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Abstract

Standard frame-based cameras that sample light inten-
sity frames are heavily impacted by motion blur for high-
speed motion and fail to perceive scene accurately when the
dynamic range is high. Event-based cameras, on the other
hand, overcome these limitations by asynchronously detect-
ing the variation in individual pixel intensities. However,
event cameras only provide information about pixels in mo-
tion, leading to sparse data. Hence, estimating the overall
dense behavior of pixels is difficult. To address such issues
associated with the sensors, we present Fusion-FlowNet, a
sensor fusion framework for energy-efficient optical flow es-
timation using both frame- and event-based sensors, lever-
aging their complementary characteristics. Our proposed
network architecture is also a fusion of Spiking Neural Net-
works (SNNs) and Analog Neural Networks (ANNs) where
each network is designed to simultaneously process asyn-
chronous event streams and regular frame-based images,
respectively. Our network is end-to-end trained using unsu-
pervised learning to avoid expensive video annotations. The
method generalizes well across distinct environments (rapid
motion and challenging lighting conditions) and demon-
strates state-of-the-art optical flow prediction on the Multi-
Vehicle Stereo Event Camera (MVSEC) dataset. Further-
more, our network offers substantial savings in terms of the
number of network parameters and computational energy
cost.

1. Introduction

Optical flow estimation is a fundamental computer vi-
sion problem, allowing us to visualize the motion field in
scenes. It involves estimating the spatio-temporal motion
patterns of pixels and forms the groundwork for more com-
plex tasks such as motion segmentation [22] and action
recognition [29]. Over the past years, the optical flow es-
timation has been largely dominated by conventional com-
puter vision algorithms such as differential [18], phase cor-

relation and block-based methods [2]. Recently, deep Ana-
log Neural Networks (ANNs1) based approaches for opti-
cal flow estimation have gained immense popularity [7, 24].
In general, these methods rely on the standard frame-based
cameras as input sensors that capture pixel intensities over
the entire frame at a regular sampling rate. However, the
frame-based images suffer from a variety of issues such
as motion blur and temporal aliasing when capturing high
speed motion due to fixed low temporal resolution. They
are also unable to perceive information accurately in high
dynamic range scenes due to uneven exposure [8].

Event-based cameras, such as Dynamic Vision Sensors
(DVS) [16], address these problems by asynchronously
sampling intensity changes on each pixel element, gener-
ating a stream of asynchronous events. This grants promis-
ing advantages, namely high temporal resolution (10µs vs
3ms), high dynamic range (140dB vs 60dB) and low power
consumption (10mW vs 3W) compared to standard frame-
based cameras [8]. Note, event cameras only capture the
varying components of visual signals, generating sparse
event streams. Hence, the output prediction becomes lim-
ited only at pixels-points where events exist, adding diffi-
culty towards encoding the scene context.

As is evident from the above discussions, none of the
above sensors by themselves is able to effectively capture
all relevant information of a scene. The limited applica-
bility of each individual camera gives rise to the need for
an optimal sensor-fusion technique, enabling the sensors to
complement the limitations of each other. Such a technique
would provide a practical solution towards accurately es-
timating dense pixel-wise motion in challenging scenarios
such as rapid motion and high dynamic range environments.

Conventional computer vision and ANN-based methods
are incompatible at handling the discrete and asynchronous
event streams from event-based camera in their native form.
This is due to the fact that these methods are generally de-

1We refer to the conventional deep learning networks as ANNs owing
to their analog nature of inputs and computations. This nomenclature helps
to distinguish them from Spiking Neural Networks (SNNs) which perform
event-based computations.
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signed for frame-based images, assuming regular frame rate
and brightness consistency over the entire frames. In this
regard, Spiking Neural Networks (SNNs), inspired from bi-
ological neuronal mechanisms, show a great promise for
directly handling event-camera outputs. Moreover, SNNs
perform event-based operations by carrying out the compu-
tations only at the arrival of the input events, exploiting the
inherent sparsity of spatio-temporal event streams and thus
enabling energy-efficient computations on specialized neu-
romorphic hardware such as Loihi from Intel Labs [6] and
TrueNorth from IBM [21].

