
Learning Sensorimotor Primitives of Sequential Manipulation Tasks
from Visual Demonstrations

Junchi Liang, Bowen Wen, Kostas Bekris and Abdeslam Boularias

Abstract— This work aims to learn how to perform complex
robot manipulation tasks that are composed of several, con-
secutively executed low-level sub-tasks, given as input a few
visual demonstrations of the tasks performed by a person. The
sub-tasks consist of moving the robot’s end-effector until it
reaches a sub-goal region in the task space, performing an
action, and triggering the next sub-task when a pre-condition
is met. Most prior work in this domain has been concerned
with learning only low-level tasks, such as hitting a ball or
reaching an object and grasping it. This paper describes a new
neural network-based framework for learning simultaneously
low-level policies as well as high-level policies, such as deciding
which object to pick next or where to place it relative to other
objects in the scene. A key feature of the proposed approach
is that the policies are learned directly from raw videos of
task demonstrations, without any manual annotation or post-
processing of the data. Empirical results on object manipulation
tasks with a robotic arm show that the proposed network can
efficiently learn from real visual demonstrations to perform the
tasks, and outperforms popular imitation learning algorithms.

I. INTRODUCTION

Complex manipulation tasks are performed by combining
low-level sensorimotor primitives, such as grasping, pushing
and simple arm movements, with high-level reasoning skills,
such as deciding which object to grasp next and where to
place it. While low-level sensorimotor primitives have been
extensively studied in robotics, learning how to perform high-
level task planning is relatively less explored.

High-level reasoning consists of appropriately chaining
low-level skills, such as picking and placing. It determines
when the goal of a low-level skill has been reached, and the
pre-conditions for switching to the next skill are satisfied.
This work proposes a unified framework for learning both
low and high level skills in an end-to-end manner from visual
demonstrations of tasks performed by people. The focus is on
tasks that require manipulating several objects in a sequence.
Examples include stacking objects to form a structure, as
in Fig. 1, removing lug nuts from a tire to replace it, and
dipping a brush into a bucket before pressing it on a surface
for painting. These tasks are considered in the experimental
section of this work. For all of these tasks, the pre-conditions
of low-level skills depend on the types of objects as well
as their spatial poses relative to each other, in addition to
the history of executed actions. To support the networks
responsible for the control policies, this work uses a separate
vision neural network to recognize the objects and to track

This work was supported by NSF awards IIS 1734492 and IIS 1846043.
The authors are with the Department of Computer Science, Rutgers Uni-
versity, NJ, USA. Emails: {junchi.liang, bowen.wen, kostas.bekris,
abdeslam.boularias}@rutgers.edu.

Policy
Networks

Training Data

Policy Execution

Tool Object

Target Object

Action

Sub-tasks

Control

Sub-task Inference

Demonstration Video

Fig. 1: System overview: (top left) Video demonstrations of
sequential manipulation tasks performed by a person. (bottom
left) The manipulated objects are tracked in the input video to
automatically identify sub-tasks. (center) Given the tracking, policy
networks are trained to perform high-level reasoning and compute
low-level controls. (right) The output of the policy networks is
forwarded to a robot, which manipulates the same objects as in the
demonstrations without other manual annotation. It is important to
note that the objects are always randomly placed on the table at
the beginning of each demonstration and each test scenario.

their 6D poses both over the demonstration videos as well
as during execution. The output of the vision network is the
semantic category of each object and its 6D pose relative to
other objects. This output along with the history of executed
actions is passed to a high-level reasoning neural network,
which selects a pair of two objects that an intermediate level
policy needs to focus its attention on.

The first object is referred to as the tool, and to the second
one as the target. In a stacking task, the tool is the object
grasped by the robot and the target is a table or any other
object on top of which the tool will be placed. In the painting
task, the tool is the brush and the target is the paint bucket
or the canvas. If no object is grasped, then the tool is the
robot’s end-effector and the target is the next object that
needs to be grasped or manipulated. An intermediate-level
network receives the pair of objects indicated by the high-
level reasoning network, their 6D poses relative to each other,
and a history of executed actions. The intermediate-level
network returns a sub-goal state, defined as a way-point in
SE(3). Finally, a low-level neural network generates the end-
effector’s motion to reach the way-point. The policy neural
networks are summarized in Fig. 2.

While the proposed formulation is not exhaustive, it allows
to cast a large range of manipulation tasks, and to use the
same network to learn them. The proposed architecture re-
quires only raw RGB-D videos, without the need to segment
them into sub-tasks, or even to indicate the number of sub-
tasks. The efficacy of the method is demonstrated in exten-
sive experiments using real objects in visual demonstrations,
as well as both simulation and a real robot for execution.

ar
X

iv
:2

20
3.

