 1908

hand-crafted trajectory (long) 1.80 1.06 4.05 3019
hand-crafted trajectory (short) 2.66 2.14 0.56 611
model-based learned trajectory 1.76 1.19 1.20 756

random moving policy 1.73 1.34 1.16 569
model-free learned policy (ours) 1.16 0.63 0.86 213

TABLE V: Evaluation results of different trajectories and policies for extrinsic calibration with known intrinsic ground truth.

Joint calibration Mean error [%] Error std [%] Total path length [m] Calibration time [s]
random trajectory 9.48 2.14 2.26 1975

hand-crafted trajectory (long) 3.62 1.31 4.05 3167
hand-crafted trajectory (short) 4.34 9.59 3.34 617
model-based learned trajectory 7.29 1.28 3.24 889

random moving policy 5.82 5.51 1.16 613
model-free learned policy (ours) 3.50 2.26 0.86 252

TABLE VI: Evaluation results of different trajectories and policies for intrinsic and extrinsic calibration.

image view and the center of the target board. Given a real
VI sensor, we directly run the learned policy to generate
different motions according to the current state sequentially
and record the generated trajectory. The recorded data is
used both for camera intrinsic calibration and VI extrinsic
calibration, in the same way as the simulation experiment.
The results are compared with the calibration results done
by hand by a human expert.

Intrinsic Hand-crafted Learned
fx 468.713 468.253
fy 468.748 468.327
cx 364.419 364.912
cy 215.564 215.813
k1 0.005 0.011
k2 -0.006 -0.053
k3 0.022 0.153
p -0.018 -0.135

TABLE VII: Comparison of intrinsic calibration results between hand-crafted
trajectory and learned trajectory.

Extrinsic Hand-crafted Learned
roll [rad] 1.565 1.562

pitch [rad] 1.567 1.563
yaw [rad] -0.004 -0.001

x [m] -0.0374 -0.0406
y [m] 0.0015 -0.0087
z [m] 0.0003 -0.0001

TABLE VIII: Comparison of extrinsic calibration results between hand-
crafted trajectory and learned trajectory.

A comparison of intrinsic and extrinsic calibration results
is shown in Table VII and Table VIII respectively. For both
intrinsic and extrinsic calibration, our calibrated results are
similar to the handcrafted results obtained by an expert. The
comparison of calibration metrics is shown in Table IX, further
proving that our proposed method and the human expert
produce similar quality results. Also in this experiment our
policy is able to perform the calibration faster than the expert,
requiring only a third of the time. These experiments prove

Tasks Outputs Hand-crafted Learned

intrinsic calibration time [s] 562 186
reproj err [px] 0.045 0.030

extrinsic

calibration time [s] 2221 747
reprojection error [px] 0.053 0.045
gyroscope error [rad/s] 0.004 0.004

accelerometer error [m/s2] 0.028 0.094

TABLE IX: Comparison of calibration outputs between hand-crafted
trajectory and learned trajectory.

the transferability of our method for unified intrinsic and
extrinsic calibration in the real case.

V. CONCLUSION

In this work, we proposed the use of model-free deep
RL to learn a policy that guides the movement of a robotic
arm holding a VI sensor to efficiently collect measurements
that can be used for both camera intrinsic calibration and VI
extrinsic calibration. For joint intrinsic and extrinsic calibra-
tion our proposed method outperforms all other benchmarks
in terms of both lowest mean calibration error and shortest
path length. Evaluations on the simulation platform and real
robot system show that our learned policy is able to generate
better motion primitives than human experts, leading to a
much faster calibration process. In simulation our proposed
method is more than 10× faster than a hand-crafted trajectory,
which in our real-world experiment transfers to a speed-up of
3× over humans. Our method is ideally suited for a factory
scenario where high throughput calibration is needed, or as a
learning tool to teach optimal calibration motions to human
experts.

In future work, the use of an Aprilgrid [23] could enhance
observability as it allows for different viewing angles. In
addition, partially visible Aprilgrid targets can be detected
without problems, which would greatly simplify the data
collection process.



REFERENCES

[1] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated
extended kalman filter based visual-inertial odometry using direct
photometric feedback,” The International Journal of Robotics Research,
vol. 36, no. 10, pp. 1053–1072, 2017.

[2] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[3] F. Tschopp, T. Schneider, A. W. Palmer, N. Nourani-Vatani, C. Cadena,
R. Siegwart, and J. Nieto, “Experimental comparison of visual-aided
odometry methods for rail vehicles,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1815–1822, 2019.

[4] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimization,”
The International Journal of Robotics Research, vol. 34, no. 3, pp.
314–334, 2015.

[5] P. Corke, J. Lobo, and J. Dias, “An introduction to inertial and visual
sensing,” The International Journal of Robotics Research, vol. 26,
no. 6, pp. 519–535, 2007.

[6] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in 2014 IEEE
international conference on robotics and automation (ICRA). IEEE,
2014, pp. 431–437.

[7] F. Tschopp, M. Riner, M. Fehr, L. Bernreiter, F. Furrer, T. Novkovic,
A. Pfrunder, C. Cadena, R. Siegwart, and J. Nieto, “Versavis—an open
versatile multi-camera visual-inertial sensor suite,” Sensors, vol. 20,
no. 5, p. 1439, 2020.

[8] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localiza-
tion, mapping and sensor-to-sensor self-calibration,” The International
Journal of Robotics Research, vol. 30, no. 1, pp. 56–79, 2011.

[9] F. Nobre and C. Heckman, “Learning to calibrate: Reinforcement
learning for guided calibration of visual–inertial rigs,” The International
Journal of Robotics Research, vol. 38, no. 12-13, pp. 1388–1402, 2019.

[10] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 1280–
1286.

[11] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch
estimation using temporal basis functions,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 2088–2095.

[12] D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial robots,”
arXiv preprint arXiv:1906.03289, 2019.

[13] L. Chen, Y. Ao, F. Tschopp, A. Cramariuc, M. Breyer, J. J. Chung,
R. Siegwart, and C. Cadena, “Learning trajectories for visual-inertial
system calibration via model-based heuristic deep reinforcement
learning,” in Proceedings of the 4th Conference on Robot Learning
(CoRL), November 2020.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95-International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[16] A. M. Andrew, “Multiple view geometry in computer vision,” Kyber-
netes, 2001.

[17] P. F. Sturm and S. J. Maybank, “On plane-based camera calibration:
A general algorithm, singularities, applications,” in Proceedings. 1999
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (Cat. No PR00149), vol. 1. IEEE, 1999, pp. 432–437.

[18] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser
range finder (improves camera calibration),” in 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), vol. 3. IEEE, 2004, pp. 2301–2306.

[19] K. Hausman, J. Preiss, G. S. Sukhatme, and S. Weiss, “Observability-
aware trajectory optimization for self-calibration with application to
uavs,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1770–
1777, 2017.

[20] J. A. Preiss, K. Hausman, G. S. Sukhatme, and S. Weiss, “Trajectory
optimization for self-calibration and navigation.” in Robotics: Science
and Systems, 2017.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[22] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[23] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 3400–3407.


	I INTRODUCTION
	II RELATED WORKS
	III METHOD
	III-A Visual-Inertial Calibration
	III-B MDP Model for Calibration
	III-C Soft-Actor Critic Reinforcement Learning

	IV EXPERIMENTS
	IV-A Evaluation with real platform
	IV-B Policy Training
	IV-C Evaluation in Simulation
	IV-D Evaluation on Real Platform

	V CONCLUSION
	References

