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StopNet: Scalable Trajectory and Occupancy Prediction
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Abstract— We introduce a motion forecasting (behavior
prediction) method that meets the latency requirements for
autonomous driving in dense urban environments without
sacrificing accuracy. A whole-scene sparse input representation
allows StopNet to scale to predicting trajectories for hundreds
of road agents with reliable latency. In addition to predict-
ing trajectories, our scene encoder lends itself to predicting
whole-scene probabilistic occupancy grids, a complementary
output representation suitable for busy urban environments.
Occupancy grids allow the AV to reason collectively about
the behavior of groups of agents without processing their
individual trajectories. We demonstrate the effectiveness of
our sparse input representation and our model in terms of
computation and accuracy over three datasets. We further show
that co-training consistent trajectory and occupancy predictions
improves upon state-of-the-art performance under standard
metrics.

I. INTRODUCTION

An Autonomous Vehicles (AV) needs to continuously evalu-

ate the space of all possible future motions from other road

agents so that it can maintain a safe and effective motion plan

for itself. This motion forecasting and re-planning task is one

of the many processes that are continuously executed by the

AV, so it is critical that it completes under expected latency

requirements. On the other hand, operating in dense urban

environments, the AV may encounter scenes with hundreds

of dynamic agents within its field of view—consider driving

next to a sports or music venue with lots of pedestrians.

Autonomous driving in such environments requires a motion

forecasting and planning system that is ➀ fast, ➁ scales well

with the number of agents.

The existing motion forecasting methods do not meet

the requirements discussed above. Models typically take

upwards of 40-50ms for inference. This scalability issue is

not addressed in public benchmarks [1], [2], [3], [4] and is

often ignored in publications. Proposed methods often use

raster (render-based) input representations [5], [6], [7], [8],

which require costly CNNs for processing. Recently, meth-

ods have been proposed that use sparse point-based input

representations [9], [10], [11], [12]. These methods offer

improvements in accuracy and a reduction in the number

of model parameters. However, with a focus on accuracy,

these methods use agent-centric scene representations, which

require re-encoding road points and agent points from the

view point of each individual agent. The latency of these
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Fig. 1. StopNet uses a whole-scene sparse input representation, supporting
a scalable motion forecasting model that unifies occupancy grids and
trajectories.

methods grows linearly with the number of inference agents,

so they are not suitable for busy urban environments.

This work introduces StopNet, a motion forecasting

method focused on latency and scalability. We develop a

novel whole-scene sparse input representation which can

encode scene inputs pertaining to all agents at once. Draw-

ing from the 3D object detection literature, we develop

a PointPillars-inspired [13] scene encoder to concurrently

process sparse points sampled from all agents, leading to a

very fast trajectory prediction model whose latency is mostly

invariant to the number of agents.

The predicted trajectories and uncertainties are often con-

sumed as planning constraints by the AV, therefore the

latency of the planning algorithm also increases in busy

scenes. StopNet’s whole-scene encoder also supports pre-

dicting probabilistic occupancy grids [14]—a dense output

format capturing the probability that any given grid cell

in the map is occupied by some agent part. This output

representation allows the AV planner to reason about the

occupancy of entire regions in busy scenes without a need

for processing individual trajectories—thereby requiring al-

most constant computation. Another attractive property of

occupancy grids is that they are robust to detection and

tracking noise and flicker, since they allow the model to infer

http://arxiv.org/abs/2206.00991v1


occupancy independently of agent identity over time.

Via a co-training setup, StopNet is also the first method

to unify trajectory sets and occupancy grids as the two

archetypes of motion forecasting. We tie together these

output representations with an intuitive consistency loss: the

per-agent trajectory output distribution, when converted to

an occupancy probability distribution, should agree with the

overall occupancy distribution. Our experiments show that

co-training in this manner leads to state-of-the-art trajectory

prediction performance.

II. RELATED WORK

Agent-Centric vs. Whole-Scene Modeling. While there

are other alternatives, most prediction methods rely on a

sequence of agent state observations often provided by a

detection/tracking system [15]. Agent-centric models re-

encode the world from the view point of every agent in the

scene [9], [10], [16], [17], [6], [11], [18], [12], [19], [20].

