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Abstract— Generalizable manipulation requires that robots
be able to interact with novel objects and environment. This
requirement makes manipulation extremely challenging as a
robot has to reason about complex frictional interaction with
uncertainty in physical properties of the object. In this paper, we
study robust optimization for control of pivoting manipulation
in the presence of uncertainties. We present insights about how
friction can be exploited to compensate for the inaccuracies in
the estimates of the physical properties during manipulation. In
particular, we derive analytical expressions for stability margin
provided by friction during pivoting manipulation. This margin
is then used in a bilevel trajectory optimization algorithm to
design a controller that maximizes this stability margin to
provide robustness against uncertainty in physical properties
of the object. We demonstrate our proposed method using a 6
DoF manipulator for manipulating several different objects.

I. INTRODUCTION

Contacts are central to most manipulation tasks as they
provide additional dexterity to robots to interact with their
environment [1]. Designing robust controllers for frictional
interaction with objects with uncertain physical properties is
challenging as the mechanical stability of the object depends
on these physical properties. Inspired by this problem, we
consider the task of pivoting manipulation in this paper. In
particular, we consider the problem of re-orienting parts with
uncertain mass and Center of Mass (CoM) location using
pivoting. We are interested in ensuring mechanical stability
via friction to compensate for uncertainty in the physical
properties of the objects.

Designing robust controllers for frictional interaction sys-
tems is challenging due to the hybrid nature of underlying
frictional dynamics. Consequently, a lot of classical robust
planning and control techniques are not applicable to these
systems in the presence of uncertainties [2], [3]. While
concepts of stability margin or Lyapunov stability have been
well studied in the context of nonlinear dynamical system
controller design [4], such notions have not been explored
in contact-rich manipulation problems. This can be mostly
attributed to the fact that a controller has to reason about the
mechanical stability constraints of the frictional interaction
to ensure stability. The mechanical stability closely depends
on the contact configuration during manipulation, and thus a
controller has to ensure that the desired contact configuration
is either maintained during the task or it can maintain

† Yuki Shirai is with the Department of Mechanical and Aerospace
Engineering, University of California, Los Angeles, CA, USA 90095
yukishirai4869@g.ucla.edu
‡Devesh K. Jha, Arvind U. Raghunathan and Diego Romeres are with

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
02139 {jha,raghunathan,romeres}@merl.com

Fig. 1: We consider the problem of reorienting parts for assembly using
pivoting manipulation primitive. Such reorientation could possibly be re-
quired when the parts being assembled are too big to grasp in the initial
pose (such as the gears) or the parts to be inserted during assembly are not
in the desired pose (such as the pegs). The figure shows some instances
during the implementation of our controller to reorient a gear and a peg.

stability even if the contact sequence is perturbed. Analysis
of such systems is difficult in the presence of friction as
it leads to a differential inclusion system (see [5]) . One
of the key insights we present in this paper is that friction
provides mechanical stability margin during a contact-rich
task. We call the mechanical stability provided by friction as
Frictional Stability. This frictional stability can be exploited
during optimization to allow stability of manipulation in the
presence of uncertainty.

We study pivoting manipulation where the object being
manipulated has to maintain slipping contact with two exter-
nal surfaces (see Fig. 2). A robot can use this manipulation
to reorient parts on a planar surface to allow grasping or
assist in assembly by manipulating objects to a desired pose
(see Fig. 1). Note that this manipulation is challenging as
it requires controlled slipping (as opposed to sticking con-
tact [6], [7]), and thus it is imperative to consider robustness
of the control trajectories. To ensure mechanical stability of
the two-point pivoting in the presence of uncertainty, we
derive a sufficient condition for stability which allows us
to compute a margin of stability. This margin is then used in
a bilevel optimization routine to design an optimal control
trajectory while maximizing this margin.

Contributions. This paper has the following contributions.

1) We present analysis of mechanical stability of pivoting
with uncertainty in mass and CoM location of objects.

2) We present a bilevel optimization technique which can
be used to optimize the mechanical stability margin
during the pivoting manipulation.

