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DEVO: Depth-Event Camera Visual Odometry
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Fig. 1: Challenging scenarios and results. sofa is captured under high dynamics. cali hdr is a challenging illumination scene with highly
self-similar texture. Column 1: Example RGB images. Column 2: Corresponding time-surface map. Column 3: Canny edge detections.

Column 4: Reprojected depth points.

Abstract— We present a novel real-time visual odometry
framework for a stereo setup of a depth and high-resolution
event camera. Our framework balances accuracy and robust-
ness against computational efficiency towards strong perfor-
mance in challenging scenarios. We extend conventional edge-
based semi-dense visual odometry towards time-surface maps
obtained from event streams. Semi-dense depth maps are
generated by warping the corresponding depth values of the
extrinsically calibrated depth camera. The tracking module
updates the camera pose through efficient, geometric semi-
dense 3D-2D edge alignment. Our approach is validated on
both public and self-collected datasets captured under various
conditions. We show that the proposed method performs com-
parable to state-of-the-art RGB-D camera-based alternatives in
regular conditions, and eventually outperforms in challenging
conditions such as high dynamics or low illumination.

I. INTRODUCTION

Real-time localization and 3D mapping are increasingly
important tasks to be solved in many emerging technologies
such as robotics, intelligent transportation, and intelligence
augmentation. Owing to their small scale and affordability,
cameras are often considered as an exteroceptive sensor
in such applications. Despite being attractive, pure vision-
based solutions still lack robustness in more challenging
conditions [1], [2], and are therefore often complemented
by additional sensors such as an Inertial Measurement Unit
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(IMU), wheel encoders, or a depth camera. Especially the
addition of the latter has been highly popular in indoor
applications since the advent of consumer-grade RGB-D
cameras in 2010 (e.g. Microsoft Kinect). RGB-D cameras
provide high frequency and high resolution depth images,
which significantly improves accuracy and robustness of
monocular visual odometry and SLAM methods [3], [4], [5],
[6], [7]. However, most RGB-D camera solutions still rely
on sparse feature extraction or photometric image alignment,
which is why they cannot handle challenging conditions such
as highly dynamic motion or low illumination. KinectFu-
sion [8], relies exclusively on depth images, but the method
is power hungry and demands high frame-rate depth images
as well as GPU resources for the real-time execution of depth
fusion and ICP algorithms.

The present work introduces a fresh approach to depth
camera-supported indoor visual odometry (VO) for a power-
efficient handling of challenging conditions such as high
dynamics or low illumination. Our core idea consists of
exchanging the RGB camera against a Dynamic Vision
Sensor, which pairs high dynamic range (HDR) with high
temporal resolution. The basic functionality of a DVS—
also called an event camera—as well as its advantages
and challenges are well explained in the original work of
Brandli et al. [9] or the recent survey by Gallego et al. [10].
Our method relies on an approach similar to Canny-VO [7]
and extracts edges from the event stream, assigns depth
from the depth camera, and registers subsequent views by
3D-2D edge alignment. The ability of event cameras to
see in almost complete darkness paired with their high



temporal resolution lead to excellent performance in the
above mentioned challenging cases. At the same time, our
method maintains high computational and energy efficiency
owing to potentially low depth camera frame rates as well
as semi-dense processing. Our contributions are as follows:

o We present DEVO, a novel visual odometry framework

for a hybrid stereo setup of a depth and an event camera.

o The approach relies on thresholded time-surface maps

for edge detection and semi-dense depth map extraction.

e Our method handles 6-DoF motion estimation, and we

demonstrate high efficiency and successful operation in
all conditions.

Our results are obtained on self-collected high-resolution
RGB-D-event indoor datasets with ground truth captured
by an external motion tracking system. Further tests are
conducted on larger scale outdoor datasets where depth is
obtained from a LiDAR scanner. A thorough comparison
against state-of-the-art event-based and RGB-D based vi-
sual odometry frameworks proves that DEVO achieves high
quality, continuous visual localization results and eventually
outperforms alternative methods in challenging conditions.

II. RELATED WORK

Next, we review classical RGB-D camera approaches
as well as both pure and multi-sensor, event-based visual
odometry solutions.

