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Abstract— This work presents a technique for localization of
a smart infrastructure node, consisting of a fisheye camera, in
a prior map. These cameras can detect objects that are outside
the line of sight of the autonomous vehicles (AV) and send that
information to AVs using V2X technology. However, in order
for this information to be of any use to the AV, the detected
objects should be provided in the reference frame of the prior
map that the AV uses for its own navigation. Therefore, it
is important to know the accurate pose of the infrastructure
camera with respect to the prior map. Here we propose to solve
this localization problem in two steps, (i) we perform feature
matching between perspective projection of fisheye image and
bird’s eye view (BEV) satellite imagery from the prior map to
estimate an initial camera pose, (ii) we refine the initialization
by maximizing the Mutual Information (MI) between intensity
of pixel values of fisheye image and reflectivity of 3D LiDAR
points in the map data. We validate our method on simulated
data and also present results with real world data.

Index Terms— Fisheye Camera, Camera Localization, Mu-
tual Information

I. INTRODUCTION

Environment perception in Autonomous Vehicles (AV) is
a challenging problem. With the current approach of using
only on-board sensors to solve the perception problem, it is
impossible to sense occluded areas and mitigate the effects
of sensor outage. Complex traffic intersections with buildings
close to the curb may minimize the field of view of an AV’s
sensors. Integration of smart infrastructure nodes (sensing
and compute) on roads where AVs operate can help overcome
these challenges. The elevated and static view-point of the
smart sensors enables them to observe the environment,
detect more objects in the scene, and communicate that
information to AVs. AVs can fuse that information with
their own sensor measurements and augment their situational
awareness. Fisheye cameras are well known for their low cost
and wide Field of View (FoV), making them suitable for such
smart infrastructure based sensing applications. However, the
fisheye camera needs to provide this information in the same
coordinate frame as the vehicle. For this reason, they need to
be localized or registered within the same map that is used by
the AV for navigation. In this work, we propose a method
to localize a downward looking static smart infrastructure
fisheye camera in a prior map consisting of a metric satellite
image, and a co-registered LiDAR map of ground points with
their LiDAR reflectivity values. An overview of the approach
is shown in Figure 1.
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Fig. 1: Overview of our two step approach to camera localization. The
coordinates shown are in meter, wrt the origin of the map. We start with
a noisy GPS initialization (cyan), then perform feature matching between
satellite image and rectified fisheye image to obtain an inital camera pose
- PnP Localization (Green), and finally maximize the Mutual Information
between LiDAR map and the fisheye image to obtain a refined camera
localization estimate.

II. RELATED WORK

There are several contributions on localization of camera
images in prior maps (satellite imagery or LiDAR generated
3D maps). Satellite maps can be procured easily from third
party sources [1], [2], and with the widespread use of Li-
DARs in autonomous driving, we now have several high defi-
nition map providers which provide dense 3D map of the en-
vironment [3]. This has made localization of cheaper sensors
like cameras on prior maps an active area of research with an
ultimate aim of using cheaper sensors on-board an AV. [4]
presents monocular perspective camera localization in pre-
built 3D LiDAR maps using 2D-3D line correspondences.
This method shows promise only in structured environment
where lines can be easily detected in both camera and the
LiDAR map. [5] presents LiDAR map based monocular
camera localization in urban environment. Unlike [4] which
depends on detection of geometric primitives like lines in
both the sensing modalities, [5] uses dense appearance based
approach which work in unstructured environments. In [5],
given an initial belief of the camera pose, they generate
several synthetic views of the environment by projecting the
LiDAR map points using a perspective camera model, and
compare these synthetic views against the live camera feed.
The synthetic view which maximizes the Normalized Mutual
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Information (NMI) between the real image gray scale values
and the projected points’ LiDAR reflectivity values, is the
solution to the localization problem. [5] draws inspiration
from work done on 3D-LiDAR Camera extrinsic calibra-
tion described in [6], which uses maximization of Mutual
Information (MI) for calibrating a 3D-LiDAR Camera pair.
[7] presents a camera localization technique which matches
ground imagery obtained by cameras onboard an AV to the
available satellite imagery. The camera images are warped
to obtain a bird’s eye view (BEV) of the ground. Next, the
BEV image is matched with the given satellite imagery using
using SIFT [8] features.