3) The proposed method is demonstrated for reorienting
parts using a 6 DoF manipulator.
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II. RELATED WORK

Contact modeling has been extensively studied in me-
chanics as well as robotics literature [8], [9], [10]. One
of the most common contact models is based on the lin-
ear complementarity problem (LCP). LCP-based contacts
models have been extensively used for performing trajectory
optimization in manipulation [11], [12] as well as locomo-
tion [13]. More recently, there has also been some work
for designing robust manipulation techniques for contact-
rich systems using stochastic optimization [2], [3]. These
problems consider stochastic complementarity systems and
consider robust optimization for the underlying stochastic
system. However, these problems consider a dynamical
model and do not explicitly consider the mechanical stability
during planning. Our work is motivated by the concepts of
stability under multiple contacts in legged locomotion. Static
stability with multiple contacts has been widely studied in
legged locomotion [14], [15], [16], [17], [18]. These works
consider the problem of mechanical stability of the legged
robot under multiple contacts by considering the stability
polygon defined by the frictional contacts. Similar to the
concept of stability polytope, we present the idea of frictional
stability which defines the extent to which multiple points of
contact can compensate for gravitational force and moments
in the presence of uncertainty in the mass and CoM location.

In [7], authors consider stabilization of a table-top ma-
nipulation task during online control. They consider a de-
composition of the control task in object state control and
contact state control. The contact state was detected using
vision-based tactile sensors [19], [20], [21]. As the task
mostly required sticking contact for stability, the tactile
feedback was designed to make corrections to push the
system away from the boundary of friction cone at the
different contact locations. However, the authors did not
consider the problem of designing trajectories which can
provide robustness to uncertainty. Furthermore, the authors
only considered controlled sticking in [7] which is, in gen-
eral, easier than controlled slipping. Other previous works
that study stable pivoting also consider sticking contact
during pivoting using multiple points of contact [6]. The
problem in [6] is inherently stable as the object is always
in stable grasp. Furthermore, the authors do not consider
any uncertainty during planning. Similarly, authors in [22]
present a mixed integer programming formulation to generate
contact trajectory given a desired reference trajectory for the
object for several manipulation primitives. Another related
work is presented in [23] where the authors study the
feedback control during manipulation of a half-cylinder. The
idea there is to design a reference trajectory and then use
a local controller by building a funnel around the reference
trajectory by linearizing the dynamics. The online control
is computed by solving linear programs to locally track the
reference trajectory.

III. MECHANICS OF PIVOTING

In this section, we explain quasi-static stability of two-
point pivoting in a plane. Before explaining the details, we

Fig. 2: A schematic showing the free-body diagram of a rigid body during
pivoting manipulation. Point P is the contact point with a manipulator.

present our assumptions in this work:
1) The object is rigid.
2) We consider static equilibrium of the object.
3) The external contact surfaces are perfectly flat.
4) The dimensions of the object and the frictional param-

eters are perfectly known.

A. Mechanics of Pivoting with External Contacts

We consider pivoting where the object maintains slipping
contact with two external surfaces (see Fig. 2). A free body
diagram showing the static equilibrium of the object is shown
in Fig. 2. The object experiences four forces corresponding
to two friction forces fA, fB from external contact points A
and B, one control input fP from manipulator at point P , and
gravity, mg at point C where m is mass of a body. We denote
fni, fti as a normal force and friction force at point ∀i, i =
{A,B}, respectively, defined in {FW }. fnP , ftP are normal
and friction force at point P defined in {FB}. Note that we
define the [fx, fy]

> = R[fnP , ftP ]
> where R is a rotation

matrix from {FB} to {FW }. We denote x, y position at point
in {FW } ∀i, i = {A,B, P} as ix, iy , respectively. We denote
y position of point P in {FB} as py . We define the angle of
body with respect to x-axis as θ. The coefficient of friction at
point ∀i, i = {A,B, P} are µA, µB , µP , respectively. In the
later sections we present trajectory optimization formulation
where we consider friction force variables fni, fti, contact
point variables ix, iy ∀i, i = {A,B, P}, θ, and py at each
time-step k denoted as fk,ni, fk,ti, ik,x, ik,y, θk, py,k. In this
section, we remove k to represent variables for simplicity.