In this work, we propose a method for combining the
advantages of regular frame-based images and a stream of
asynchronous events. For this purpose, we present Fusion-
FlowNet, a deep fused spiking-analog architecture for es-
timating optical flow that uses sensors of different modali-
ties (standard frame-based images and asynchronous event
streams). Our main contributions are as follows:

• We propose Fusion-FlowNet architecture composed of a
fusion of SNNs and ANNs for simultaneously processing
event streams and frame-based images, leveraging their
complementary sensing capabilities.

• We present a Signed Integrate-and-Fire (SIF) neuron
model for SNNs which can generate spike outputs with
polarity (either positive or negative). In addition, we
show that the SIF model coupled with a surrogate gra-
dient method enables end-to-end learning in SNNs.

• We show that Fusion-FlowNet outperforms the corre-
sponding previous works in terms of optical flow estima-
tion on the Multi-Vehicle Stereo Event Camera (MVSEC)
dataset. Furthermore, we analyze that Fusion-FlowNet
provides substantial savings in terms of network parame-
ters and computational energy cost.

2. Related Works
Over the past few years, there have been major ad-

vancements towards optical flow estimation using event-
cameras. Conventional computer vision algorithms have
been adapted to encompass the asynchronous event stream
from these sensors in [1, 3, 9]. In ANN-based approaches,
the event streams are essentially accumulated for fixed
time intervals to generate synchronous frames. In EV-
FlowNet [32], the recent event counts as well as pixel-
wise last timestamp information are encoded in a frame-
based representation. However, this approach heavily suf-
fers during rapid motion and in scenarios with dense local-
ized events, resulting in loss of rich spatio-temporal infor-
mation. Researchers in [34] proposed a 3D input represen-
tation of events interpolated in a 3D volume with time di-
mension comprising the input channels to retain the tem-
poral fidelity. Nevertheless, this approach struggled to es-

timate the dense predictions in image regions with fewer
events.

In general, SNNs provide advantages towards directly
handling the asynchronous events and exploiting the in-
herent temporal information. Recently, authors in Spike-
FlowNet [15] aimed to overcome a noticeable drawback of
SNNs – namely the “spike vanishing” phenomenon where
the number of spikes drastically reduce in the deeper layers,
hindering learning. They proposed to effectively integrate
SNNs and ANNs into a single network with the SNN lay-
ers enabling efficient event stream handling and the ANN
layers addressing the spike vanishing problem. Note, since
they used only the event streams as input, the predictions
were limited to only the pixel locations containing non-zero
number of events. Hence, estimating dense motion behavior
was greatly limited.

In contrast, researchers in [23] presented a two-step ap-
proach to estimate optical flow by jointly using a set of
events and a single frame-based image. They employed
an optimization-based method to restore a sharp intensity
image from the inputs, followed by ANN-based flow esti-
mation methods [17, 28] on the restored frame-based image
to generate an optical flow prediction. Contrary to [23], we
explore an end-to-end learning approach that can directly
process event streams and frame-based images for predict-
ing final outputs while skipping the image restoration step.
Moreover, our proposed method utilizes all available event
streams as well as frame-based images within a time win-
dow, enabling accurate optical flow estimations over longer
time windows.

3. Method
3.1. Sensors and Input representation

3.1.1 Frame-based Camera

Frame-based cameras have been widely popular for com-
puter vision applications. They provide dense and highly
accurate pixel intensity information as frames over regular
time intervals. In general, the frame intensity information is
pivotal in various computer vision applications that require
the high degree of accuracy such as face and object recog-
nition [20]. Optical flow estimation using ANNs requires
consecutive frame-based images to pass through separate
input channels to the network. In our work, this input rep-
resentation is utilized for the ANN part of Fusion-FlowNet
(Sec. 3.3).