While the above mentioned approaches provide solutions
for perspective cameras, our focus is to localize (estimate
[CRW,CtW] in Equation 1) a downward looking static
fisheye camera (Figure 2a) in a prior map (Figure 3) which
consists of 2D satellite imagery with metric information
(Figure 3a) and 3D LiDAR map of ground points (Figures
3b, 3c). We initialize the camera localization using feature
matching as done in [7], and refine the camera localization
using maximization of a MI based cost function as done in
[5] and [6].

III. OVERVIEW

In this section we provide an overview of the various
components of our implementation.

A. Fisheye Camera

(a) Fisheye image captured at a
traffic intersection in our simulator

(b) Rectification of fisheye image
to perspective image

Fig. 2: Fisheye Image (Figure 2a) and its perspective rectification (Figure
2b)

We use the fisheye camera projection model proposed in
[9] to project 3D point PW = [XW , YW , ZW ] defined in
the prior map coordinate frame W to a 2D point p on the
fisheye camera image plane using Equation 1.

p = Π(K,D, ξ, [CRW,CtW],PW) (1)

Here Π() is the projection function, K =

[
fx s cx
0 fy cy

]
,

D = [k1, k2, p1, p2] and ξ are the camera intrinsics, and
[CRW, CtW] is the camera extrinsic. CRW ∈ SO(3) is an
orthonormal rotation matrix and CtW ∈ R3 is a 3D vector.
The goal of this work is to estimate the unknown camera
extrinsic [CRW, CtW] in the prior map frame W.

1) Intrinsic Calibration: We estimate the intrinsic pa-
rameters K, D and ξ by collecting several images of a
large checkerboard at different poses, and feeding those
images to the omnidirectional camera calibrator in OpenCV
[10], which provides an implementation1 of the intrinsic
calibration technique presented in [11].

2) Rectification: The intrinsic camera calibration param-
eters are used to rectify the fisheye image (Figure 2a)
into its corresponding perspective image (Figure 2b) utiliz-
ing OpenCV’s rectification routines. Although perspective
rectification results in loss of field of view, it makes the
application of computer vision algorithms developed for
perspective images possible for fisheye images.

B. Prior Map

The prior map (Figure 3) consists of two important com-
ponents which are registered and expressed in the frame of
reference W. They are:

1) Satellite Map: The satellite map is a metric Bird’s Eye
View (BEV) satellite image (Figure 3a). In our case, a pixel
on the image corresponds to 0.1 m on the ground.

2) LiDAR Map: The prior LiDAR map is built using an
offline mapping process described in [5]. Broadly, a survey
vehicle equipped with several 3D LiDAR scanners and a high
end inertial navigation system is manually driven and sensor
data is collected in the environment we want to map. Next,
an offline pose-graph optimization SLAM (Simultaneous
Localization and Mapping) problem is solved to obtain the
accurate global pose of the vehicle. Finally, a dense ground
point mesh is constructed from the optimized pose graph
using region growing techniques which gives a dense 3D
point cloud map. The ground points from this dense 3D
cloud are used to generate the LiDAR ground reflectivity
image (Figure 3b) and ground height image (Figure 3c). The
LiDAR Map (Figures 3b and 3c) is aligned with the satellite
imagery (Figure 3a) using the GPS measurements from the
inertial navigation system.

IV. PROBLEM FORMULATION

The goal of this work is to estimate the unknown camera
pose [CRW, CtW] in the prior map frame W. We assume
that we have a noisy estimate of the fisheye camera’s (GPS)
position (no orientation) in the map which helps us reduce
the search space in the prior map. We follow a two step
approach to register the camera in the prior map, the details
of which are presented in Sections IV-A and IV-B, and a
broad overview is provided in Figure 4.