03
79

7v
1

 [
cs

.R
O

]
 8

 M
ar

 2
02

2

II. RELATED WORK

Most of the existing techniques in imitation learning in
robotics are related to learning basic low-level sensorimotor
primitives, such as grasping, pushing and simple arm move-
ments [1], [2]. The problem of learning spatial preconditions
of manipulation skills has been addressed in some prior
works [3], [4]. Random forests were used [3] to classify
configurations of pairs of objects, obtained from real images,
into a family of low level skills. However, the method
presented in [3] considers only static images where the
objects are in the vicinity of each other [3], in contrast to
the proposed model, which continuously predicts low-level
skills while the objects are being manipulated and moved by
the robot. Moreover, it does not consider complex tasks that
are composed of several low-level motor primitives [3].

A closely related line of work models each sub-task as
a funnel in the state space, wherein the input and output
regions of each sub-task are modeled as a multi-modal
Gaussian mixture [4], [5], and learned from explanatory data
through an elaborate clustering process. Explicit segmenta-
tion and clustering have also been used [6]. Compared to
these methods, the proposed approach is simple to reproduce
and uses significantly less hyper-parameters since it does not
involve any clustering process. Our approach trains an LSTM
to select and remember pertinent past actions. The proposed
approach also aims for data-efficiency through an attention
mechanism provided by the high-level network. Hierarchi-
cal imitation learning with high and low level policies is
investigated in recent work [7], [8]. These methods require
ground-truth labeling of each sub-task to train the high-level
policy, while the proposed method is unsupervised.

Skill chaining was considered in other domains, such as
2D robot navigation [9]. Long-horizon manipulation tasks
have also been solved by using symbolic representations via
Task and Motion Planning (TAMP) [10], [11], [12], [13].
Nevertheless, all the variables of the reward function in these
works are assumed to be known and fully observable, in
contrast to the proposed approach. A finite-state machine that
supports the specification of reward functions was presented
and used to accelerate reinforcement learning of structured
policies [14]. In contrast to the proposed method, the struc-
ture of the reward machine was assumed to be known. A
similar idea has also been adopted in other efforts [15], [16].

While 6D poses and labels of objects are provided from
a vision module [17] in the proposed approach, other recent
works have shown that complex tasks can be completed
by learning directly from pixels [18], [19], [20], [21], [22],
[23], [24]. This objective is typically accomplished by using
compositional policy structures that are learned by imita-
tion [18], [19], or that are manually specified [20], [21].
Some of these methods have been used for simulated control
tasks [25], [26], [27]. These promising end-to-end techniques
still require orders of magnitude more training trajectories
compared to methods like the one proposed here, which
separates the object tracking and policy learning problems.

III. PROBLEM FORMULATION AND ARCHITECTURE

This approach employs a hierarchical neural network for
learning to perform tasks that require consecutive manip-
ulation of multiple objects. The assumption is that each
scene contains at most n objects from a predefined set
O = {o1, o2, . . . , on}. The robot’s end-effector is included
as a special object in O. The robot receives as inputs
at each time-step t sensory data as an observation zt =
(et, 〈l1t , . . . , lmt 〉, pt), where et ∈ R3×SO(3) is the 6D pose
of the end-effector in the world frame, m is the maximum
number of objects present in the scene, lit is the semantic
label of object oi, and pt is a 7n×7n matrix that contains the
6D poses of all objects relative to each other, i.e., pt[oi, oj] is
a 7-dim. vector that represents oi’s orientation and translation
in the frame of object oj . The objects have known geometric
models and have fixed frames of reference defined by their
centers and 3 principal axes. The objects are detected and
tracked using the technique presented in Section V-B. The
maximum number of objects n is fixed a priori.

The system returns at each time-step t an action at ∈
R3×SO(3), i.e., a desired change in the pose et of the robotic
end-effector. An individual low-level sub-task is identified by
a tool denoted by o+

t and a target denoted by o∗t , along with
a way-point wt. The tool is the object being grasped by the
robot at time t, the target is the object to manipulate using the
grasped tool and the predicted way-point is the desired pose
of the tool in the target’s frame at the end of the sub-task.
The way-point wt is a function of time as it changes based
on the current pose of the tool relative to the target. Several
way-points are often necessary to perform even simple tasks.
For instance, in painting, a brush is the tool o+

t and a paint
bucket is the target o∗t . To load a brush with paint, several
way-points in the bucket’s frame need to be predicted. The
first way-point can be when the brush touches the paint,
while the second way-point is slightly above the paint. The
tool o+

t and target assignment o∗t are also functions of time
t, and change as the system switches from one sub-task to
the next, based on the current observation zt and on what
has been accomplished so far. For instance, after loading
the brush, the robot switches to the next sub-task wherein
the brush is still the tool object, but the painting canvas or
surface becomes the new target object.