This process requires transforming road state and the state of

all other agents into an agent-centric frame. Therefore, these

methods scale linearly with the number of agents, which

poses a scalability issue in dense urban scenes with hundreds

of pedestrians and vehicles. A popular alternative is whole-

scene modeling [5], [8], [7], [21], [22], [23], where the bulk

of the scene encoding is done in a shared coordinate system

for all agents. Whole-scene modeling has the very attractive

advantage that the processing time is invariant to the number

of agents.

Dense vs. Sparse Input Representation. To our knowledge,

whole-scene models have always used a bird’s-eye view

(BEV) raster input representation to encode road elements,

agent state, and agent interactions. This approach allows

including a variety of heterogeneous inputs into a com-

mon raster format, and enables the use of well-established

powerful CNN models. However, there are several disad-

vantages. The model’s field of view (FOV) and resolution

are constrained by the computational budget, and the ability

to model spatially-distant interactions is dependent on the

receptive field of the network. Finally, while it is possible to

render some state attributes, e. g., vehicle extent, it is unclear

how to rasterize some attributes, like uncertainty over agent

orientation. On the other hand, with sparse inputs representa-

tions [11], [10], [9], [12] the model inputs consist of vectors

of continuous state attributes encoding the agent motion

history, relation to road elements, and relation to neighboring

agents. This allows for arbitrary long-range interactions, and

infinite resolution in continuous state attributes. However,

sparse inputs have always been combined with agent-centric

models, posing scalability issues. StopNet is the first method

to address scalability by introducing a whole-scene sparse

input representation and model.

Trajectory vs. Occupancy Output Representation. Repre-

senting future motion is traditionally done in two ways. The

popular approach is a parametric distribution over a set of

trajectories per agent [5], [9], [16], [17], [11], [18], [7], [21],

[22], [23]. A common approach to capturing trajectory uncer-

tainty is to predict multiple trajectories per agent as well as

Gaussian position uncertainty for each trajectory waypoint,

which in busy scenes, amounts to a large set of constraints

to process in the planning algorithm. Moreover, the per-

agent trajectories may be overlapping in space, and sampling

from them independently may produce samples which violate

physical occupancy constraints by placing agents on top of

each other. An alternative output representation is to predict

the collective occupancy likelihood as discretized space-time

cells in a grid view of the world [6], [24], [8], [25], [26],

[27]. While occupancy grid models have been mentioned in

passing [8] and embedded in other tasks [27], in this work we

study them in detail and develop metrics to evaluate them.

III. METHOD

A. Problem Definition

We assume that each agent at any time t can be represented

by an oriented box as a tuple (st, θt, wt, lt, vt, at), where

st = (xt, yt) denotes the agent’s 2D center position, θt
denotes the orientation, (wt, lt) denote box extents, and

vt, at denote 2D velocity and acceleration vectors. Given

a sequence of state observations over a fixed number of

input timesteps for all agents in the scene, the Trajectory

Prediction task is defined as predicting the future positions

ŝt, t ∈ {1, . . . , T } for all agents in the scene over a fixed time

horizon T . Following previous methods [1], [7], we predict

a set of K trajectories ŝ
k
t , k ∈ {1, . . . ,K} with associated

probabilities for each agent. We also predict 2D Gaussian

uncertainties for each trajectory waypoint ŝkt .

The Occupancy Prediction task is defined as predicting

occupancy grids Ôt, t ∈ {1, . . . , T } with spatial dimensions

W×H . Each cell Ôt(x, y) in the occupancy grid Ôt contains

a value in the range [0, 1] representing the probability that

any part of any agent box overlaps with that grid cell at

time t. The ground-truth occupancy grids are constructed by

rendering future agent boxes in BEV as binary maps. Since

the planner reacts to different agent classes differently, we

predict separate occupancy grids for each agent class.