The static equilibrium conditions for the object can be
represented by the following equations (note we consider
the moment at point B by setting Bx = By = 0):

fnA + ftB + fxP = 0, (1a)
ftA + fnB +mg + fyP = 0, (1b)

AxftA −AyfnA + Cxmg + Pxfy − Pyfx = 0 (1c)

We consider Coulomb friction law which results in friction
cone constraints as follows:

|ftA| ≤ µAfnA, |ftB | ≤ µBfnB , fnA, fnB ≥ 0 (2)

To describe sticking-slipping complementarity constraints,
we have the following complementarity constraints at point



i = {A,B}:

0 ≤ ṗi+ ⊥ µifni − fti ≥ 0 (3a)
0 ≤ ṗi− ⊥ µifni + fti ≥ 0 (3b)

where the slipping velocity at point i follows ṗi = ṗi+ −
ṗi−. ṗi+, ṗi− represent the slipping velocity along positive
and negative directions for each axis, respectively. Since we
consider slipping contact during pivoting, we have ”equality”
constraints in friction cone constraints at points A,B:

ftA = µAfnA, ftB = −µBfnB (4)

To realize stable pivoting, actively controlling position of
point P is important. Thus, we consider the following
complementarity constraints that represent the relation be-
tween the slipping velocity ṗy at point P and friction cone
constraint at point P :

0 ≤ ṗy+ ⊥ µpfnP − ftP ≥ 0 (5a)
0 ≤ ṗy− ⊥ µpfnP + ftP ≥ 0 (5b)

where ṗy = ṗy+ − ṗy−.

B. Frictional Stability Margin

We briefly provide some physical intuition about frictional
stability which is formalized in the later sections. First,
suppose that uncertainty exists in mass of a body. In the case
when the actual mass is lower than estimated, the friction
force at point A would increase while the friction force at
point B would decrease, compared to the nominal case. In
contrast, suppose if the actual mass of the body is heavier
than that of what we estimate, then the body can tumble
along point B in the clockwise direction. In this case, we
can imagine that the friction force at point A would decrease
while the friction force at point B would increase. However,
as long as the friction forces are non-zero, the object can stay
in contact with the external environment. Similar arguments
could be made for uncertainty in CoM location. The key
point to note that the friction forces can re-distribute at the
two contact locations and thus provide a margin of stability to
compensate for uncertain gravitational forces and moments.
We call this margin as frictional stability.

C. Stability Margin for Uncertain Mass

For simplicity, we denote ε as uncertain weight with
respect to the estimated weight. Also, to emphasize that we
consider the system under uncertainty, we put superscript ε
for each friction force variable. Thus, the static equilibrium
conditions in (1) can be rewritten as:

f εnA + f εtB + fxP = 0, (6a)
f εtA + f εnB + (mg + ε) + fyP = 0, (6b)

Axf
ε
tA −Ayf εnA + Cx(mg + ε) + Pxfy − Pyfx = 0 (6c)

Then, using (4) and (6c), we obtain:

f εnA =
−Cx (mg + ε)− Pxfy + Pyfx

µAAx −Ay
(7)

To ensure that the body maintains contact with the external
surfaces, we would like to enforce that the body experiences
non-zero normal forces at both contacts. To realize this,
we have f εnA ≥ 0, f εnB ≥ 0 as conditions that the system
needs to satisfy. Consequently, by simplifying (7), we get
the following:

ε ≥ Pyfx − Pxfy − Cxmg
Cx

, if Cx > 0, (8a)

ε ≤ Pyfx − Pxfy − Cxmg
Cx

, if Cx < 0 (8b)

Note that the upper-bound of ε means that the friction forces
can exist even when we make the mass of the body lighter up
to ε

g . The lower-bound of ε means that the friction forces can
exist even when we make the mass of the body heavier up to
ε
g . (8) provides some useful insights. (8) gives either upper-
or lower-bound of ε for f εnA according to the sign of Cx (the
moment arm of gravity). This is because the uncertain mass
would generate an additional moment along with point B in
the clock-wise direction if Cx > 0 and in the counter clock-
wise direction if Cx < 0. If Cx = 0, we have an unbounded
range for ε, meaning that the body would not lose contact at
point A no matter how much uncertainty exists in the mass.

(8) can be reformulated as an inequality constraint:

Cx(ε− εA) ≥ 0 (9)

where εA =
Pyfx−Pxfy−Cxmg

Cx
.