In the proposed model, observations are limited to 6D
poses of objects and their semantic labels. These observations
are often insufficient by themselves for determining the
current stage of the task, for deciding to terminate the
current sub-task and for selecting the next sub-task. For
instance, in the painting example, the vision module does
not provide information regarding the current status of the
brush. Therefore, the robot needs to remember whether it has
already dipped the brush in the paint. Since it is not practical
to keep the entire sequence of past actions in memory,
the approach uses a Long Short-Term Memory (LSTM) to
compress the history ht of the actions that the robot has
performed so far, and use it as an input to the system along
with observation zt. The LSTM is trained along with the

Observation

Progress

Memory Tool object Target object

Selected Pose

Way-point

Action

Low-level Policy

High-level Policy
Progress

Memory

Intermediate-level Policy Tool object

Target object

Way-point
LSTM

End Of The
Sub-task

Selected
Pose

Way-point

Action:
Moving
Down

Progress

Observation

Selected Pose

Fig. 2: Left: robot performing a stacking task. Right: policy networks. A high-level policy network uses the latest observation,
current progress towards the current way-point and memory to select a pair of tool/target objects and their relative poses,
which are then passed along to the intermediate policy for generating a next way-point. The low-level policy is responsible
of generating the actual motion of the end-effector toward the way-point.
other parameters of the neural network.

The following describes the three levels of the hierarchical
network architecture as depicted in Figure 2.

A high-level policy, denoted by πh, returns a probability
distribution over pairs (o+

t , o
∗
t) of objects, wherein o+

t is the
predicted tool at time t, and o∗t is the predicted target at time
t. The high-level policy takes as inputs 6D poses of objects
and their semantic labels, along with the pose of the robot’s
end-effector. Additionally, the high-level policy πh receives
as inputs a history ht = (o+

k , o
∗
k, wk)k=0,...,t−1 of pairs of

tools and targets (o+
k , o
∗
k) and way-points wk at different

times k in the past, compressed into an LSTM unit, as well
as a progress vector gt = pt[o

+
t−1, o

∗
t−1]−wt−1 that indicates

how far is the tool o+
t−1 from the previous desired way-point

wt−1 with respect to the target o∗t−1.
An intermediate-level policy, denoted by πm, receives as

inputs the current tool o+
t and target o∗t , the pose pt[o+

t , o
∗
t]

of o+
t relative to o∗t , in addition to history ht and progress

vector gt. Both tool o+
t and target o∗t are predicted by the

high-level policy πh, as explained above. The intermediate-
level policy returns a way-point wt ∈ R3×SO(3), expressed
in the coordinates system of the target object o∗t .

A low-level policy, denoted by πl, receives as inputs the
current pose pt[o+

t , o
∗
t] of the current tool o+

t relative to the
current target o∗t , in addition to the way-point wt predicted by
the intermediate policy, and returns a Gaussian distribution
on action at ∈ R3 × SO(3) that corresponds to a desired
change in the pose et of the robotic end-effector.

IV. LEARNING APPROACH

In the proposed framework, an RGB-D camera is used
to record a human performing an object manipulation task
multiple times with varying initial placements of the ob-
jects. The pose estimation and tracking technique, explained
in Section V-B, is then used to extract several trajecto-
ries of the form τ = (z1, z2, . . . , zH), wherein zt =
(et, 〈l1t , . . . , lnt 〉, pt) is the observed 6D poses of all objects
at time t, including the end-effector’s pose et. The goal of
the learning process is to learn parameters of the three policy
neural networks πh, πm and πl that maximize the likelihood
of the data τ and the inferred way-points, tools and targets,
so that the system can generalize to novel placements of

the objects that did not occur in the demonstrations. The
likelihood is given by:

P
(
(zt, wt, o

+
t , o

∗
t)t=0:H

)
= ΠH−1

t=1 PA,tPB,t, with
PA,t

∆
= P (wt, o

+
t , o

∗
t |zt)

= πh(o+
t , o

∗
t |zt, ht, gt)πm(wt|ht, gt, pt[o

+
t , o

∗
t]),

PB,t
∆
= P (zt+1|zt, wt, o

+
t , o

∗
t)

= πl(et+1 − et|wt, o
+
t , o

∗
t , pt[o

+
t , o

∗
t]),

wherein ht = (wt, o
+
t , o
∗
t)
t−1
i=0 is the history and gt =

pt[o
+
t−1, o

∗
t−1]− wt−1 is the progress vector.

The principal challenge here lies in the fact that the
sequence (wt, o

+
t , o
∗
t)
H
t=0 of way-points, tools, and targets is

unknown, since the proposed approach uses as inputs only
6D poses of objects at different time-steps and does not
require any sort of manual annotation of the data.

To address this problem, an iterative learning process
performed in three steps is proposed. First, the low-level
policy is initialized by training on basic reaching tasks. The
intermediate and high-level policies are initialized with prior
distributions that simply encourage time continuity and prox-
imity of way-points to target objects. Then, an expectation-
maximization (EM) algorithm is devised to infer the most
likely sequence (wt, o

+
t , o
∗
t)
H
t=0 of way-points, tools and

targets in the demonstration data (zt)
H
t=0. Finally, the three

policy networks are trained by maximizing the likelihood of
the demonstration data (zt)

H
t=0 and the pseudo ground-truth

data (wt, o
+
t , o
∗
t)
H
t=0 obtained from the EM algorithm. This

process is repeated until the inferred pseudo ground-truth
data (wt, o

+
t , o
∗
t)
H
t=0 become constant across iterations.