RGB-D camera-based solutions: The most straightfor-
ward solutions to RGB-D camera-based VO use only depth
information [8], [11]. While they may potentially oper-
ate in dark environments, they require dense depth image
processing at high frame rate, and therefore require high
energy and computation resources (e.g. GPU). Approaches
that also rely on images [3], [4], [5], [6] often perform dense
photometric alignment, and thus still depend on exhaustive
parallel computing. They furthermore have the disadvantage
of degrading in challenging visual conditions (e.g. blur, low
illumination). Most related to our method are approaches
relying on sparsified, semi-dense depth maps [7], [12]. They
have large convergence basins, stability under illumination
changes, and high computational efficiency. Nonetheless,
they still depend on intensity images for edge detection, and
therefore continue to demonstrate high sensitivity to motion
blur and low-illumination conditions.

Pure event camera-based solutions: Event cameras of-
fer strong advantages such as high dynamic range, low
latency, and low power consumption. However, the com-
plicated nature of event data demands for novel theories
and approaches, and full 6-DoF motion estimation with a
single event camera remains a challenging problem. Many
works rely on simplifying assumptions. Weikersdorfer et
al. [13] proposed an event-based 2D SLAM framework for
planar motions. Other works rely on a contrast maximization
objective that utilizes image-to-image warping, a function
that only works if the image transformation is at most a
homography (e.g. pure rotation, planar homography) [14],
[15], [16], [17], [18]. The first full 6-DoF solution is given by
Kim et al. [19], who proposed a complex framework of three

decoupled probabilistic filters estimating intensity, depth, and
pose, respectively. A geometric solution is given by Rebecq
et al. [20], which relies on their earlier ray-density based
structure extraction method EMVS [21]. The success of these
methods is however limited to small-scale environments and
small, dedicated movements on mapping modules. Zhu et
al. [22] finally present a promising learning-based approach,
which however depends on vast amounts of training data,
and provides no guarantees of optimality or generality. ESVO
uses a stereo event camera [23], and we compare it against
our approach.

Hybrid event-supported solutions: Owing to their dif-
ficult nature, event cameras are often combined with other
sensors such as IMUs or regular cameras. Censi and Scara-
muzza [24] present a VO framework that estimates relative
poses by fusing events with absolute brightness information.
Kueng et al. [25] detect features from grayscale images
and track the features using the support of event data.
Intensity-based methods do not take full advantage of event
cameras and may fail due to motion blur in dark or varying
illumination settings. While approaches that process images
and events individually [26], [27] may continue to work
if no regular image features are perceived, they still suffer
from severe robustness issues if such conditions persist over
extended time intervals. Another work that is closely related
to ours is introduced by Weikersdorfer et al. [28], who
extend their previous work [13] and include an RGB-D
sensor. However, their method is based on an outdated, low-
resolution event camera model and relies on a fully voxelized
and thus limited-size environment. The accuracy of their
probabilistic approach is highly depend on the frequency of
depth updates, which limits the speed of the motion.

III. DEPTH-EVENT VISUAL ODOMETRY

This section presents the details of our novel stereo depth-
event odometry framework, which we denote DEVO. We
start by seeing an overview of the entire pipeline followed
by the details of the event data representation for efficient
processing, the semi-dense depth map extraction module, and
the final 6 Degree-of-Freedom (DoF) tracking module.

A. Framework overview

A flowchart of our proposed method detailing all steps is
illustrated in Figure 2] We start by generating time-surfaces
maps which put our event sets into a suitable representation
for efficient and accurate edge extraction and alignment.
Details are introduced in Section The representation
is used in both a tracking and a mapping module, which—
in analogy to classical visual SLAM architectures—run in
two parallel threads. The tracking thread processes only
events and incrementally estimates the 6-DoF camera pose
by efficient 3D-2D edge alignment. Details of the tracking
thread are introduced in Section The local reference
semi-dense depth map is updated at lower framerate inside
the mapping thread. It proceeds by extracting the semi-
dense edge map from the time-surface maps and assigning
depth values from the depth camera readings. The local
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Fig. 2: Overview of our proposed DEVO visual localization and
mapping pipeline for a stereo depth-event system.

map is updated whenever sufficient displacements between
the current and the reference view has been detected. The
operations of the map generation and the reference frame
selection strategy are detailed in Section [II-C|