3.1.2 Event-based Camera

Event-based cameras are novel vision sensors, emulating
the functionality of biological retina cells [19]. Event cam-
eras transmit a stream of asynchronous events as the out-
come of tracking intensity changes (I) at each pixel ele-
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ment, thereby capturing the relative motion of objects in the
scene. Whenever the logarithmic intensity change at a pixel
element surpasses a specified threshold (θ), a discrete event
is asynchronously generated as follows:

‖ log(It+1)− log(It)‖ ≥ θ (1)

Event cameras provide the data in Address Event Represen-
tation (AER) format which incorporates a tuple {x, y, t, p},
comprising the pixel address (x and y locations), times-
tamp (t) and polarity of the intensity change (p). Here, each
ON/OFF polarity corresponds to the increase or decrease in
intensity of the pixel, respectively.

Event cameras may not be generally suited for vision ap-
plications which need precise intensity information. How-
ever, their high temporal resolution and high dynamic range
in addition to having low power consumption, make them
ideal for usage on resource constrained platforms operat-
ing in challenging environments. Optical flow estimation is
one such task which heavily suffers in such environments
when realized using standard frame-based cameras and can
greatly benefit with the usage of event-cameras.

In our work, the raw event stream is transformed into
two groups (former and latter) of discretized event frames
and are passed as inputs to the SNN part of Fusion-FlowNet
(Sec. 3.3). The input to the SNN encoder-branch consists of
a sequence of event frames with four channels, each from
the ON/OFF polarity of event frames from the former and
the latter groups as illustrated in Fig. 1. This representa-
tion preserves the spatio-temporal information in the event
stream while displaying superior algorithmic performance
and high energy-efficiency.

Figure 1. (left) Asynchronous raw event stream between two con-
secutive frame-based images. (right) Discretized event-frames
between two consecutive frame-based images to shape the former
and latter groups of events.

3.1.3 Sensor-fusion

Interestingly, numerous available sensors, including the Dy-
namic and Active Vision Sensor (DAVIS) [4], are capa-
ble of simultaneously generating the asynchronous events
as well as synchronous grayscale frames, simplifying the
hardware costs of sensor-fusion. In addition, since there is
a single camera coordinate system for both data modalities,

the requirements for any expensive transformation and syn-
chronization between multiple coordinate systems are elim-
inated. For this purpose, we employ the DAVIS sensor in
this work.

In our work, the frame-based images serve two objec-
tives. First, they are provided as network inputs and allow
for dense optical flow predictions. Second, they are used
for constructing the unsupervised loss required for training.
On the other hand, the event streams are only provided as
network inputs and enable accurate optical flow prediction
in challenging environments as discussed previously. The
proposed sensor fusion framework would thus allow to ac-
curately estimate dense optical flow.

3.2. Neuron Models

The primary difference between ANN and SNN oper-
ations is the notion of time. While ANNs feed-forward
the dense analog-valued inputs at once, SNNs process the
sparse binary inputs (spikes) as a function of time. Accord-
ingly, different neuron models are employed in ANNs and
SNNs.

3.2.1 LeakyReLU Model

In ANNs, LeakyReLU neuron [31] replaces the negative
part of the popular ReLU model by a linear function with
a relatively small slope as below:

y =

{
x, if x > 0

αx, otherwise
(2)

where α is typically set to 0.01-0.1. Note, ReLU has a “dead
neuron” problem that some neurons could get stuck in the
negative side and play no role in discriminating between in-
puts. LeakyReLU addresses this problem by having a non-
zero slope in the negative direction. This makes it useful
especially for hard regression tasks such as motion estima-
tion and predicting pixel-wise and high resolution outputs.
In our work, LeakyReLU is employed for the ANN part of
Fusion-FlowNet.

Figure 2. Dynamics of Signed Integrate-and-Fire (SIF) neuron
model. Whenever the membrane potential crosses either positive-
or negative-threshold, the neuron fires a signed spike output and
resets its membrane potential.
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Figure 3. Detailed illustration of Fusion-FlowNetEarly. The network contains the SNN- and ANN-based encoder-branches to extract features
from asynchronous event streams and synchronized grayscale images, respectively. The rest of networks, involving residual and decoder
blocks, are composed of ANN layers. The colors represent the types of layers. Best viewed in color.