B. Sparse Whole-Scene Input Representation

We use a whole-scene coordinate system centered on the

AV’s position at t = 0 (see Fig. 2). All the current and past

agent states (including the AV’s) are transformed to this fixed

coordinate system. The model inputs consist of three sets of

points P = Pr ∪ P l ∪ Pa, each with associated feature

vectors. Agent points Pa are constructed by uniformly

sampling a fixed number of points from the interior of each

agent box. The agent points from all input timesteps co-

exist. Each agent point carries the state attributes mentioned

in Sec. III-A, plus a one-hot encoding of time. The road

element points Pr are sampled uniformly from the lines and

curves of the road structure. Each road point encodes position

and element type. Traffic light points P l are placed at the end

of the traffic lanes that they control. Their attributes include

position, time, and traffic light state (color).
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Fig. 2. Sparse Whole-Scene Input Representation. (a) Input point sets Pr , Pl and Pa (vehicles and pedestrians) for an example scene. (b) All points.

C. Whole-Scene Encoder

Fig. 3 shows an overview of the StopNet architecture. It

consists of an encoder, a ResNet backbone, and two heads

for decoding trajectory and occupancy predictions from the

shared scene features.

Inspired by PointPillars [13], the StopNet encoder dis-

cretizes the point set P into an evenly-spaced grid of M×N
pillars in the x-y plane, {π1, π2, . . . , πMN}. The points

in each pillar are then augmented with a tuple (xc, yc,
xoffset, yoffset) where the c subscript denotes distance to the

arithmetic mean of all points in the pillar and the offset

subscript denotes the offset from the pillar center. We then

apply a simplified version of PointNet [28] to encode and

aggregate the features from all points in each pillar πj .

In particular, we apply a linear fully-connected (FC) layer

followed by BatchNorm and a ReLU to encode each point.

A max operation is then applied across all the points within

each pillar to compute a single feature vector per pillar as

fπj
= MaxPool

(

{ReLU(BN(FC(pi)))}pi∈πj

)

. (1)

The M ×N feature map produced by the encoder is then

processed through a ResNet backbone, reshaped to W ×H ,

and concatenated with binary occupancy grids rendered from

the current positions of scene agents. The resulting feature

map is then shared by a trajectory decoder and an occupancy

grid decoder to produce the final predictions of the model.

D. Per-Agent Trajectory Decoder

To predict trajectories, we use the trajectory decoder

architecture and losses from MultiPath [7]. The trajectory

decoder extracts patches of size 11 × 11 centered on each

agent location from the whole-scene features, thus operating

on a per-agent basis. Note that while trajectory prediction

head is agent-centric, the bulk of the model computation is

whole-scene, and this dominates the overall processing time.

The trajectory decoder uses a fixed set of pre-clustered po-

tential trajectories as an anchor-set, and ground-truth trajec-

tories are assigned an anchor via closest Euclidean distance.

For each anchor, the decoder regresses per-waypoint deltas

from the anchor trajectory, yielding a Gaussian mixture

at each timestep. The losses consist of a softmax cross-

entropy classification loss over anchors Ls, and within-

anchor squared L2-norm regression loss Lr.

E. Occupancy Grid Decoder

The occupancy grid decoder processes the whole-scene

feature map at once through a very lightweight CNN, which

is repeated for each timestep t and produces occupancy logits

for each class a as separate channels. The per-cell occupancy

probabilities are obtained by applying a sigmoid function to

the logits. The occupancy loss is defined as

Lo(Ô,O) =
1

WH

∑

a

∑

t

∑

x

∑

y

H(Ôa
t ,O

a
t ), (2)

where H denotes the cross-entropy function and Oa
t denotes

the ground-truth occupancy for agent class a at time t.

F. Co-Training and Consistency Loss

In addition to co-training the trajectory and occupancy

decoders, we find it useful to employ a consistency loss

to encourage agreement between the per-agent trajectory

predictions and whole-scene occupancy grids. The trajectory

predictions with the highest predicted likelihood are rendered

as oriented bounding boxes and aggregated by agent class

as Õa
t . Consistency with predicted occupancy outputs Ôa

t is

then computed similarly to computing cross-entropy with the

ground-truth as Lc(Ô, Õ) = Lo(Ô, Õ).
The loss function for the most general variant of our model

is then summarized as

L = λoLo
︸ ︷︷ ︸

Occupancy Loss

+

Trajectory Loss
︷ ︸︸ ︷

λsLs + λrLr +λcLc
︸ ︷︷ ︸

Consistency Loss

(3)

where λo, λs, λr, and λc are the respective loss weights.