A. Prior Initialization

This section first explains how the low-level policy πl
is initialized. The most basic low-level skill is moving
the end-effector between two points in R3 × SO(3) that
are relatively close to each other. We therefore initialize
the low-level policy by training the policy network, using
gradient-ascent, to maximize the likelihood of straight-line
movements between consecutive poses et+1 and et of the
end-effector while aiming at way-points ŵt

∆
= pt+1[o

+
t , o
∗
t].

Therefore, the objective of the initialization process is given
as maxθl

∑H
t=1 πl(et+1 − et|o+

t , o
∗
t , pt[o

+
t , o
∗
t], ŵt), wherein

each ŵt is expressed in the frame of the target o∗t , and θl
are the parameters of the neural network πl. Both o+

t and
o∗t are also chosen randomly in this initialization phase. The
goal is to learn simple reaching skills, which will be refined
and adapted in the learning steps to produce more complex
motions, such as rotations.

The intermediate policy πm is responsible for select-
ing way-point wt given history ht. It is initialized by
constructing a discrete probability distribution over points
(ŵt, ŵt+1, ŵt+2, . . . , ŵH), defined as ŵt

∆
= pt+1[o

+
t , o
∗
t].

Poses pt+1 used as way-points ŵt are obtained di-
rectly from demonstration data (zt)

H
t=0. Specifically, we

set πm(ŵk|ht, o+
t , o
∗
t , pt[o

+
t , o
∗
t]) = 0 for k < t,

πm(ŵk|ht, o+
t , o
∗
t , pt[o

+
t , o
∗
t]) ∝ exp (−α‖ŵk‖2) for k = t,

and πm(ŵk|ht, o+
t , o
∗
t , pt[o

+
t , o
∗
t]) ∝ exp (−α‖ŵk‖2) 1−β

H−t
for k > t, where α and β are predefined fixed hyper-
parameters, and ŵk is expressed in the coordinates system of
the target o∗t . This distribution encourages way-points to be
close to the target at time t. This distribution is constructed
for each candidate target o∗t ∈ O at each time-step t, except
for the robot’s end-effector, which cannot be a target.

High-level policy πh is responsible for selecting tools and
targets (o+

t , o
∗
t) as a function of context. It is initialized by

setting the tool as the object with the most motion relative
to others: o+

t = argmaxoi∈O\{oe}
∑
oj∈O ‖pt+1[o

i, oj] −
pt[o

i, oj]‖, excluding the end-effector (or human hand) oe.
If all the objects besides the end-effector are stationary
relative to each other, then no object is being used, and
the end-effector is selected as the tool. Once the tool o+

t

is fixed, the prior distribution on the target o+
t is set as:

πh(o
+
t , o
∗
t |ht, pt, gt) = 0 if o+

t = oe (the end-effector cannot
be a target), πh(o+

t , o
∗
t |ht, pt, gt) = γ if o+

t = o+
t−1, and

πh(o
+
t , o
∗
t |ht, pt, gt) = 1−γ

n−2 if o+
t 6= o+

t−1, where o+
t−1 is

obtained from history ht, n is the number of objects and γ
is a fixed hyper-parameter, set to a value close to 1 to ensure
that switching between targets does not occur frequently in
a given trajectory.

B. Pseudo Ground-Truth Inference

After initializing πh, πm and πl as in Section IV-A,
the next step consists of inferring from the demonstra-
tions (zt)

H
t=1 a sequence (o+

t , o
∗
t , wt)

H
t=1 of tools, tar-

gets and way-points that has the highest joint probability
P
(
(zt, wt, o

+
t , o
∗
t)t=0:H

)
(Algorithm 1, lines 2-15). This

problem is solved by using the Viterbi technique. In a forward
pass (lines 2-12), the method computes the probability of the
most likely sequence up to time t−1 that results in a choice
(o+
t , o
∗
t , wt) at time t. The log of this probability, denoted by

Ft[(o
+
t , o
∗
t , wt)], is computed by taking the product of three

probabilities: (i) πh: the probability of switching from o+
t−1

and o∗t−1 as tools and targets to o+
t and o∗t , given the progress

vector gt and the object poses relative to each other provided
by the matrix pt (which is obtained from observation zt); (ii)
πm: the probability of selecting as a way-point a future pose
pk[o

+
t , o
∗
t] (denoted as wk, k ≥ t) for the tool relative to the

target in the demonstration trajectory; this probability is also
conditioned on choices made at the previous time step t−1;

(iii) the likelihood of the observed movement of the objects
at time t in the demonstration, given the choice (o+

t , o
∗
t , wk)

and the relative poses of the objects with respect to each
other (given by matrix pt). For each candidate (o+

t , o
∗
t , wk) at

time t, we keep in Rt the trace of the candidate at time t−1
that maximizes their joint probability. The backward pass
(lines 13-15) finds the most likely sequence (o+

t , o
∗
t , wt)

H
t=1

by starting from the end of the demonstration and following
the trace of that sequence in Rt. The last step is to train πm,
πl and πh using the most likely sequence (o+

t , o
∗
t , wt)

H
t=1 as

a pseudo ground-truth for the tools, targets and way-points.