3.2.2 Signed Integrate-and-Fire (SIF) Model

Spiking neurons are inspired by biological models for em-
ulating the efficient event-based operations in the human
brain. In the literature, the Integrate-and-Fire (IF) neuron
model [5] is widely used for building SNNs because of its
simplicity. In an IF neuron, input spikes are modulated by
weight (w) and accumulated in an internal state of the neu-
ron, called membrane potential over time. In the discrete
time model, whenever the membrane potential (v) crosses
a firing threshold, the neuron emits a binary output (1 or 0)
and resets the membrane potential as follows,

vl[n+ 1] = vl[n] + wlol−1[n] (3)

where ol−1[n] indicates the spike output from previous
layer at time-step n. However, the IF neuron would also
suffer from the “dead neuron” problem. To address this is-
sue, we propose a Signed Integrate-and-Fire (SIF) neuron
model that can generate signed spike outputs. The SIF neu-
ron is equipped with positive and negative thresholds that
enable the generation of positive- and negative-valued spike
outputs, respectively. This operation is illustrated in Fig. 2
and formulated as follows:

ol =


+1, if vl > vth,pos

−1, elif vl < vth,neg

0, otherwise
(4)

However, the discontinuous and non-differentiable spike
generation function of SIF model poses a critical challenge

for conventional gradient-based learning. To overcome
this challenge, we propose a surrogate gradient method for
the SIF neuron to enable end-to-end backpropagation (dis-
cussed in Sec. 3.5).

3.3. Fusion-FlowNet Architecture

The Fusion-FlowNet incorporates a deep fused network
architecture that supports an end-to-end learning. It is built
upon the U-Net architecture [25] that contains four encoder
layers, two residual blocks and four decoder layers. The dis-
tinctions in our work involve the addition of dual pathways
starting at the encoder, namely the SNN- and ANN-based
branches. Each branch is composed of narrow convolution
layers (similar to grouped convolutions used in AlexNet
[14]) containing half the number of intermediate feature
maps, compared to the original wide convolution layers.
This is possible because of the usage of different modalities
of input data, leading to reduction in network parameters
without compromising on qualitative performance.

In the SNN-based encoder-branch, the four-channeled
input event frames sequentially pass through the narrow
convolution layers consisting of SIF neurons over time
while being downsampled at each layer. At every time-
step, the weighted spike outputs from each layer are in-
tegrated into the corresponding output accumulator. After
passing all consecutive event images, the accumulated out-
put is passed on ahead to subsequent layers.

In the ANN-based encoder-branch, the consecutive
frame-based images in the time window pass through the
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narrow ANN layers in a single time step. Each ANN
layer comprises of a convolution, batch-norm [11] and a
LeakyReLU layer. Here too, the feature maps are down-
sampled at each layer.

After completing the forward propagation in both
encoder-branches, the outputs are fused together before
passing through the rest of the network. This is achieved
by concatenating the intermediate activations from both the
SNN and ANN branches at the same spatial locations. The
fused activations from the last encoder layer pass through
the residual blocks while the fused intermediate encoder
outputs serve as input to corresponding layers in the de-
coder block. The four layers in the decoder block perform
upsampling using transposed convolutions as well as pro-
duce multi-scale optical flow predictions. The multi-scale
flow predictions, the transposed convolution outputs and the
corresponding activations from the encoder layers are all
concatenated together to construct the input for the next de-
coder layer. Finally, a full-scale optical flow prediction hav-
ing the same dimension as the input frames is made at the
final decoder layer. Fig. 3 showcases the proposed Fusion-
FlowNet architecture, illustrating the discussed operations.

3.4. Unsupervised Training Method

Due to the limited availability of event-camera datasets
containing ground-truth labels, we adopt an unsupervised
approach to train the optical flow estimation network [13].
Fusion-FlowNet is trained using unlabeled sequences, uti-
lizing frame-based images for computing the loss. The
overall loss function is composed of two parts:

ltotal = lphoto + λlsmooth (5)

where lphoto and lsmooth represent photometric loss and
smoothness loss respectively, and λ denotes the loss weight
factor.

