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AutoPlace: Robust Place Recognition with Single-chip Automotive Radar

Kaiwen Cai†, Bing Wang§, Chris Xiaoxuan Lu‡∗
†University of Liverpool, §University of Oxford, ‡University of Edinburgh

Abstract— This paper presents a novel place recognition
approach to autonomous vehicles by using low-cost, single-chip
automotive radar. Aimed at improving recognition robustness
and fully exploiting the rich information provided by this
emerging automotive radar, our approach follows a principled
pipeline that comprises (1) dynamic points removal from instant
Doppler measurement, (2) spatial-temporal feature embedding
on radar point clouds, and (3) retrieved candidates refinement
from Radar Cross Section measurement. Extensive experi-
mental results on the public nuScenes dataset demonstrate
that existing visual/LiDAR/spinning radar place recognition
approaches are less suitable for single-chip automotive radar.
In contrast, our purpose-built approach for automotive radar
consistently outperforms a variety of baseline methods via a
comprehensive set of metrics, providing insights into the efficacy
when used in a realistic system.

I. INTRODUCTION

By recognizing revisited places when traveling, place
recognition is a key enabler to mobile autonomy and plays
essential roles in a wide range of downstream tasks such as
scene understanding, loop closure detection, localization, etc.

Visual place recognition develops with the prevalence
of commercial RGB cameras, which involves handcrafted
features [1], [2] and deep learning-based ones [3]–[5]. On
the other hand, a LiDAR sensor is usually adopted as an
alternative optical sensor for place recognition due to its
better robustness in dim and dark environments. While place
recognition approaches based on these optical sensors have
made considerable progress in the past decade [4]–[8], they
still fall short under visual degradation common on the
roads (e.g., rain, snow, dust, fog, and direct sunlight). An
example is shown in Fig. 1, where the state-of-the-art RGB
camera-based place recognition failed to retrieve the correct
candidate due to raindrops blocking the camera.

Unlike the above optical sensors operating in the visible
spectrum, radar operates in a millimeter-wave frequency
band, lending itself a modality robust to scene illumination
and airborne obstacles [9]. By taking input as the dense
radar spectra/images, recent works [10], [11] have shown
the feasibility of place recognition based on mechanically
spinning radar (e.g., CTS-350X). Despite the impressive
performance achieved, spinning radar is known to be bulky
and costly [12] and require to be mounted on the roof of
the vehicle, nor able to provide the Doppler information. In
contrast, automotive radar (aka. single-chip millimeter-wave
radar) emerge as a low-cost and lightweight alternative that is
pervasively embraced by major vehicle manufacturers (e.g.,
Audi and Ford [13], [14]). As it adopts wave beamforming
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Fig. 1. Place recognition using the single-chip automotive radar: given
a query (marked in purple) acquired from the same place on a rainy
day [20], the state-of-the-art RGB camera-based place recognition [4] failed
to retrieve the correct candidate due to raindrops blocking the camera, while
the proposed AutoPlace successfully retrived the correct one.

rather than mechanical spinning to scan the environment
[15], an automotive radar can measure the point’s radial
velocity through the Doppler effect as well as fine-grained
Radar Cross Section (RCS).

These unique characteristics make automotive radar an
attractive sensor for autonomous driving. While prior works
use them to estimate the vehicle’s (ego-)motion [16], [17]
and localization [18], [19], realizing robust place recognition
by automotive radar has never been explored and features
different challenges. Compared with spinning radars [10],
automotive radars’ point clouds are significantly noisier,
sparser and in much lower resolution [9]. These low-quality
point clouds results in unreliable global descriptors that often
‘mislead’ a place recognition system.

In this work, we exploit the unique characteristics of
automotive radar and propose a robust Automotive radar
Place recognition approach dubbed AutoPlace to address
the above challenges. Specifically, our contributions are:

• This paper is the first work that validates the capability
of single-chip automotive radar for place recognition.

• We propose a novel place recognition method by fully
utilizing the radial velocity and RCS measurement and
effectively modeling the spatial and temporal radar
points with a compact deep neural network.

• The proposed AutoPlace consistently outperforms
a variety of competing approaches on the public
nuScenes dataset [20], with code avaliable at: https:
//github.com/ramdrop/AutoPlace.

https://github.com/ramdrop/AutoPlace
https://github.com/ramdrop/AutoPlace
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Fig. 2. Overview of AutoPlace: radial velocity, point cloud and RCS
measurement of a radar scan are utilized by the proposed Dynamic Points
Removal method, Deep Spatial-Temporal Encoder and RCS Histogram Re-
ranking method, respectively.

II. RELATED WORK

Place recognition with cameras is an established topic
due to the sensor ubiquity, rich information and cost-
effectiveness. Early works use handcrafted features and
heuristic sequence matching methods [1], [2], while Convo-
lution Neural Networks (CNNs) and attention mechanisms
[4], [5] are recently explored. Unlike cameras, LiDAR
sensors measure objects with explicit scales. LiDAR place
recognition approaches include spatial segments methods [6],
[21], point-wise neural networks [7] and 3D convolution
networks [8].

Once as a common sensor used on ships [22], mechan-
ically spinning radar has recently been utilized for vehi-
cle place recognition. UnderTheRadar [23] uses interme-
diate features as global decsriptor for place recognition.
RadarSLAM [24] uses M2DP [6] to generate compact de-
scriptors for radar point clouds. KidnappedRadar [10] ex-
ploits a variant of NetVLAD [4] as the feature extractor with
sophisticated modification to improve rotational invariance.