Algorithm 1: Learning Policies from Visual Demonstrations

Input: A set of n objects O = {o1, o2, . . . , on}; one or
several demonstration trajectories {zt}Ht=1, wherein
zt = (et, 〈l1t , . . . , lnt 〉, pt), et is the end-effector’s pose
at time t, pt[oi, oj] is the 6D pose of oi ∈ O relative to
oj ∈ O, ∀(oi, oj) ∈ O ×O;

Output: High-level, intermediate-level, and low-level policies
πh, πm and πl;

1 Initialize πh, πm and πl (Section IV-A); F0[:]← −∞;
2 for t = 1; t ≤ H; t← t+ 1 do
3 foreach (o+

t , o
∗
t , k) ∈ O ×O × {t, t+ 1, . . . , H} do

4 xt
∆
= (o+

t , o
∗
t , k); wk

∆
= pk[o+

t , o
∗
t];

5 ∆pt
∆
= pt+1[o+

t , o
∗
t]− pt[o+

t , o
∗
t];

6 foreach (o+
t−1, o

∗
t−1, k

′) ∈ O×O×{t− 1, . . . , H} do
7 xt−1

∆
= (o+

t−1, o
∗
t−1, k

′); wk′
∆
= pk′ [o

+
t−1, o

∗
t−1];

8 ht ← (o+
t−1, o

∗
t−1, wk′);

9 gt ← pt[o
+
t , o

∗
t]− wt;

10 Q[xt−1, xt]← log
(
πh(o+

t , o
∗
t |ht, pt, gt)

)
+

log
(
πm(wk|ht, o

+
t , o

∗
t , pt[o

+
t , o

∗
t])
)

+
log
(
πl(∆pt[o

+
t , o

∗
t]|o+

t , o
∗
t , pt[o

+
t , o

∗
t], wk)

)
+

Ft−1[xt−1];
11 Ft[xt]← maxxt−1 Q[xt−1, xt];
12 Rt[xt]← arg maxxt−1 Q[xt−1, xt];

/* Construct the most likely sequence */
13 (o+

H , o
∗
H , k)← argmaxxRt[x]; wH ← pk[o+

H , o
∗
H];

14 for t = H − 1; t > 0; t← t− 1 do
15 (o+

t , o
∗
t , k)← argmaxxRt+1[x]; wt ← pk[o+

t , o
∗
t];

16 Train the policy networks πh, πm and πl with (o+
t , o

∗
t , wt)

H
t=1

and {zt}Ht=1;
17 Optional: Go to 2 and repeat with updated policies πh, πm, πl;

C. Training the Policy Networks

To train πm, πl and πh using the pseudo ground-truth
(o+
t , o
∗
t , wt)

H
t=1, obtained as explained in the previous sec-

tion, we apply the stochastic gradient-descent technique to
simultaneously optimize the parameters of the networks by
minimizing a loss function L defined as follows. L is defined
as the sum of multiple terms. The first two are Lo+ =∑
t CE(ô+

t, o
+
t) and Lo∗ =

∑
t CE(ô∗t, o

∗
t) where CE is

the cross entropy, and (ô+
t, ô∗t) is the current prediction of

πh. The third term is Lw =
∑
tMSE(ŵt, wt) where ŵt is

the output of πm and MSE is the mean square error. The
next term is Laction = −log[πl(at|pt[o+

t , o
∗
t], wt, o

+
t , o
∗
t)],

which corresponds to the log-likelihood of the low-level

actions in the demonstrations. To further facilitate the train-
ing, two auxiliary losses are introduced. The first one
is to encourage consistency within each sub-task. As the
role of the memory in the architecture is to indicate the
sequence sub-tasks that have been already performed, it
should not change before (o+

t , o
∗
t , wt) changes. If we de-

note the LSTM’s output as M(ht) at time-step t, the
consistency loss is defined as Lmem =

∑
t ‖M(ht) −

M(ht−1)‖2 × Io+t−1=o+t−1,o
∗
t−1=o∗t ,wt−1=wt

where I is the
indicator function. The last loss term, Lret, is used to
ensure that memory M(ht) retains sufficient information
from previous steps. Thus, we train an additional layer
(reto∗ , reto+ , retw) directly after M(ht) to retrieve at
step t the target, tool and way-point of step t − 1.
Lret is defined as Lret = CE(reto∗(M(ht)), o

∗
t−1) +

CE(reto+(M(ht)), o
+
t−1)+MSE(retw(M(ht)), wt−1). As

a result, the complete proposed architecture is trained with
the loss L = Lo+ + Lo∗ + Lw + Laction + Lmem + Lret.