3.4.1 Photometric Loss

Photometric loss helps to realize the object motion over
time by tracking the pixel intensities between images. It
is computed by using the start and end-frame grayscale im-
ages (It(x, y), It+dt(x, y)) as well as the predicted optical
flow. A spatial transformer [12] inversely warps the end-
frame image (It+dt(x, y)) using the current estimated op-
tical flow (u, v) to obtain an image prediction (It+dt(x +
u, y + v)). Then, the photometric loss (lphoto) aims to
minimize the discrepancy between the start-frame image
(It(x, y)) and the image prediction (It+dt(x + u, y + v)).
The computation is as follows:

lphoto =
∑
x,y

ρ(It(x, y) − It+dt(x + u, y + v)) (6)

where It (It+dt) indicates the pixel intensity of the first
(last) frame-based image, u, v are the flow estimates in
the x, y directions, ρ is the robust Charbonnier loss ρ(x) =
(x2 + η2)r used for outlier rejection [27]. We set r = 0.45
and η = 1e−3 as they show optimal results in prior works
[32, 15].

3.4.2 Smoothness Loss

Smoothness loss (lsmooth) is applied to reduce the optical
flow deviations between neighboring pixels by adding a reg-
ularizing effect on the predicted flow. It is computed as fol-
lows:

lsmooth =
∑
j

∑
i

(‖ui,j − ui+1,j‖+ ‖ui,j − ui,j+1‖

+ ‖vi,j − vi+1,j‖+ ‖vi,j − vi,j+1‖) (7)

where ui,j and vi,j are the flow estimates at pixel location
(i, j) in the x and y directions, respectively.

3.5. Backpropagation in Fusion-FlowNet

After forward propagation, the final loss (ltotal) is eval-
uated and used to perform the backward propagation of the
gradients. In ANN layers, the LeakyReLU is a differen-
tiable activation that can be represented by the linear func-
tions where the slope differs in positive and negative parts
of input as shown in left of Fig. 4. The derivative of
LeakyReLU activation (∂f(x)∂x ) is unity when input is pos-
itive, α when input is negative, and zero otherwise. Hence,
standard backpropagation can calculate the gradient of the
loss function with respect to each weight using chain rule.
The parameter updates for the lth ANN layer are described
as follows:

4wl
ANN =

∂loss
∂f(xl)

∂f(xl)

∂ol
∂ol

∂wl
(8)

By contrast, the spike generation mechanism of SIF neu-
ron results in a hard threshold function, making it discontin-
uous and non-differentiable. Hence, standard backpropaga-
tion cannot be directly applied to SNNs in its native form as
illustrated in right of Fig. 4. To overcome this impediment,
we present a surrogate gradient method for approximately
estimating the spike generation function of SIF neuron. The
surrogate gradient of SIF model is herein computed as fol-
lows:

∂o[n]

∂v[n]
=


1

Vth,pos
, if vl > vth,pos.

1
Vth,neg

, if vl < vth,neg.

0, otherwise.

(9)

where each threshold (Vth,pos, Vth,neg) accounts for the
change in the signed spike outputs with respect to the in-
puts.
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Figure 4. Illustration of activation functions (left) LeakyReLU
neuron (right) Signed Integrate-and-Fire (SIF) neuron.

During the backward pass, the errors (∂ltotal

∂ol
) are back-

propagated through the SNN layers using the surrogate gra-
dient method and BackPropagation Through Time (BPTT)
[30]. In BPTT, the network is unrolled for all time-steps and
the weight update is assessed as the sum of gradients over
each time-step. The parameter updates of the lth SNN layer
are described as follows:

4wl
SNN =

∑
n

∂loss
∂ol[n]

∂ol[n]

∂vl[n]

∂vl[n]

∂wl
(10)

4. Experiments
4.1. Dataset and Training Details

We validate Fusion-FlowNet on the MVSEC dataset [33]
which contains events as well as grayscale frame sequences
recorded using the DAVIS346 camera [4] in multiple in-
door and outdoor environments. We use three indoor flying
sequences and two outdoor driving sequences. The in-
door flying sequences were collected using a drone flying
in a closed room containing a variety of objects and are used
mainly for evaluation. The outdoor day sequences were
recorded from a car driving on public roads. We employ
the outdoor day2 sequence for training and outdoor day1
sequence for evaluation. The training and evaluation are
performed for two different time-window lengths (i.e, dt=1
and dt=4). Every consecutive pair of grayscale images en-
capsulate an event volume where dt=1 corresponds to con-
structing inputs using one such event volume while dt=4
corresponds to using four such volumes.