B. Event representation

Let us assume that we are given a set of N events
& = {ex}_, occurring over a certain time interval. Each
event e = {Xp,lk,br} is defined by its image location
Xp = [zx  yi)T, timestamp t, and polarity by. It is common
to not process events asynchronously at the very high rate
they occur, but aggregate sets of events accumulated during
regularly spaced time intervals into one of three possible
representations. The first one is given by space-time volumes
of events [29], which are often used in conjunction with
accurate but more computationally demanding continuous-
time motion representations. The second one is given by
simply ignoring the temporal nature of the events, and pro-
jecting all events along the temporal dimension onto a virtual
binary image in which we then perform feature extraction.
Though very efficient, the method re-induces motion blur
and requires a careful selection of the time interval length.
The third representation is given by time-surface maps
(TSM [29]), which create an interesting balance between
accuracy and efficiency. A TSM is an image in which a
high pixel value denotes a recent event. The value at each
pixel location x is a function of an exponential decay kernel
and given by

t— tlast (X)

T(x,t) =exp(— =

)s (1)

where ¢t is an arbitrary time, and t;,5;(x) < ¢ is the timestamp
of the last event triggered at x. 7 denotes the constant decay
rate parameter, which requires careful tuning as a function of
motion dynamics. The TSM visualizes the history of moving
brightness patterns at each pixel location and emphasizes
on locations in which motion has been more recent. The
values in a TSM are mapped from [0, 1] to [0,255] for
convenient visualization and processing. We use a modified

TSM in which we only consider pixels with a value above a
certain threshold §. Depending on the module (i.e. tracking,
or mapping), other pixels are set to 0 or discarded.

C. Mapping module

The mapping module performs semi-dense point cloud
extraction. Let Trer(-) = T (-, twer) be the TSM generated
from the set of events £ at time t.;. The semi-dense region
X'l for which depth values will be extracted is simply
given by all pixels for which the value is larger than J, i.e.
X = {x s.t. Tet(x) > 0}. Based on the assumption that
events are pre-dominantly triggered by high-gradient edges in
the image, a proper choice of the decay rate 7 and threshold
6 will counteract motion blur and encourage the extracted
semi-dense region to align tightly with effective appearance
contours.

In order to retrieve the depth value for each point in the
semi-dense region, we first warp the depth points from the
depth camera at time ¢, to the event camera. The location
in the event camera is given by

xf, = e(Teq - D(zf) - w7t (x1)), @)

where 7,,q and 71';/1d represent the known camera-to-image
and the image-to-camera transformations of the event and
the depth camera, respectively. They are defined as mapping
from the 2D image space to 3D homogeneous space and vice-
versa. D(a) = diag(a,a,a,1) generates a diagonal matrix
with elements a, a, a, and 1 along the diagonal. T, is the
known 4 x 4 Euclidean extrinsic transformation matrix from
the depth to the event camera. Finally, x{ and z{ are a point
and its corresponding depth in the depth camera, and x7 is
the warped point in the depth frame. The depth z; at the
latter point is easily obtained by

26 =1[0010] Teq D(zf) 77" (x{), 3)

Note that the warping maps depth values onto sub-pixel
locations rather than event camera pixel centers. It may fur-
thermore induce occlusions or leave pixels with unobserved
depths. In order to find a unique depth for each pixel, we cre-
ate an individual list of nearby warped points from the depth
image for each pixel in the semi-dense region. The value
of the depth is conditionally set if the pixel is surrounded
by warped points from the depth image. A simple depth
clustering strategy identifies potential foreground points, and
the final value is found by simple interpolation and ray
intersection. This ensures that the depth of the pixels in
the semi-dense region is always corresponding to foreground
points and never affected by occlusions, depth measurement
errors, or potential misalignments such as small errors in the
extrinsic calibration parameters. The points that have a valid
depth assigned to them are renormalized and multiplied by
their depth, which finally results in the set P for our semi-
dense 3D point cloud. Note that—in combination with the
reference frame poses identified by the tracking module—
multiple local maps could be merged into a global map using
classical point cloud fusion techniques. The focus of the
present work remains however on the localization problem.



D. 6-Dof Camera tracking

With local 3D semi-dense point clouds from the mapping
module in hand, we may now proceed to the details of
our continuous, 6-DoF motion tracking module. We use
the existing event-based localization strategy of Zhou et al.
[23] in order to align subsequent TSMs with respect to the
local semi-dense point cloud. As shown in Figure [3] the
local map (i.e. the reference frame) is furthermore updated
by the mapping thread each time the baseline with respect
to the previous reference frame exceeds a given threshold.
Theoretically, given that events are triggered asynchronously
and at very high rate (with temporal resolution in the order
of micro-seconds), we could update the pose of the camera
with high frequency. Here we choose a rate of 100Hz, which
already leads to a strong ability in handling highly dynamic
motion.