We can derive condition for ε based on f εnB ≥ 0 from (4),
(6a), and (6b):

ε ≤ µAfx − fy −mg (10)

We only have upper-bound on ε based on f εnB ≥ 0, meaning
that the contact at point B cannot be guaranteed if the actual
mass is lighter than µAfx − fy −mg.

D. Stability Margin for Uncertain CoM Location

We denote dx, dy as residual CoM locations with
respect to the estimated CoM location in {FB}
coordinate, respectively. Thus, the residual CoM
location in xW , yW , dxW , dyW , are represented by
dxW = d cos(θ + θd), dyW = d sin(θ + θd), where
d =

√
dx2 + dy2, θd = arctan dy

dx . For notation simplicity,
we use r to represent dxW . In this paper, we put superscript
r for each friction force variables. Then, the static
equilibrium conditions in (1) can be rewritten as follows:

frnA + frtB + fxP = 0, (11a)
frtA + frnB +mg + fyP = 0, (11b)

Axf
r
tA −AyfrnA + (Cx + r)mg + Pxfy = Pyfx (11c)

Then, using (4) in (11), we obtain:

r ≤ Pyfx − Pxfy
mg

− Cx,

(12a)

r ≥ −Cx −
µAAx−Ay

1+µA
(−fx − fy −mg)− Pyfx + Pxfy

mg
(12b)
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Fig. 3: Conceptual schematic of our proposed frictional stability and robust
trajectory optimization for pivoting. Due to slipping contact, friction forces
at points A,B lie on the edge of friction cone. Given the nominal trajectory
of state and control inputs, friction forces can account for uncertain physical
parameters to satisfy static equilibrium. We define the range of uncertainty
in gravitational forces and moments that can be compensated by contacts
as frictional stability.

where (12a), (12b) are obtained based on frnA ≥ 0, frnB ≥ 0,
respectively. (12) means that the object would lose contact
at A if the actual CoM location is more to the right than
our expected CoM location while the object would lose the
contact at B if the actual CoM location is more to the left.

IV. ROBUST TRAJECTORY OPTIMIZATION

In this section, we describe our robust trajectory op-
timization based on bilevel optimization which explicitly
considers frictional stability under uncertainty of mass and
CoM location. Our proposed method is also presented as a
schematic in Fig. 3.

A. Contact-Implicit Trajectory Optimization for Pivoting

The purpose of our optimal control is to regulate the
contact state and object state simultaneously given by:

min
x,u,f

N−1∑
k=0

(xk − xg)>Q(xk − xg) + u>k Ruk (13a)

s. t. ik,x, ik,y ∈ FK(xk), (1), (4), (5), (13b)
x0 = xs, xN = xg, xk ∈ X , uk ∈ U , 0 ≤ fk,ni ≤ fu (13c)

where xk = [θk, pk,y]
>, uk = [fk,nP , fk,tP ]

>, fk =
[fk,nA, fk,nB ]

>, Q = Q> ≥ 0, R = R> > 0. The function
FK represents forward kinematics to specify each contact
point i and CoM location. X and U are convex polytopes,
consisting of a finite number of linear inequality constraints.
fu is an upper-bound of normal force at each contact point.
Note that we impose (1), (4) at each time step k. xs, xg are
the states at k = 0, k = N , respectively.

B. Robust Bilevel Contact-Implicit Trajectory Optimization

In this section, we present our formulation where we
incorporate frictional stability in trajectory optimization to
obtain robustness. An important point to note is that the
optimization problem would be ill-posed if we naively add

(6) and/or (11) to (13) since there is no u to satisfy all
uncertainty realization in equality constraints. Therefore, our
strategy is that we plan to find an optimal nominal trajectory
that can ensure external contacts under mass or CoM location
uncertainty. In other words, we aim at maximizing the worst-
case stability margin over the trajectory given the maximal
frictional stability at each time-step k (also shown in Fig. 3).
Thus, we maximize the following objective function:

min
k
ε∗k,+ −max

k
−ε∗k,− (14)

where ε∗k,+, ε
∗
k,− are non-negative variables. Note that

ε∗k,+, ε
∗
k,− are the largest uncertainty in the positive and neg-

ative direction, respectively, at instant k given x, u, f , which
results in non-zero contact forces (i.e., stability margin, see
also Fig. 3). (14) calculates the smallest stability margin
over time-horizons by subtracting the stability margin along
the positive direction from that along the negative direction.
Hence, we formulate a bilevel optimization problem which
consists of two lower-level optimization problems as follows:

max
x,u,f,ε∗+,ε

∗
−

(min
k
ε∗k,+ −max

k
−ε∗k,−) (15a)

s. t. (13b), (13c), (15b)
ε∗k,+ ∈ argmax

εk,+

{εk,+ : Akεk,+ ≤ bk, εk,+ ≥ 0}, (15c)