V. EXPERIMENTAL RESULTS

A. Data collection

We used an Intel RealSense 415 camera to record several
demonstrations of a human subject performing three tasks.
The first task consists in inserting a paint brush into a
bucket, then moving it to a painting surface and painting
a virtual straight line on the surface. The poses of the brush,
bucket and painting surface are all tracked in real-time using
the technique explained in V-B. The second task consists
in picking up various blocks and stacking them on top of
each other to form a predefined desired pattern. The third
task is similar to the second one, with the only difference
being the desired stacking pattern. Additionally, we use the
PyBullet physics engine to simulate a Kuka robotic arm and
collect data regarding a fourth task. The fourth task consists
in moving a wrench that is attached to the end-effector to
four precise locations on a wheel, sequentially, rotating the
wrench at each location to remove the lug-nuts, then moving
the wrench to the wheel’s center before finally pulling it.

Human
Demonstration

Robot
Execution

①②

③

① ②
③

Human
Demonstration

Robot
Execution

Human demonstration

Robot
execution

①
②

③

①
②

③

Human
Demonstration

Robot
Execution

Human demonstration

Robot
execution

①②

③ ④⑤

Human demonstration

Robot
execution

Fig. 3: Tasks considered in the experiments: painting (left),
stacking (middle), and tire removal (right).

B. Object Pose Parsing from Demonstration Video

In each demonstration video, 6D poses ξ ∈ SE(3) and
semantic labels of all relevant objects are estimated in real-
time and used to create observations (zt)

H
t=1 as explained

in Section III. Concretely, a scene-level multi-object pose
estimator [28] is leveraged to compute globally the relevant
objects’ 6D poses in the first frame. It starts with a pose sam-
pling process and performs Integer Linear Programming to

0 10 20 30 40 50 60 70
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Painting (real demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40 50 60 70
Number of training trajectories

200

300

400

500

600

Ep
iso

de
 le

ng
th

Painting (real demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40 50 60 70
Number of training trajectories

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Painting (simulated demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40 50 60 70
Number of training trajectories

200

300

400

500

600

700

Ep
iso

de
 le

ng
th

Painting (simulated demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Stacking - pattern 1 (real demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

200

300

400

500

600

Ep
iso

de
 le

ng
th

Stacking - pattern 1 (real demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Stacking - pattern 1 (simulated demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

100

200

300

400

500

600

Ep
iso

de
 le

ng
th

Stacking - pattern 1 (simulated demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Stacking - pattern 2 (real demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

200

300

400

500

600
Ep

iso
de

 le
ng

th

Stacking - pattern 2 (real demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Stacking - pattern 2 (simulated demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

200

300

400

500

600

Ep
iso

de
 le

ng
th

Stacking - pattern 2 (simulated demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Tire Removal (simulated demonstration data)
Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

0 10 20 30 40
Number of training trajectories

200

300

400

500

600

Ep
iso

de
 le

ng
th

Tire Removal (simulated demonstration data)

Proposed (unsupervised)
Proposed (supervised)
Behavioral Cloning [31]
GAIL [30]
TACO [8]

Fig. 4: Average success rate (left) and episode length (right)
as a function of the number of training trajectories

ensure physical consistency by checking collisions between
any two objects as well as collisions between any object and
the table. Next, the poses computed from the first frame are
used to initialize the se(3)-TrackNet [17], which returns a
6D pose for each object in every frame of the video. The 6D
tracker requires access to the objects’ CAD models. For the
painting task, the brush and the bucket are 3D-scanned as in
[29], while for all the other objects, models are obtained from
CAD designs derived from geometric primitives. During
inference on the demonstration videos, the tracker operates
in 90Hz, resulting in an average processing time of 13.3s
for a 1 min demonstration video. The entire video parsing
process is fully automated, and did not require any human
input beyond providing CAD models of the objects offline
to the se(3)-TrackNet in order to learn to track them.

C. Training and architecture details

The high-level, intermediate-level, and low-level policies
are all neural networks. In the high-level policy, the progress
vector gt is embedded by a fully connected layer with 64
units followed by a ReLU layer. An LSTM layer with 32
units is used to encode history ht. Observation zt is con-
catenated with the LSTM units and the embedded progress
vector and fed as an input to two hidden layers with 64
units followed by a ReLU layer. From the last hidden layer,
target and tool objects are predicted by a fully connected
layer and a softmax. The intermediate-level policy network
consists of two hidden layers with 64 units. The low-level
policy concatenates into a vector four inputs: 6D pose of
the target in the frame of the tool object, way-point, and
the semantic labels of the target and tool objects. After
two hidden layers of 64 units and ReLU, the low-level
policy outputs a Gaussian action distribution. The number
of training iterations for all tasks is 20, 000, the batch size
is 2, 048 steps, the learning rate is 1e− 4, and the optimizer
is Adam. The hyper-parameters used in Section IV-A are set
as γ = 0.95, α = 100, and β = 0.95.