The tracking proceeds by constructing a potential field
in the current view. Based on a hypothesized pose, the
reprojected point locations from the semi-dense point cloud
then lead to a sampling of this field, and the sum of squares
of the sampled values is considered as an energy to be
minimized over the pose parameters of the camera. The
potential field is constructed by negating and offsetting the
TSM at the current time ty, i.6. Teu(-) =1 — T (-, teur)-

The detailed form of the objective to be minimized is as
follows. The local semi-dense 3D point cloud at reference
time t,f is still given by P!, The absolute pose of the current

view is given by
R(q) t

T(0) = . 4
ORI @
where 6 = [t q”]7 represents a motion parameter vector,
t the position of the camera expressed in a world frame,
and q its orientation as a Rodriguez vector. The relative
transformation from the current camera’s position to the

nearest reference frame is then given as:

Trel (Orel) - Tref(eref) -t Tcur (ecur) .

We also define the warping function W that warps a 3D
point from the local map to the current frame. It is given by

W(Xffa 0r1) = 7Te(Til(eref) - D(zp) - 7";1()(2))~ (5)

The final goal of the tracking module is to find the optimum
motion parameters O that maximize the alignment of the
reprojection of the local map P™f and the local minima in
our current negated TSM T, (-). Using the W, the objective
function to find the optimum 0, can be expressed as

f. 2
arg min Z cur Xl];;e 5 erel)) )a (6)
31 rel'efprst

where p is a robust loss function. Similar to [23], @
is reformulated by using a forward compositional Lucas-
Kanade method [30], which refines the incremental motion
parameters Af by minimizing:

argmln Z Tcur (Xk 7A0rel) arel)))2)a @)
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Fig. 3: 6-Dof Camera tracking. Note that the depth image indicated
in the dashed frame will not be used in tracking module.

and the new warping function W (W (x5 AOe1); Orer) is
updated in each iteration. The new compositional approach is
more efficient than the original method given that the Jaco-
bian of the objective function remains constant at the position
of zero increment and can be pre-computed. Smoothness,
differentiability and convexity of this method are proven in
[23].

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of our novel visual odometry
pipeline on both public and self-collected sequences. We start
by introducing further details about the implementation and
our hardware configuration. Next, we compare our methods
against several alternatives on both mild test cases and more
challenging scenarios. Alternatives are given by state-of-the-
art event-based and RGB-D or depth-only based approaches.
Both qualitative and quantitative results are provided, which
demonstrate the effectiveness of our method. We conclude
with an analysis of the computational performance of all
above mentioned VO systems.

A. Implementation details

Our first experiments are conducted on the Multi-Vehicle-
Stereo-Event-Camera dataset (MVSEC) presented in [31].
These publicly available sequences include synchronized
event streams, intensity images and depth images with
ground truth trajectories. Next, in order to put a full stress test
onto all methods, we test the methods on several other, self-
collected sequences with different types of textures, motion
characteristics, and illumination conditions. For different
types of scene textures, the sequences are named cali, table
and sofa, respectively. cali is a scene with many calibration

Fig. 4: Full sensor system, with event camera, industrial camera
and RGB-D sensor.



TABLE I: Specifications of sensors used in our experiments.

Sensor | Exposure Time  Resolution ~ Frame Rate
PointGrey-GS3 10ms 1224 %1024 30fps
Azure Kinect 12.8ms 640%x576 30fps
Prophesee-Gen3 - 640x480 -

boards, fable a standard desktop environment, and sofa a liv-
ing room scene. For each texture, we capture datasets under
three different motion speeds, denoted fast, mid and slow.
More datasets are captured under a variety of illumination
conditions, denoted bright, darkish, dim, dark, and hdr. All
sequences are listed in Table [[V] The sequences are collected
by a custom-designed, hardware-synchronized multi-sensor
system (cf. Figure {)), which contains a global-shutter indus-
trial camera (PointGrey-GS3), a high-resolution event camera
(Prophesee-Gen3), and an RGB-D sensor (Azure Kinect).
Detailed specifications are listed in Table The multi-
sensor system is intrinsically and extrinsically calibrated,
and ground truth for all sequences is captured by a highly
accurate external motion capture system.