ε∗k,− ∈ argmax
εk,−

{εk,− : −Akεk,− ≤ bk, εk,− ≥ 0} (15d)

where Ak ∈ R2×1, bk ∈ R2×1 represent inequality con-
straints in (9), (10). Akεk,+ ≤ bk, εk,+ ≥ 0, and −Akεk,− ≤
bk, εk,− ≥ 0 represent the lower-level constraints for each
lower-level optimization problem while (13b), (13c) repre-
sent the upper-level constraints. ε+, ε− are the lower-level
objective functions while mink ε

∗
k,+ − maxk −ε∗k,− is the

upper-level objective function. εk,+, εk,− are the lower-level
decision variables of each lower-level optimization problem
while x, u, f, ε∗+, ε

∗
− are the upper-level decision variables.

(15) considers the largest one-side frictional stability mar-
gin along positive and negative direction at k. Therefore,
by solving these two lower-level optimization problems, we
are able to obtain the maximum frictional stability margin
along a positive and negative direction. The advantage of
(15) is that since the lower-level optimization problem are
formulated as two linear programming problems, we can
efficiently solve the entire bilevel optimization problem using
the Karush-Kuhn-Tucker (KKT) condition as follows:

wk,+,j , wk,−,j ≥ 0, Ckεk,+ ≤ dk, Ekεk,− ≤ dk, (16a)
wk,+,j(Ckεk,+ − dk)j = 0, (16b)
wk,−,j(Ekεk,− − dk)j = 0, (16c)

∇(−εk,+) +
3∑
j=1

wk,+,j∇(Ckεk,+ − dk)j = 0, (16d)

∇(−εk,−) +
3∑
j=1

wk,−,j∇(Ekεk,+ − dk)j = 0 (16e)



TABLE I: Parameters of objects. m, l, w represent the mass, length, and
the width of the object, respectively. For pegs, the first element in l, w are
l1, w1 and the second element in l, w are l2, w2, respectively, shown in
Fig. 6.

m [g] l [mm] w [mm] µA, µB , µP

gear 1 140 84 20 0.3, 0.3, 0.8
gear 2 100 121 9.5 0.3, 0.3, 0.8
peg 1 45 36, 40 20, 28 0.3, 0.3, 0.8
peg 2 85 28, 40 10, 11 0.3, 0.3, 0.8

TABLE II: Worst-case stability margin over the control horizon obtained
from optimization for gear 1. Note that the stability margin for the solution
of the benchmark optimization is analytically calculated.

ε∗+, ε∗− [N] r∗+, r∗− [mm]

Benchmark optimization (13) 0.10, 0.66 1.5, 0.85
Ours (17) with mass uncertainty 0.34, 0.50 N/A
Ours (17) with CoM uncertainty N/A 3.43, 2.70

where Ck = [A>k ,−1]> ∈ R3×1, dk = [b>k , 0]
> ∈

R3×1, Ek = [−A>k ,−1]> ∈ R3×1. wk,+,j is Lagrange multi-
plier associated with (Ckεk,+ ≤ dk)j , where (Ckεk,+ ≤ dk)j
represents the j-th inequality constraints in Ckεk,+ ≤ dk.
wk,−,j is Lagrange multiplier associated with (Ekεk,+ ≤
dk)j . ∇ is the gradient operator with respect to εk,+ in (16d)
and εk,− in (16e), respectively. Using the KKT condition
and epigraph trick, we eventually obtain a single-level large-
scale nonlinear programming problem with complementarity
constraints:

max
x,u,f,ε∗+,ε

∗
−,w+,w−

(t+ + αt−) (17a)

s. t. (13b), (13c), (16), (17b)
t+ ≤ ε∗k,+, t− ≤ ε∗k,−,∀k (17c)

where α is a weighting scalar. Note that we derive (17) for
the case with a uncertain mass parameter but this formulation
can be easily converted to the case where uncertainty exists in
CoM location by replacing Ak, bk in (15) with (12). There-
fore, by solving tractable (17), we can efficiently generate
robust trajectories that are robust against uncertain mass and
CoM location parameters.