A. Initialization using sparse feature matching

Traditionally available feature detection, description and
matching techniques are usually suitable for perspective
images only. Therefore, we rectify the fisheye image into
the corresponding perspective image as explained in Section
III-A.2, and use SuperGlue [12], a pre-trained deep learning
based feature matching algorithm, for matching features

1https://docs.opencv.org/4.5.2/dd/d12/tutorial_
omnidir_calib_main.html

https://docs.opencv.org/4.5.2/dd/d12/tutorial_omnidir_calib_main.html
https://docs.opencv.org/4.5.2/dd/d12/tutorial_omnidir_calib_main.html


(a) Satellite Map (b) LiDAR Map: Reflectivity of Ground Points (c) LiDAR Map: Height of Ground Points

Fig. 3: Prior Map: Figures 3a, 3b & 3c show the components of our prior map. The full map is not shown in the interest of space.

Fig. 4: Overview of the method: The block diagram shows the two steps involved in our approach. In Step 1, we match features between the perspective
projection of fisheye image and a cropped satellite map to initialize camera pose, and in Step 2 we refine this initialization by maximization of Mutual
Information between fisheye image and prior 3D-LiDAR map.

(Figure 5) between the rectified fisheye image and the
cropped satellite image (cropped using GPS initialization,
refer Figure 4). The matched features are used to solve a
Perspective-n-Point (PnP) problem [13], [14] to estimate the
initial pose of camera (also called the PnP estimate) in the
prior map reference frame W. As we know the metric scale
of the satellite image (1 pixel = 0.1 m), we obtain the camera
pose in metric units.

Fig. 5: SuperGlue [12] Matching between Satellite Image (Left) & perspec-
tive projection of fisheye image (Right)

B. Refinement of camera localization using Maximization of
Mutual Information

Mutual Information (MI) has been used in several fields
for registering data from multi-modal sensors [15], [16]. We

refine the initial camera pose estimate from Section IV-A
by maximizing the Mutual Information (MI) between the
LiDAR reflectivity of ground points and the fisheye grayscale
values at the pixel locations onto which the LiDAR points
are projected using the camera pose [CRW,CtW].

1) Theory: MI (Equation 2) provides a way to statistically
measure mutual dependence between two random variables
X and Y .

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

Where H(X) and H(Y ) are the Shannon entropy over
random variables X and Y respectively, and H(X,Y ) is the
joint Shannon entropy over the two random variables:

H(X) = −
∑
x∈X

pX(x) log pX(x) (3)

H(Y ) = −
∑
y∈X

pY (y) log pY (y) (4)

H(X,Y ) = −
∑
x∈X

∑
y∈Y

pX,Y (x, y) log pXY (x, y) (5)

The entropy H(X) of a random variable X denotes
the amount of uncertainty in X , whereas H(X,Y ) is the
amount of uncertainty when the random variables X and



Y are co-observed. The formulation of MI in Equation
2 shows that maximization of MI(X,Y ) is achieved by
minimization of the joint entropy H(X,Y ), which coincides
with minimization of dispersion of two random variable’s
joint histogram.

2) Mathematical Formulation: Let {PWi
; i =

1, 2, . . . , n} be the set of 3D points whose coordinates
are known in the prior map reference frame W and let
{Xi; i = 1, 2, . . . , n} be the corresponding reflectivity
values for these points (Xi ∈ [0, 255]). Equation 1 presents
the relationship between PWi

and its image projection pi

as a function of [CRW,CtW]. Let {Yi; i = 1, 2, . . . , n} be
the grayscale intensity of the pixels pi where PWi

project
onto, such that:

Yi = I(pi) (6)

where Yi ∈ [0, 255] and I is the grayscale fisheye image.
Therefore, Xi is an observation of the random variable
X , and for a given [CRW,CtW], Yi is an observation of
random variable Y . The marginal (pX(x), pY (y)) and joint
(pX,Y (x, y)) probabilities of the random variables X and Y ,
required for calculating MI (Equation 2), can be estimated
using a normalized histogram (Equation 7):

p̂(X = k) =
xk
n
, k ∈ [0, 255] (7)

where xk is the observed counts of the intensity value k.
3) Global Optimization: CRW ∈ SO(3) is an orthonor-

mal rotation matrix which can be parameterized as Euler
angles [φ, θ, ψ]> and CtW = [x, y, z]> is an Euclidean 3-
vector. ψ is the rotation of the camera along its principal
axis. In our context, the fisheye camera is facing vertically
downward so we do not refine the φ & θ and leave it at
what the feature matching based technique (Section IV-A)
determines it to be, which is very close to 0. Therefore, as
far as rotation variables are concerned, we refine only ψ. We
represent all the variables to be optimized together as Θ =
[x, y, z, ψ]>. The optimization is posed as a maximization
problem:

Θ̂ = argmax
Θ

MI(X,Y ; Θ) (8)

V. EXPERIMENTS AND RESULTS

This section describes the experiments performed to eval-
uate the proposed technique using data obtained from both
our simulator and real world sensor.