B. Comparison against event-based solutions

We first compare our proposed depth-event method DEVO
against ESVO, an open-source event-based stereo visual
odometry framework published in [23]. The two methods
are evaluated on the public dataset MVSEC [31]. We choose
both indoor and outdoor sequences, which are captured by
a flying drone inside the room, and a stereo event camera
mounted on a vehicle, respectively. Note that the depth
measurements in MVSEC are obtained from a LiDAR,
which can easily be considered as a replacement for the depth
camera in our method.

Quantitative results are listed in Table [l As can be ob-
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Fig. 5: Visualization of an image (top left) and TSM (top right)
from sequence indoor flying2 and corresponding reprojections into
a nearby frame for ESVO (bottom left) and DEVO (bottom right).
The coloring indicates the depth of each point.

TABLE II: Comparison on MVSEC Datasets
[Ripe: /8, trpe: cm/s, tae: cm]

DEVO ESVO
Sequence Ripe trpe  tae Ripe trpe  tate
upenn indoor flyingl 0.30 0.88 20.58 0.37 1.63 21.68
upenn indoor flying2 0.36 1.12 11.33 - - -
upenn indoor flying3 0.53 1.21 10.60 0.54 2.14 25.40
upenn indoor flying4 0.53 1.44 13.16 - - -
upenn outdoor dayl 0.30 7.77 88.70 - - -

served, DEVO clearly outperforms ESVO in all sequences.
It should be noted that sequences indoor flying2 and indoor
flying4 are much more challenging than the other two se-
quences owing to high noise in the event streams caused
by a combination of difficult texture and highly dynamic
platform motion. Examples of the sequence are indicated
in Figure 5] The ground surface triggers a large number of
noisy events for which depth is hard to observe. This severely
influences the mapping result of ESVO and— due to the
highly interleaved tracking and mapping modules—causes
tracking failures in this fast exploration scenario. In contrast,
DEVO directly reads the depth from the depth sensor, the
quality of which is less influenced by the noisy nature of
the texture. The independent depth readings significantly
contribute to the robustness of the entire system when the
inputs of the event camera degrade. Furthermore, the ability
of any stereo method to perceive depths beyond a certain
range is limited by the baseline of the system, which is why
ESVO is unable to provide competitive results on the outdoor
sequence.

C. Comparison against RGB-D camera-based solutions

In order to analyze robustness under challenging illumina-
tion conditions, we compare our method against two classical
approaches that rely on RGB-D cameras or depth sensors,
only. They are given by KinectFusion [8] and Canny-
VO [7]. We apply all methods to our self-collected datasets.
We conduct three types of experiments, and all absolute
trajectory errors (ATE) and relative pose errors (RPE) are
summarized in Table

o Variation of light conditions: We apply all methods
on a series of sequences with different illumination
conditions denoted bright, darkish, dim, dark and high
dynamic range (hdr). As summarized in Table both
DEVO and KinectFusion are able to continuously track
through all sequences, while Canny-VO proves to be

TABLE III: Comparison for different light conditions

Sequence | DEVO KinectFusion Canny-VO
light v v v
darkish v v X
dim v v X
dark v v X
HDR v v X




TABLE IV: Relative pose error and absolute trajectory error on self-collected datasets [Riupe: °/8, trpe: cm/s, tae: cm]