IV. EXPERIMENTS

A. Datasets

Crowds Dataset. This dataset is a revision of the Waymo

Open Motion Dataset [29] focused on crowded scenes. It

contains over 13 million scenarios spanning over 500 hours

of real-world driving in several urban areas across the US.

The scenarios contain dynamic agents, traffic lights and

road network information. All scenarios contain at least 20

dynamic agents.

Interaction & Argoverse Datasets. We also evaluate our

proposed method on the Interaction [2] and Argoverse [1]

datasets. The Interaction dataset contains interactive driving

scenarios involving multiple agents. In the Argoverse dataset,
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Fig. 3. An overview of the StopNet architecture. The encoder processes the input point set P and produces a feature map, which is used to predict both
per-agent trajectories and whole-scene occupancy grids for each agent type. Input agent boxes at t = 0 are also rendered in BEV as binary features and
fed to the trajectory and occupancy grid decoders.
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Fig. 4. Example occupancy and trajectory predictions from StopNet. Left four columns: Ground-truth and predicted occupancy grids are visualized
through time as color-coded contour lines (from red for near future to purple for far future), where each contour contains values with probability > 0.5.
Right column: For trajectories, different colors map to different agents. The dotted lines represent road points and the black boxes represent the current
location of agents at t = 0s.

only one agent has future ground-truth, making it less inter-

esting for our multi-agent whole-scene method. We, however,

report scores on this dataset as well.

B. Training Setup

We train three variants of our model: MT is trained only

with a trajectory loss, MO is trained only with an occupancy

loss, and MTO, which uses co-training and a consistency

loss. All models are trained from scratch using an Adam

optimizer [30], with a learning rate of 0.0004 and batch

size of 8. We clip the gradient norms [31] above 0.1. The

loss weights are λo = 100.0, λs = 1.0, λr = 0.16, and

λc = 10.0, determined using light grid search. The input

field of view is 160m×160m, corresponding to an effective

sensing range of 80m for the AV. Our encoder uses M×N
= 80×80 pillars. We sample 8 × 8 input points uniformly

from the interior of all agent boxes. Our occupancy decoder

has a resolution of W×H = 400×400, predicting occupancy

over T = 10 linearly-spaced timesteps up to 6 seconds in

the future, i. e., t ∈ {0.6, 1.2, . . . , 6.0}. All figures show an
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80m× 80m center crop of the output to show more details.

C. Metrics

Trajectory Metrics. We use two standard Euclidean-

distance-based metrics [1]: the minimum average displace-

ment error, minADEk = min
k

1

T

∑T

t=1
||st − ŝ

k
t ||2, and mini-

mum final displacement error, minFDEk = min
k
||sT − ŝ

k
T ||2,

where s denotes the ground-truth. We also report miss rate

(MR), which measures the ratio of trajectories where none of

the predictions are within {1, 2} meters of the ground-truth

according to FDE.

Occupancy Metrics. Evaluation metrics for occupancy grids

in the context of motion forecasting have not been well

documented in the existing literature. An intuitive choice,

however, is the mean cross entropy (CE) error between the

predicted occupancy grids Ôa
t and the ground-truth Oa

t as
1

WH

∑

x,y H(Ôa
t ,O

a
t ). We also employ evaluation metrics

commonly used for binary segmentation [32]: We use a

linearly-spaced set of thresholds in [0, 1] to compute pairs

of precision and recall values to estimate the area under the

PR-curve as AUC. We also measure the probabilistic area of

overlap as Soft Intersection-over-Union [33]:

Soft-IoU =

∑

x,y

Ô
a
t O

a
t /

(

∑

x,y

Ô
a
t +

∑

x,y

O
a
t −

∑

x,y

Ô
a
t O

a
t

)

(4)

D. Results

Trajectory Prediction. Table I compares our trajectory-only

model MT , and our co-trained model MTO with state-of-the-

art trajectory prediction models, MultiPath [7], TNT [10],

and DESIRE [34] on three different datasets. To best evaluate

TABLE I

TRAJECTORY PREDICTION PERFORMANCE ON DIFFERENT DATASETS.