The proposed method is compared to three other
techniques. Generative Adversarial Imitation Learning
(GAIL) [30], Learning Task Decomposition via Tempo-
ral Alignment for Control (TACO) [8], and Behavioral
Cloning [31] where we train the policy network of [30]
directly to maximize the likelihood of the demonstrations
without learning rewards. We also compare to a supervised
variant of our proposed technique where we manually pro-
vide ground-truth tool and target objects and way-points for
each frame. The supervised variant provides an upper bound
on the performance of our unsupervised algorithm. Note also
that TACO [8] requires providing manual sketches of the sub-
tasks, whereas our algorithm is fully unsupervised.

D. Evaluation

Except for the tire removal, all tasks are evaluated using
real demonstrations and a real Kuka LBR robot equipped with
a Robotiq hand. The policies learned from real demonstra-
tions are also tested extensively in the PyBullet simulator
before testing them on the real robot.

Painting Stacking 1 Stacking 2
Proposed (unsupervised) 5/5 5/5 5/5
Behavioral Cloning [31] 0/5 0/5 0/5

GAIL [30] 0/5 0/5 0/5
TACO [8] 1/5 1/5 2/5

TABLE I: Success rates on the real Kuka robot

A painting task is successfully accomplished if the brush
is moved into a specific region of a radius of 3cm inside
the paint bucket, the brush is then moved to a plane that
is 10cm on top of the painting surface, and finally the
brush draws a virtual straight line of 5cm at least on that
plane. A tire removal task is successfully accomplished if
the robot removes all bolts by rotating its end-effector on
top of each bolt (with a toleance of 5mm) with at least
30◦ counter-clockwise, and then moves to the center of the
wheel. A stacking task is successful if the centers of all the
objects in their final configuration are within 0.5cm of the
corresponding desired locations.

Figure 4 shows the success rates of the compared methods
for the four tasks, as well as the length of the generated
trajectories while solving these tasks in simulation, as a func-
tion of the number of demonstration trajectories collected as
explained in Section V-A. The results are averaged over 5
independent runs, each run contains 50 test episodes that
start with random layouts of the objects. Table I shows the
success rates of the compared methods on the real Kuka
robot, using the same demonstration trajectories that were
used to generate Figure 4 (70 trajectories for painting and
40 for each of the remaining tasks). These results show
clearly that the proposed approach outperforms the compared
alternatives in terms of success rates and solves the four tasks
with a smaller number of actions. The performance of our
unsupervised approach is also close to that of the supervised
variant. The proposed approach outperforms TACO despite
the fact that TACO requires a form of supervision in its
training. We also note that both our approach and TACO
outperform GAIL and the behavioral cloning techniques,
which clearly indicates the data-efficiency of compositional
and hierarchical methods. Videos and supplementary material
can be found at https://tinyurl.com/2zrp2rzm.

VI. CONCLUSION

We presented a unified neural-network framework for
training robots to perform complex manipulation tasks that
are composed of several sub-tasks. The proposed framework
employs the principal of attention by training a high-level
policy network to select a pair of tool and target objects
dynamically, depending on the context. The proposed method
outperformed alternative techniques for imitation learning,
without requiring any supervision beyond recorded demon-
stration videos. While the current video parsing module
requires the objects’ CAD models beforehand, it is possible
in future work to leverage model-free 6D pose trackers [32]
for learning from demonstration involving novel unknown
objects. We will also explore other applications of the
proposed framework, such as real-world assembly tasks.

https://tinyurl.com/2zrp2rzm

REFERENCES

[1] S. Calinon, Robot Programming by Demonstration, 1st ed. USA:
CRC Press, Inc., 2009.

[2] T. Osa, J. Pajarinen, and G. Neumann, An Algorithmic Perspective on
Imitation Learning. Hanover, MA, USA: Now Publishers Inc., 2018.

[3] O. Kroemer and G. S. Sukhatme, “Learning spatial preconditions
of manipulation skills using random forests,” in Proceedings of the
IEEE-RAS International Conference on Humanoid Robotics, 2016.
[Online]. Available: http://robotics.usc.edu/publications/954/

[4] A. S. Wang and O. Kroemer, “Learning robust manipulation strategies
with multimodal state transition models and recovery heuristics,” in
Proceedings of (ICRA) International Conference on Robotics and
Automation, May 2019, pp. 1309 – 1315.

[5] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning compositional models of robot skills for task and motion
planning,” Int. J. Robotics Res., vol. 40, no. 6-7, 2021. [Online].
Available: https://doi.org/10.1177/02783649211004615

[6] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal, “Learn-
ing to switch between sensorimotor primitives using multimodal haptic
signals,” in Proceedings of International Conference on Simulation of
Adaptive Behavior (SAB ’16): From Animals to Animats 14, August
2016, pp. 170 – 182.