Remark 1: If we consider the case where uncertainty
exists in both mass and CoM location simultaneously, we
would have a nonlinear coupling term (Cx + r)(mg + ε)
in static equilibrium of moment. This makes the lower-level
optimization non-convex optimization, making it extremely
challenging to solve during bilevel optimization.

V. EXPERIMENTAL RESULTS

In this section, we verify the performance of our proposed
approach for pivoting. We present experiments to answer the
following questions:

1) How much robustness can our proposed bilevel opti-
mization method provide over the baseline method?

2) Can we demonstrate robustness of our proposed opti-
mization during control of pivoting manipulation?

TABLE III: Obtained worst stability margins over the time horizons from
optimization for peg 1. Note that the stability margin for the solution of the
benchmark optimization is analytically calculated.

ε∗+, ε∗− [N] r∗+, r∗− [mm]

Benchmark optimization (13) 0.035, 0.018 31, 0
Ours (17) with mass uncertainty 0.050, 0.021 N/A
Ours (17) with CoM uncertainty N/A 38, 0

A. Experiment Setup

We implement our method in Python using IPOPT solver
[24] with PYROBOCOP [11]. The optimization problem is
implemented on a computer with Intel i7-8700K.

We demonstrate our algorithm on 4 different objects,
as detailed in Table I. During optimization, we set Q =
diag(0.1, 0), R = diag(0.01, 0.01). We use N = 60 for gear
1, 2 and N = 15 for peg 1, 2, respectively. We use α = 0.001
when we run (17). We set xs = [0, w4 ]

>, θg =
π
2 .

For hardware experiments, we use a Mitsubishi Electric
Assista industrial manipulator arm (see Fig. 1). We use a
force controller which is designed using the default stiffness
controller of the robot. We test our method on 4 different
objects listed in Table I.

B. Results of Numerical Optimization

Fig. 4 shows the time history of frictional stability margin
of gear 1 obtained from our proposed bilevel optimization
considering uncertain mass and uncertain CoM location, and
the benchmark optimization. Overall, our proposed optimiza-
tion could generate more robust trajectories. For example,
at t = 0 s, fnB in (a) is almost zero so that the stability
margin obtained from (10) is almost zero. In contrast, our
proposed optimization could realize non-zero fnB as shown
as a red arrow in (b). In (d), to increase the stability margin,
the finger position py moves on the face of gear 1 so that
the controller can increase the stability margin more than the
benchmark optimization. This would not happen if we do not
consider complementarity constraints (5). Also, our obtained
ε+, ε−, r+, r− follows bounds of stability margin. It means
that our proposed bilevel optimization can successfully de-
sign a controller that maximizes the worst stability margin
given the best stability margin for each time-step.

Table II and Table III summarize the computed stability
margin from Fig. 4. In Table II, for the case where our opti-
mization considers uncertainty of mass, we observe that the
value of ε∗− from our optimization is smaller than that from
the benchmark optimization although the sum of the stability
margin ε∗+ + ε∗− from our bilevel optimization is greater
than that from the benchmark optimization. This result
means that our optimization can actually improve the worst-
case performance by sacrificing the general performance of
the controller. Regarding the case where we consider the
uncertain CoM location, our proposed bilevel optimization
outperforms the benchmark trajecoty optimization in both
r∗+, r

∗
−. For peg 1, the bilevel optimizer finds trajectories

that have larger stability margins for both uncertain mass
and CoM location as shown in Table III. The trajectory of



(a) (b) (c) (d) (e)

Fig. 4: Trajectory of frictional stability margin. εA, εB are bounds of ε from (9), (10). rA, rB are bounds of r from (12). ε+, ε−, r+, ri are solutions
obtained from the bilevel optimization. (a), (b): Trajectory of frictional stability of gear 1 based on uncertain mass obtained from baseline optimization,
our proposed bilevel optimization, respectively. (c), (d): Trajectory of frictional stability of gear 1 based on uncertain CoM location obtained from baseline
optimization, our proposed bilevel optimization, respectively. (e): Snapshots of pivoting motion for gear 1 obtained from our proposed bilevel optimization
considering uncertain CoM location.