WE REPORT MODEL PERFORMANCE ON THE VALIDATION SET FOR

INTERACTION AND ARGOVERSE DATASETS.

Crowds dataset Sparse Whole minADE6 ↓ minFDE6 ↓ MR @ 1m, 2m

MultiPath [7] X 0.55 1.57 0.220, 0.385

VectorNet [9] + MultiPath [7] X 0.58 1.70 0.229, 0.399

PointNet [28] + MultiPath [7] X 0.53 1.60 0.235, 0.408

MT (ours) X X 0.51 1.54 0.223, 0.400

MTO (ours) X X 0.51 1.49 0.215, 0.384

Interaction [2] Sparse Whole minADE6 ↓ minFDE6 ↓ MR @ 1m, 2m ↓

DESIRE [34] X 0.32 0.88 -

TNT [10] X 0.21 0.67 -

VectorNet [9] + MultiPath [7] X 0.30 0.99 -

MT (ours) X X 0.21 0.60 0.150, 0.018

MTO (ours) X X 0.20 0.58 0.136, 0.015

Argoverse [1] Sparse Whole minADE6 ↓ minFDE6 ↓ MR @ 2m ↓

DESIRE [34] X 0.92 1.77 0.18

VectorNet [9] + MultiPath [7] X 0.80 1.68 0.14

MT (ours) X X 0.87 1.68 0.19

MTO (ours) X X 0.83 1.54 0.19

the performance and latency characteristics of our encoder,

we also compare our model with two agent-centric sparse

encoders, namely VectorNet [9], and PointNet [28] as used

by CBP [12]. For an even comparison, we couple these

agent-centric encoders with the same trajectory decoder [7]

we have adapted in our architecture. Following existing

work [9], [12], we compute per-agent embeddings of the

world and concatenate it with per-agent state embeddings

before feeding it to the trajectory decoder.

As Table I shows, our models match or exceed the per-

formance of all the baselines, despite having a much smaller

footprint. Note that the Argoverse dataset contains ground-

truth future for a single agent, offering limited interactivity.

These results show the advantage of our sparse whole-

scene encoder over existing raster and agent-centric methods.

Moreover, in all cases our co-trained model MTO achieves

the best performance on all trajectory metrics. This is likely

due to the regularizing effect of unifying the two different

output representation with a consistency loss.

Scalability. Fig. 5 compares the number of flops and learn-

able parameters used by the StopNet encoder vs. the whole-

scene raster encoder from MultiPath and two agent-centric

encoders. Including the ResNet backbone, our nominal en-

coder with 80×80 pillars uses about 1/10 the number of flops

used by MultiPath. Whole-scene approaches require a larger

number of parameters as they need to have convolutional

layers with a large receptive field. However, our core encoder

uses much fewer parameters. Moreover, the compute required

by our encoder is invariant to the number of agents—only a

function of the pillar resolution. Sparse encoders, on the other

hand, require linearly more compute with growing number

of agents.

Fig. 6 shows the latency of our model (encoder + decoder)

as a function of the number of agents, compared with an

agent-centric model. The variable latency of agent-centric

models poses a problem for coordination of processes run by

the AV. Note that raster representations also require rendering



TABLE II

OCCUPANCY PREDICTION RESULTS USING RASTER / SPARSE INPUTS.

Input # of pillars CE ↓

Pedestrians Vehicles

AUC ↑ IoU ↑ AUC ↑ IoU ↑

3s 6s 3s 6s 3s 6s 3s 6s

Raster - 19.2 0.48 0.24 0.21 0.13 0.84 0.73 0.49 0.36

Sparse 20×20 18.6 0.48 0.24 0.22 0.13 0.83 0.71 0.50 0.35

Sparse 40×40 17.6 0.54 0.26 0.25 0.14 0.86 0.72 0.50 0.36

Sparse 80×80 17.2 0.56 0.27 0.27 0.15 0.87 0.73 0.53 0.37

Sparse 160×160 17.0 0.59 0.28 0.27 0.15 0.86 0.73 0.53 0.37

the model inputs, further increasing the effective latency.