DEVO Canny-VO KinectFusion
Sequence Rrpe trpe tate Rrpe tipe tate Rrpe trpe tate
cali_bright_fast 3.73 2.03 23.67 3.81 1.47 15.55 3.74 1.81 15.34
cali_bright_mid 1.44 1.77 16.90 1.42 1.26 21.23 1.35 1.77 19.22
cali_bright_slow 0.97 0.78 11.85 1.03 0.59 7.16 0.99 0.89 14.52
cali_darkish_slow 1.03 0.91 18.02 - - - 1.02 0.93 11.34
cali_dim_slow 1.55 0.88 35.38 - - - 1.62 0.82 9.05
cali_dark_fast 0.58 0.87 26.43 - - - 0.63 0.92 12.61
cali_dark_mid 0.49 0.60 17.65 - - - 0.54 0.59 12.89
cali_dark_slow 0.24 0.31 9.85 - - - 0.26 0.23 8.97
cali_hdr_slow 0.92 0.79 21.55 - - - 0.95 0.71 11.10
table_bright_fast 1.50 2.42 46.37 1.51 2.22 30.81 1.38 2.75 27.00
table_bright_mid 1.16 1.53 27.83 1.18 1.25 19.68 1.10 1.79 21.71
table_bright_slow 0.63 1.00 19.5 0.64 0.82 26.94 0.59 1.15 22.48
sofa_bright_fast 2.60 2.30 30.22 2.63 1.90 23.89 2.61 3.64 27.79
sofa_bright_mid 5.28 4.02 134 1.18 1.25 19.68 3.13 7.62 71.5
sofa_bright_slow 1.47 1.16 10.94 0.64 0.82 26.94 1.47 1.21 21.82
fragi s . L " TABLE V: Comparison for different depth frame rates
ragile when applied in poor illumination conditions. [Rupe: /5, tope: C/s, e ]
The reason is a lack of edge features caused by blur e e
and poor contrast in dark scenarios. Frequency DEVO Canny-VO KinectFusion
o Variation of motion characteristics: We evaluate the Fast Ripe trme tae Rupe tmpe tae Rupe bmpe  bate
performance of all methods for different motion dy- 30 1.50 242 4637 1.51 2.22 3081 1.37 2.75 27.00
namics. The sequences are denoted fast, mid, or slow 15 292 4.86 4670 2.96 4.46 29.11 3.04 8.36 37.99
to indicate the different camera dynamics. As can be 10 4.26 7.32 4792 4.65 6.55 34.68 4.83 17.33 66.78
observed in Table all methods have a remarkable 5 7.73 1473 5789 - - - 9.01 26.86 55.09
ability to handle dynamic scenarios for standard depth 1 18.58 49.16 76.04 - - - - - -
camera frame rate. Medium Rrpe tpe  tate Rrpe tpe  tate Rrpe tpe  tate
o Variation of depth camera frame rate: In order to 30 116153 27.83 118 1.25 19.68 1.10 1.79 21.71
s .1 . 15 229 3.01 2420 2.34 2.48 20.08 2.17 3.56 21.31
analyse each method’s ability to operate in an energy-
. . 10 3.39 451 21.46 3.49 3.70 20.34 3.20 5.58 58.73
saving mode, we finally test all methods for different
. 5 6.55 9.20 21.55 - - - 7.16 15.80 37.07
depth camera frame rates between 30Hz and 1Hz in 1 18.46 35.24 51.93 - - - o
the tal?le enV1r'0nr'nent ar'ld for three different camera Slow Rie tme twe Rope b tue Roe tme  bue
dynamics. As indicated in Table E only our method 30 063 1.00 1950 064 082 2694 059 115 2248
is able to maintain stable tracking for all depth camera 15 121 197 1844 1.24 1.65 26.01 1.13 2.29 2222
frame rates down to 1Hz. While accuracy decreases for 10 176 298 18.46 1.82 2.46 2632 1.66 3.41 22.10
more agile motion, it should be noted that the motion 5 328 6.09 17.61 3.71 5.54 2797 - - -

on these sequences is highly aggressive.

D. Computational Performance

As can be observed from the ATE and RPE errors
listed in Table DEVO has comparable performance with
other state-of-the-art methods from the literature. Although
Canny-VO demonstrates lowest RPE errors in good lighting
conditions, it shows degrading performance when the illu-
mination becomes more challenging. We perceive KinectFu-
sion as the strongest competitor of our method as it achieves
comparable accuracy on all sequences. However, it should
be noted that KinectFusion results have been obtained by
putting the software into a high-performance setting that
requires sufficient computing power to run. KinectFusion
results in this paper have been obtained by a 32 core CPU
and two Nvidia RTX 2080Ti. By comparison, the other two
methods run on an 8 core CPU, only. It should furthermore
be noted that KinectFusion depends on sufficiently high

10.66 31.15 37.88 - - - - - -

depth camera framerates, which again induces larger energy
consumption.

V. CONCLUSION

We present a novel approach to visual odometry that relies
on a stereo depth-event camera. In comparison to depth-
only alternatives, it handles faster motion and works more
efficiently by requiring lower depth image frame rates and
by performing semi-dense image processing. In comparison
to RGB-D visual odometry solutions, it successfully handles
challenging or low illumination scenarios. In summary, our
proposed method handles a large spectrum of challenging
situations, and we believe that it could represent a highly in-
teresting approach for intelligent mobile systems that require
indoor localization. A pre-condition would however be that
event cameras are becoming more affordable in the future.
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