(a) (b)

(c)

Fig. 5: (a), (b): Trajectory of frictional stability margin of peg 1 based on
uncertain mass obtained from our proposed bilevel optimization, baseline
optimization, respectively. (c): Snapshots of pivoting motion for peg 1,
obtained from our proposed bilevel optimization considering uncertain mass.

TABLE IV: Number of successful pivoting attempts of gear 1 over 10
trials for the two different methods. To evaluate robustness for objects with
unknown mass, we solve the optimization with mass different from the
known object and implement the obtained trajectory on the object with
known mass. Note that the actual mass of gear 1 is 140 g.

Bilevel Optimization Benchmark Optimization
m = 100 g 10 / 10 0 / 10
m = 110 g 10 / 10 0 / 10
m = 140 g 10 / 10 0 / 10
m = 170 g 10 / 10 0 / 10

stability margin obtained from bilevel optimization consid-
ering mass uncertainty is illustrated in Fig. 5.

C. Hardware Experiments

We implement our controller using a 6 DoF manipulator
to demonstrate the efficacy of our proposed method for gear
1. To evaluate robustness for objects with unknown mass,
we solve the optimization with mass different from the true
mass of the object and implement the obtained trajectory
on the object. We implement trajectories obtained from the
two different optimization techniques using 4 different mass
values.

Table IV shows the success rate of pivoting for the hard-
ware experiments. We observe that our proposed bilevel opti-
mization is able to achieve 100 % success rates for all 4 mass
values while benchmark optimization cannot realize stable

Fig. 6: Snapshots of hardware experiments. We show snapshots of the white
peg and gear (instead of overlaid images) for clarity.

pivoting. Note that the benchmark trajectory optimization
also generates trajectories with non-zero frictional stability
margins but they failed to pivot the object. The reason would
be that the system has a number of uncertainties such as
incorrect coefficient of friction, sensor noise in the F/T sensor
(for implementing the force controller), etc. which are not
considered in the model. We believe that these uncertainties
make the objects unstable leading to failure of pivoting.
In contrast, even though our proposed bilevel optimization
also does not consider these uncertainties, it generates more
robust trajectories and we believe that this additional robust-
ness could account for the unknown uncertainty in the real
hardware. We also observe that the trajectories generated by
benchmark optimization can successfully realize pivoting if
the manipulator uses patch contact during manipulation (thus
getting more stability). Finally, Fig. 6 shows the snapshots of
hardware experiments for the 4 objects detailed in Table I.
We observe that our bilevel optimization can successfully
pivot all 4 objects during hardware experiments.

VI. DISCUSSION AND FUTURE WORK

This paper presents frictional stability-aware optimiza-
tion, a strategy that exploits friction for robust planning



of pivoting. By considering uncertainty in mass and CoM
location, we discussed the stability margin for slipping
contact. We presented our proposed tractable robust bilevel
optimization formulation. We verified the robustness of our
proposed method for pivoting using simulation and hardware
experiments.

In the future, we will try to understand the following
questions:

Frictional Stability of Patch Contact: During the hard-
ware experiments, we observed that patch contact provides
additional robustness with the manipulation. We would pre-
sume that modeling patch contacts in our proposed frame-
work would expand frictional stability margin.

General Frictional Stability: This work assumes that
uncertainty arises from either mass or CoM location. We
would also like to consider other uncertainties such as
coefficient of friction, kinematics uncertainty, etc. However,
these uncertainties lead to stochastic complementarity sys-
tem, which requires the discussion in e.g., [2], [25]. Also,
solving our proposed optimization can be intractable once we
consider a nonlinear coupling term as described in Remark
1. Thus, it is also important to formulate computationally
tractable optimization problems to solve more general fric-
tional stability problems.

Feedback Control using Frictional Stability: The pro-
posed method was implemented in an open-loop fashion. We
would argue that the frictional stability would increase with
active feedback control for compensating for pose errors or
error recovery using tactile sensors e.g., [19].
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