A. Simulation Studies

We first validate our approach on a simulator which is
built using data from real sensors. The Mathworks’ tool
RoadRunner [17] is used to generate the 2D features like
lane geometry and lane markings with the satellite map used
as a reference. The 3D structures are created using the Unreal
Engine Editor [18] with the help of real satellite and 3D Li-
DAR maps. Since the simulated environment is created using
the prior map components, it can safely be assumed that
the simulator aligns with the real world to a high degree of
accuracy. In order to generate the fisheye images, we model a

fisheye camera in Unreal Engine using the equidistant model
with a field of view of 180 degrees. We demonstrate our
approach in simulation for the fisheye image shown in Figure
2a. The fisheye image is first rectified (Section III-A.2) to
generate Figure 2b, which is used for estimating the initial
camera pose using the approach in Section IV-A. Next, the
initialization is refined using maximization of MI (Section
IV-B).

(a) (b)

Fig. 6: Two step approach for camera localization in prior map : Figure 6a
shows the projection of 3D-LiDAR ground points (cyan) using the initial
estimate obtained using feature matching (PnP Estimate from Section IV-
A), and Figure 6b shows the projection of 3D-LiDAR ground points using
the refined camera pose estimate from maximization of MI (from Section
IV-B). The misalignment visible in Figure 6a, is absent in Figure 6b (best
viewed digitally).

We qualitatively validate the camera localization (Figure
6) estimate ([CRW,CtW]) by projecting points from the
3D-LiDAR map (Figures 3b and 3c) onto the fisheye image
(Figure 2a). As shown in Figure 6a, the projection of LiDAR
map points on the fisheye image obtained using the initial
camera pose are not well aligned. When we plot (Figure 7)
the MI around the initial camera pose, we observe that it is
not at its maximum at the initial estimate (also called PnP
Estimate), thus holding the promise for further improvement.
Similarly, Figure 8 presents the surface plot of MI, which
shows the presence of a global maximum in each sub-plot.
Therefore, on solving the optimization problem posed in
Equation 8 we obtain camera pose estimate which maximizes
the MI between the two modalities and results in negligible
misalignment of the projected LiDAR map points in Figure
6b.

We run 100 independent trials to evaluate the robustness
of the MI based refinement method (Section IV-B) to change
in initialization (Figure 9). The translation parameters show
greater variance when compared to yaw ψ. The higher vari-
ance of the translation variables can be attributed to the fact
that the MI based cost function is less sensitive to changes
in translation variables, especially in the outdoor scenario
where most of the points lie in the far field. In the limiting
case, far away points are considered to be points at infinity,
represented as [x, y, z, 0]T , which, under camera projection
(Equation 1), render the translation variable (CtW) in the
optimization problem (Equation 8) un-observable. This result
is also presented in [6], specifically when discussing sensor
registration in an outdoor environment using only a single
image - LiDAR scan pair, which is similar to our situation.



Fig. 7: Plot of MI around the PnP estimate (from Section IV-A). Plot shows
that MI is not at maximum at the PnP estimate, therefore the maximization
of MI may reduce the misalignment in projection of 3D-LiDAR points
visible in Figure 6a

Fig. 8: Plot of MI by perturbing two degrees of freedom around the
PnP Estimate (i.e. the initial estimate from Section IV-A). The cost function
from single Image LiDAR Scan pair is not differentiable at several points.
Hence, we use an exhaustive grid search around the initialization point to
arrive at solution where MI is maximized.

Fig. 9: Performance of MI based fisheye camera localization refinement for
different initial conditions. Here we perform 100 independent trials. + is the
initialization, * is the final result.

B. Real World Experiments

In order to demonstrate the validity of our algorithm
in realistic situations, we conducted experiments with data
collected from a real fisheye camera (Figure 10).