The event streams and frame-based images from left-
camera are used for training. They are pre-processed by
randomly cropping to 256×256 size and flipping horizon-
tally and vertically (with 0.5 probability). The learning rate
is scaled by 0.7 every 5 epochs until 20 epoch, and every
10 epochs thereafter. The number of event frames in each
group are set to 5 for the dt = 1 case and 20 for the dt = 4
case. In ANN layers, LeakyReLU model is employed with
an α of 0.1. In SNN layers, the positive and negative thresh-
olds of the SIF neuron are set to 0.75 and 7.5, respectively.
The loss weight factor λ is set to 0.0003.

Table 1. AEEevent comparison with previous works
dt=1 frame dt=4 frame

AEEevent ind1 ind2 ind3 out1 ind1 ind2 ind3 out1

Zhu et al.’19 0.58 1.02 0.87 0.32 2.18 3.85 3.18 1.30
EV-FlowNet 1.03 1.72 1.53 0.49 2.25 4.05 3.45 1.23
Spike-FlowNet 0.84 1.28 1.11 0.49 2.24 3.83 3.18 1.09
Fusion-FlowNet 0.56 0.95 0.76 0.59 1.68 3.24 2.43 1.17

4.2. Evaluation of Optical Flow

For evaluation, the center cropped images of 256×256
size are taken from indoor flying1,2,3 and outdoor day1 se-
quences. For indoor flying sequences, events and grayscale
frames corresponding to the entire sequences are used for
evaluation. However, for outdoor day1 sequence, 800
grayscale frames and the asscociated event streams are used
for evaluation as suggested in [15, 32]. For quantitative re-
sults, we calculate the standard Average End-point Error
(AEE) which is the mean Euclidean distance between the
estimated flow (yestim) and the provided ground-truth (ygt).
In our work, we measure the two types of AEE results: (1)
over all pixels (AEEall) and (2) over pixels where events are
present within the time-window (AEEevent).

AEE =
1

m

∑
m

‖(u, v)estim − (u, v)gt‖2 (11)

where m indicates the count of active pixels in the event
frames for AEEevent and every pixels of images for AEEall.

4.3. Results

We compare Fusion-FlowNet with previous state-of-the-
art works [32, 34, 15] in terms of the performance of optical
flow prediction. As listed in Table 1, only AEEevent results
are compared here since other works do not provide AEE
values for dense optical flow estimation. We observe that
Fusion-FlowNet outperforms other implementations in al-
most all scenarios. The outdoor day1 sequence is known
to have suffered from certain issues with its grayscale im-
ages during dataset creation, leading to anomalous results
for AEEevent as well as AEEall. We report the results for it
to maintain completeness in terms of comparison with pre-
vious works. Fig. 5 visualizes the predicted flow for this
work and compares it with previous state-of-the-art meth-
ods.

4.4. Ablation studies

4.4.1 Architectural Variations

We perform an ablation study to analyze the effect of
architectural variations on model performance and effi-
ciency. We investigate a second architecture where the
dual pathway branches are extended to residual blocks.
As shown in Fig. 6, we denote the first architecture as
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Figure 5. Predicted optical flow compared with other state-of-the-art methods. EV-FlowNet [32] and Spike-FlowNet [15] use only the event
stream as input. Full-fledged ANN uses only grayscale images as input. Fusion-FlowNet uses both the event stream as well as grayscale
images. The samples are taken from (top) outdoor day1 and (bottom) indoor flying2. Best viewed in color.