[7] H. Le, N. Jiang, A. Agarwal, M. Dudı́k, Y. Yue, and H. Daumé,
“Hierarchical imitation and reinforcement learning,” in International
conference on machine learning. PMLR, 2018, pp. 2917–2926.

[8] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner, “Taco:
Learning task decomposition via temporal alignment for control,” in
International Conference on Machine Learning. PMLR, 2018, pp.
4654–4663.

[9] G. Konidaris and A. Barto, “Skill discovery in continuous rein-
forcement learning domains using skill chaining,” in Advances in
Neural Information Processing Systems, Y. Bengio, D. Schuurmans,
J. Lafferty, C. Williams, and A. Culotta, Eds., vol. 22. Curran
Associates, Inc., 2009.

[10] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019, pp. 6231–6235.
[Online]. Available: https://doi.org/10.24963/ijcai.2019/869

[11] L. P. Kaelbling, “Learning to achieve goals,” in IN PROC. OF IJCAI-
93. Morgan Kaufmann, 1993, pp. 1094–1098.

[12] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proceedings of the 1st AAAI Conference
on Bridging the Gap Between Task and Motion Planning, ser.
AAAIWS’10-01. AAAI Press, 2010, pp. 33–42.

[13] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
2020.

[14] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using
reward machines for high-level task specification and decomposition
in reinforcement learning,” ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. StockholmsmÃCssan,
Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 2107–2116.

[15] R. Toro Icarte, E. Waldie, T. Klassen, R. Valenzano, M. Castro,
and S. McIlraith, “Learning reward machines for partially observable
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 32, pp. 15 523–15 534, 2019.

[16] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A.
McIlraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning.”

[17] B. Wen, C. Mitash, B. Ren, and K. E. Bekris, “se (3)-tracknet: Data-
driven 6d pose tracking by calibrating image residuals in synthetic
domains,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 10 367–10 373.

[18] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic manip-
ulation,” ser. Proceedings of Machine Learning Research, A. Billard,
A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87. PMLR, 29–31
Oct 2018, pp. 651–673.

[19] R. Fox, R. Shin, S. Krishnan, K. Goldberg, D. Song, and I. Stoica,
“Parametrized hierarchical procedures for neural programming,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=rJl63fZRb

[20] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical
tasks.” CoRR, vol. abs/1710.01813, 2017. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01813

[21] D. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” CoRR, vol. abs/1807.03480,
2018. [Online]. Available: http://arxiv.org/abs/1807.03480

[22] S. Nair, M. Babaeizadeh, C. Finn, S. Levine, and V. Kumar, “TRASS:
time reversal as self-supervision,” in 2020 IEEE International
Conference on Robotics and Automation, ICRA 2020, Paris, France,
May 31 - August 31, 2020. IEEE, 2020, pp. 115–121. [Online].
Available: https://doi.org/10.1109/ICRA40945.2020.9196862

[23] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight ex-
perience replay,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, ser. NIPS’17. Curran
Associates Inc., 2017, pp. 5055–5065.

[24] S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation,” CoRR, vol.
abs/1909.05829, 2019. [Online]. Available: http://arxiv.org/abs/1909.
05829

[25] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
ser. AAAI’17. AAAI Press, 2017, pp. 1726–1734.

[26] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18,
2018, pp. 3307–3317.

[27] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=SJx63jRqFm

[28] C. Mitash, B. Wen, K. Bekris, and A. Boularias, “Scene-level pose
estimation for multiple instances of densely packed objects,” in Con-
ference on Robot Learning. PMLR, 2020, pp. 1133–1145.

[29] A. S. Morgan, B. Wen, J. Liang, A. Boularias, A. M. Dollar, and
K. Bekris, “Vision-driven compliant manipulation for reliable, high-
precision assembly tasks,” RSS, 2021.

[30] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, pp. 4565–
4573, 2016.

[31] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Carnegie-Mellon University Pittsburgh PA, Tech. Rep.,
1989.

[32] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel
objects without instance or category-level 3d models,” IROS, 2021.

http://robotics.usc.edu/publications/954/
https://doi.org/10.1177/02783649211004615
https://doi.org/10.24963/ijcai.2019/869
https://openreview.net/forum?id=rJl63fZRb
http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01813
http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-01813
http://arxiv.org/abs/1807.03480
https://doi.org/10.1109/ICRA40945.2020.9196862
http://arxiv.org/abs/1909.05829
http://arxiv.org/abs/1909.05829
https://openreview.net/forum?id=SJx63jRqFm

	I Introduction
	II Related Work
	III Problem Formulation and Architecture
	IV Learning Approach
	IV-A Prior Initialization
	IV-B Pseudo Ground-Truth Inference
	IV-C Training the Policy Networks

	V Experimental Results
	V-A Data collection
	V-B Object Pose Parsing from Demonstration Video
	V-C Training and architecture details
	V-D Evaluation

	VI Conclusion
	References