1) System Description: We use a fisheye lens Fujinon
FE185C057HA 2/3 inch sensor, which provides 185◦ of
vertical and horizontal FoV. Our camera is a 5MP Sony
IMX264. We mount our sensor from a tripod (Figure 10),
looking vertically down, and capture images of the en-

vironment. Our ultimate goal is to mount these cameras
at challenging intersections for navigation of autonomous
vehicles, and use the proposed method to register them in
a prior map. We use an iPhone to provide us an approximate
GPS location (without the orientation) of the fisheye camera,
which is used to limit the search space in the prior map.
We use a high accuracy RTK-GPS (uBlox ZED F9P GNSS
+ uBlox antenna ANN-MB-00) unit to measure GPS co-
ordinates of distinctive corners on road markings that can
be used for quantifying the accuracy of camera localization
(Figure 12).

Fig. 10: Collecting data for real experiments using a tripod mounted down-
ward looking fisheye camera. Our ultimate goal is to mount these cameras,
along with our smart infrastructure nodes, at challenging intersections for
navigation of autonomous vehicles.

2) Results: We present results with real world data from
two different locations in Figure 11 which qualitatively
demonstrate the incremental improvement in camera local-
ization using our two step approach. While the projection
of LiDAR points onto the fisheye image using the initial
camera localization appears misaligned in Figures 11a and
11c, the misalignment is reduced when the LiDAR points
are projected using refined camera localization in Figures
11b and 11d. We quantify the veracity of camera localization
by measuring the average reprojection error for points on the
fisheye image whose GPS locations we have measured using
high accuracy RTK-GPS. We manually mark these points on
the fisheye image, and measure the difference between them
and the reprojection of the corresponding 3D point in the
prior map onto the fisheye image, using the estimated camera
localization. The results presented in Figure 12 show that the
reprojection error on the fisheye image plane reduces when
we refine the initial camera localization by maximizing the
mutual information.

VI. DISCUSSION & CONCLUSION

We present an approach to localize a smart infrastructure
node equipped with a fisheye camera. The downward facing



(a) Location 1 - Projection of LiDAR points (cyan) using PnP Estimate (b) Location 1 - Projection of LiDAR points (cyan) using MI Estimate

(c) Location 2 - Projection of LiDAR points (cyan) using PnP Estimate (d) Location 2 - Projection of LiDAR points (cyan) using MI Estimate

Fig. 11: Real World Experiments: Projection of 3D-LiDAR ground points (cyan) on to fisheye camera using the initial camera pose (PnP Estimate)
(Figure 11a, 11c) and MI based refinement of initial camera pose (Figure 11b, 11d). The misalignment of LiDAR points visible in highlighted areas in
Figures 11a, 11c, are minimized in Figures 11b, 11d

(a) Location1 - Average Reprojection Error with PnP = 20.52 pixel,
and with Maximization of MI = 9.12 pixel

(b) Location2 - Average Reprojection Error with PnP = 26.40 pixel,
and with Maximization of MI = 13.11 pixel

Fig. 12: Green Circle - Hand annotated corner point whose GPS location was measured using a high accuracy RTK-GPS unit, Red Circle - Projection
of corner point’s position onto Fisheye Image using PnP estimate (Section IV-A), Blue Circle - Projection of corner point’s position onto Fisheye Image
using MI estimate (Section IV-B).

fisheye image is registered to a prior map, comprising of a
co-registered satellite image and a ground reflectivity/height
map from LiDAR-SLAM. Our two-step approach uses fea-
ture matching between the rectified fisheye image and the
satellite imagery to get an initial camera pose, followed
by maximization of MI between the fisheye image and 3D
LiDAR map to refine the initial camera localization. Since we
have only a single camera image to register against (the smart
infrastructure node is static), the cost surface may not always
be smooth [6] and therefore not differentiable - leading to

the failure of gradient descent methods. Hence, we use an
exhaustive grid search method to find the optimal camera
pose. Such a search may be time-consuming (depending on
the number of 3D LiDAR map points used for calculating
MI (Equation 2), the interval of exhaustive grid search and
the available compute power), and not suitable for real-time
operation. This is acceptable for our application, because we
need to localize the smart infrastructure node once at install
and this can be an offline process. Moreover, this method
can be accelerated by use of GPUs.
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