Table 2. Average Endpoint Error (AEE) results for ablation studies

indoor1 indoor2 indoor3 outdoor1

dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4
event all event all event all event all event all event all event all event all

Fusion-FlowNetEarly 0.56 0.62 1.68 1.81 0.95 0.89 3.24 2.90 0.76 0.85 2.43 2.46 0.59 1.02 1.17 3.06
Fusion-FlowNetLate 0.57 0.63 1.71 1.89 0.99 0.92 3.26 2.93 0.79 0.87 2.46 2.54 0.55 1.00 1.34 3.48

FusionEarly [IF model] 0.56 0.62 1.72 1.93 0.97 0.90 3.36 3.07 0.78 0.87 2.51 2.63 0.58 1.04 1.37 3.52
FusionLate [IF model] 0.57 0.64 1.71 1.90 1.00 0.93 3.41 3.08 0.80 0.88 2.56 2.64 0.55 0.99 1.38 3.53

Spike-FlowNet 0.84 0.91 2.24 2.94 1.28 1.23 3.83 4.09 1.11 1.20 3.18 3.92 0.49 1.42 1.09 3.28
Full-fledged ANN 0.60 0.68 1.73 1.90 1.00 0.97 3.35 3.03 0.83 0.97 2.52 2.62 0.83 1.53 1.27 3.19

Fusion-FlowNetEarly and the second architecture as Fusion-
FlowNetLate. Rows 1−2 in Table 2 highlight the opti-
cal flow prediction capability of both the architectures.
We find that Fusion-FlowNetEarly outperforms Fusion-
FlowNetLate in predicting accurate optical flow outputs.
Fusion-FlowNetEarly contains comparatively larger number
of parameters and fuses the intermediate features from the
ANN/SNN branches in early layers, leading to better AEE
results. On the other hand, Fusion-FlowNetLate performs
the fusion at later layers leading to promising advantages in
further reducing the network parameters and computational
energy cost, as shown in Table 3.

Figure 6. Architectures of (left) Fusion-FlowNetEarly and (right)
Fusion-FlowNetLate. Best viewed in color.

4.4.2 Neuron Model Choice

For investigating the benefits of proposed SIF neuron, we
compare the variations of Fusion-FlowNet with the SNN

blocks composed of SIF and IF neuron models. Rows 3−4
in Table 2 provide the AEE results for Fusion-FlowNet with
IF neurons in the SNN layers. A comparison with results in
rows 1−2 show that networks using SIF model can predict
more accurate flow outputs compared to networks using IF
model. This establishes the benefit of the SIF model to-
wards mitigating the “dead neuron” problem in deep SNN
layers.

4.4.3 Sensor Fusion

We study the usefulness of sensor fusion approach against
single sensor approaches using inputs as either the event
streams or frame-based images. For the event only ap-
proach, we investigate Spike-FlowNet [15], a hybrid neural
architecture where the initial layers are composed of SNNs
and the deeper layers are composed of ANNs. Note, Spike-
FlowNet utilizes the similar event-based input representa-
tion scheme and unsupervised learning method, providing a
fair comparison. For the frame-based image only approach,
we implement a custom full-fledged ANN architecture that
resembles the U-Net [25] architecture, and train it with the
equivalent unsupervised method as Fusion-FlowNet.

Rows 5−6 of Table 2 summarize the results for the
single sensor approaches. Unsurprisingly, both Fusion-
FlowNetEarly and Fusion-FlowNetLate achieve better AEE
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Table 3. Comparison of number of parameters and computational energy cost for different architectures for dt=1 and dt=4 cases. Lowest
numbers highlighted in bold. (results averaged over all indoor and outdoor1 sequences)

#Parameters (×106) #OPSANN (×109) Spiking Activity (%) #OPSSNN (×106) ETotal (mJ) Improvement

dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4 dt=1 dt=4

Full-fledged ANN 13.044 13.046 5.339 5.367 – – – – 24.536 24.666 1.00× 1.00×
Spike-FlowNet 13.039 13.039 4.409 4.409 0.480 1.008 15.81 195.99 20.296 20.458 1.21× 1.21×

Fusion-FlowNet Early 12.269 12.270 4.648 4.648 0.173 0.174 1.03 4.18 21.381 21.384 1.15× 1.15×
Fusion-FlowNet Late 7.549 7.550 2.849 2.849 0.147 0.179 5.24 6.44 13.113 13.114 1.87× 1.88×

performances in dt=1 and dt=4 scenarios compared to single
sensor approaches. This verifies that the proposed fusion
approach benefits from utilizing the complementary charac-
teristics of event- and frame-based images, leading to better
performance in both slow- and fast-motion scenarios. Fur-
thermore, in comparison to prior works as listed in Table 1,
both fusion options provide superior AEE results.