Occupancy Prediction. Table II shows occupancy prediction

results on the Crowds dataset. To evaluate our sparse input

representation, we also train baseline models using BEV

raster inputs. Following existing work [8], [6], [7], [21], we

render road structure, speed limits, traffic lights, and agent

history at 400×400 resolution and feed the stacked images to

the model. We also ablate the pillar resolution for our sparse

encoder. Results reflect the advantage of our sparse scene

representation. While 160×160 pillars work best, 80×80
pillars have comparable performance at lower complexity.

Occupancy Grids vs. Trajectories. Occupancy grid and

trajectory representations have complementary advantages,

which motivates StopNet to support both output formats.

Trajectory models often output tens of potential trajecto-

ries per agent, which need to be taken into consideration

as constraints in the planning algorithm. The size of the

trajectory outputs grows linearly with the number of agents

in the scene, while the number of potential agent interactions

grows quadratically. This variability makes it challenging

to complete planning for the AV under a fixed compute

budget. Occupancy grids require fixed compute to generate

and consume regardless of the number agents in the scene.

They also capture the full extents of agent bodies, as opposed

to just center locations, which simplifies calculating overlap

probabilities. On the other hand, trajectory sets can be

represented as sparse sequences, which are more compact.

In scenes with few agents, processing few trajectories can be

done faster than processing a dense probability map.

Fig. 4 shows occupancy and trajectory predictions by our

model on three sample urban driving scenes. We observe

that our occupancy representation is especially effective in

situations where occupancy blobs can capture the collective

behavior of groups, and eliminate the need for generating

trajectory sets for individual agents. The occupancy repre-

sentation is particularly useful in busy urban scenes, where

trajectory prediction models face challenges caused by noisy

detection and poor tracking due to occlusions.

Because of the different representations, it is difficult to

directly compare the quality of trajectories with occupancy

grids. As a proxy, we convert predicted trajectories to oc-

cupancy by rendering agent boxes on locations predicted by

the trajectory waypoints. Since the model predicts multiple

trajectories, we render each agent box with an intensity
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Fig. 7. Comparison of our occupancy model MO with two versions of our
trajectory model MT trained with and without Gaussian uncertainties on
occupancy prediction for vehicles. While MO predicts occupancy directly,
the top six trajectory outputs from MT models have been converted
(rendered) into an occupancy grid representation. Results show that the rich
non-parametric representation is more suitable for occupancy prediction.

matching the associated probability for the corresponding

trajectory. Fig. 7 shows a comparison between our native

occupancy model MO and occupancies converted from our

trajectory model MT . We train two versions of MT , once

with and once without Gaussian uncertainties. The two-

dimensional variance of each Gaussian is factored in by first

rendering the probability density function of the Gaussian

and then convolving that with the rendered agent box. As

the plot shows, MT underperforms MO on this metric,

which serves as validation for the utility of occupancy grids.

Moreover, the plot shows that while including Gaussian un-

certainties helps MT in the near future, it hurts performance

over longer prediction horizons. The position uncertainty of

road agents is often more complex than a Gaussian mixture

model, and is best represented with the rich non-parametric

distributions supported by occupancy grids.

V. CONCLUSIONS

In this paper, we proposed StopNet, a novel, efficient,

and scalable motion forecasting method that accommodates

sparse inputs in a whole-scene modeling framework, and co-

trains trajectory and occupancy representations. Our model

has an almost fixed compute budget and latency, independent

of the number of agents in the scene. Likewise, our occu-

pancy predictions can be consumed with fixed compute in a

planning algorithm. In addition to this higher efficiency and

scalability, our experiments show that our model matches or

outperforms performance of prior methods under standard

trajectory and occupancy metrics. In future work, it would

be interesting to extend the occupancy representation with

per-pixel motion information, enabling the model to trace

predicted occupancies back to the original agents. Future

research could explore applications of StopNet to reasoning

about occupancy of occluded objects—a challenging task for

pure trajectory-based representations.
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