4.5. Computational Efficiency

We validate the efficiency of Fusion-FlowNet in terms
of the number of network parameters and computational en-
ergy cost for inference. Table 3 provides a detailed analysis
on computational efficiency along with the comparison with
previously discussed alternate architectures.

We observe that both Fusion-FlowNetEarly and Fusion-
FlowNetLate contain fewer number of parameters compared
to a full-fledged ANN architecture and Spike-FlowNet.
This is due to the usage of narrow convolution layers which
greatly reduce the number of parameters and computations.
In particular, Fusion-FlowNetLate contains the least number
of network parameters (∼ 58% compared to full-fledged
ANN) as the residual blocks contain the majority of the pa-
rameters and utilizing narrow convolutional layers for them
helps reduce the total network parameters drastically.

For estimating the computational energy cost for dif-
ferent architectures, we first describe how computations
in SNNs and ANNs differ from each other. Conceptu-
ally, SNNs perform highly sparse asynchronous ACcumu-
late (AC) operations over time. These synaptic operations
are executed only at the arrival of input spikes due to the
nature of binary-valued inputs. In contrast, ANNs perform
expensive Multiply-and-ACcumulate (MAC) operations for
computing dense Matrix-Vector Multiplications (MVMs).
Based on the findings in [10], a MAC operation requires
a total of EMAC=4.6pJ of energy while an AC operation
requires only EAC=0.9pJ for a 32-bit floating-point com-
putation (45nm CMOS technology). This leads to the AC
operation being 5.1× more energy-efficient compared to
the MAC operation. These findings coupled with the num-
ber of synaptic operations are commonly used to benchmark
the computational energy cost of SNNs. [21, 26, 15].

Next, we calculate the total number of synaptic opera-
tions for every layer. In the SNN layers, the number of
synaptic operations are obtained by multiplying the pre-

spike activities, the number of synaptic connections and the
number of time-steps. Also, the computational energy of
AC and MAC computations are taken into consideration for
SNNs and ANNs, respectively. The total computational en-
ergy cost can be formalized as:

#OPSSNN = N
∑
l

MlClFl, #OPSANN =
∑
l

MlCl (12)

ETotal = #OPSSNN × EAC + #OPSANN × EMAC (13)

where M is the number of neurons, C is the number of
synaptic connections, F represents mean spiking activity,
N is the number of timesteps, #OPSSNN/#OPSANN indicate
the number of operations for SNN/ANN portions, and ETotal
denotes the total computational energy cost.

The last column in Table 3 provides the overall improve-
ment in computational energy cost. We observe that Fusion-
FlowNetLate demonstrates the highest improvement in en-
ergy (∼ 1.88×) compared to full-fledged ANN. This is be-
cause more layers, including encoder and residual blocks,
utilize narrow convolutions, leading to reduction in the
number of parameters and consequently reduction in the to-
tal computational energy cost. Furthermore, the SNN path-
way contributes negligibly to the total computational energy
cost compared to ANN pathway.

5. Conclusion

We propose a sensor/architecture fusion framework for
accurately estimating optical flow in challenging environ-
ments. We leverage the complementary characteristics of
event- and frame-based sensors as well as ANNs and SNNs.
Our framework (Fusion-FlowNet) reports state-of-the-art
optical flow prediction results, while substantially reduc-
ing network parameters and computational energy cost.
This work contributes two different deep fused architec-
tures (Fusion-FlowNetEarly and Fusion-FlowNetLate), hav-
ing different applications of interest. Fusion-FlowNetEarly
provides highly accurate dense optical flow, proving to be
appropriate for safety-critical applications. While, Fusion-
FlowNetLate promises immense benefits in terms of compu-
tational efficiency, making it suitable for the edge applica-
tions on resource-constrained hardware.
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