The closest work to ours is LookAroundYou [25], which
improves KidnappedRadar [10] by using the off-the-shelf se-
quence matching mechanism from SeqSLAM [2] . However,
LookAroundYou [25] inevitably inherits the limitations of
SeqSLAM [2] in the following aspects [26]: (1) It requires
at least two complete trajectories - query trajectory and
database trajectory, and they should be aligned with the same
number of samples, while our method can work with the
queries and databases of any size, and has no dependency on
fine-grained sequence alignments. (2) It requires the whole
trajectory to be spatially continuous for performing the local
contrast enhancement [2], while our method only requires
a locally continuous sequence. (3) It heuristically matches
sequences, while our method end-to-end trains a sequential
matching network. More importantly, rather than uses the
bulky spinning radar, our work goes for lightweight automo-
tive radar, by which richer measurements are provided and
used for more robust place recognition.

III. METHODS

Fig. 2 illustrates the pipeline of the proposed
AutoPlace. An automotive radar scan provides

a set of measurements, including the point cloud
P = {(xi, yi)|i = 1, 2, .., N}, radial velocity
V = {vi|i = 1, 2, .., N} and RCS R = {ri|i = 1, 2, .., N},
where N is the number of observed points at a scanning
instant. When receiving this input, our proposed Dynamic
Points Removal (DPR) module first exploits V to identify
and remove dynamic points in P and R, and produces
the refined P ′ and R′. Then a Deep Spatial-Temporal
Encoder extracts a discriminative feature vector from P ′.
Finally, during the inference phase, our proposed RCS
Histogram Re-ranking (RCSHR) module re-ranks the list of
best matching candidates. We now detail the design of each
module in what follows.

A. Dynamic Points Removal

It is common that dynamic and stationary objects coexist
on a road, such as vehicles, pedestrians, traffic cones and
building walls. While static objects are temporally consistent,
dynamic ones are not: a moving vehicle may disappear when
the vehicle revisits the same place. Consequently, dynamic
objects could mislead the place recognition due to landmark
inconsistency. To address this challenge, we propose a novel
Dynamic Point Removal method to generate a dynamic points
maskM considering the two motion status of the ego-vehicle
(i.e., the status of the radar sensor):

1) Moving Ego-vehicle: Intuitively, when an ego-vehicle
moves, the stationary objects move towards the opposite
direction in ego-vehicle’s field of view. In this case, the
identification of these moving objects should be straightfor-
ward by using automotive radar because objects’ velocities
can be directly measured and returned from such sensors.
Nevertheless, automotive radar can only provide the radial
velocity for an observed object rather than the full velocity.
The measured velocity from the radar can thus be ”zero”
when an object moves tangentially to the radar. To address
this ambiguity of velocity measurement, we propose to
distinguish the dynamic points based on radial velocities of
all points in a scan rather than that of a single point.

Formally, the points’ radial velocity for stationary objects
has a sinusoidal function as follows:

vr,i = −vs cos (α− θi), i = 1, 2, ..., N (1)

where vs is the radar velocity, α heading direction, N the
number of points, vr,i and θi the radial velocity and azimuth
angle of the ith point. Recall that point’s radial velocity for
moving object does not depend on the ego-vehicle motion
and can be arbitrary, which means it does not necessarily fit
the Eq. (1) and thus is a outlier. Following [27], we use the
Least Square approach and the Random Sample Consensus
(RANSAC) [28] algorithm to solve vs and α and identify
outliers, by which the moving points are found.

2) Static Ego-vehicle: One limitation of the above dy-
namic points removal approach is that it works on the
assumption that the ego-vehicle is moving such that the
Eq.(1) can be utilized to identify outliers. However, such
an assumption does not hold when the ego-vehicle is static.
To address this problem, we propose a simple yet effective



Fig. 3. Remove dynamic points based on radial velocity: the left figure
shows the points’ radial velocity distribution measured by the front radar
in a single radar scan, and the right is the front-view images from the front
camera, the bird view radar point cloud from the front radar, respectively.
The two dynamic points (the moving cars) are successfully identified by the
proposed DPR method and marked in red.

method to identify dynamic points when the ego-vehicle
is static. The key intuition behind our method is: at a
scanning instant, if most points have zero radial velocities,
then the ego-vehicle is very likely to be static. Furthermore,
as a nonzero radial velocity can only result from a nonzero
velocity, it is reasonable to regard points with nonzero radial
velocity as moving points. The implementation flow of our
method is described in Algorithm 1.

Fig. 3 shows an example of points’ radial velocity distribu-
tion, the corresponding bird view radar point cloud, and the
identified dynamic points using the proposed DPR method1.

Input : radial velocity V = {vr,i, θi|i = 1, 2.., N)}
veolcity fitting threshold τ
static velocity threshold vτr
percentage of static points threshold pτ

Output: dynamic points mask
M = {di|di ∈ {0, 1}, i = 1, 2, .., N} (value
0 means dynamic points)

Initialization: p← 0, foreach di do di ← 1;

for i =1 to N do
if vr,i < vτr then p← p+ 1

N ;
else di ← 0;

end
/* static ego-vehicle */
if p > pτ then output M ;
/* moving ego-vehicle */
else

foreach di do di ← 1;
execute RANSAC and Least Square algorithms to

find outliers indexed as j1, j2, .., jn;
foreach j in {j1, j2, .., jn} do dj ← 0;
output M;

end

Algorithm 1. Dynamic Points Removal.
B. Deep Spatial-Temporal Encoder

Once the dynamic points mask M is derived using the
above DPR, refined P ′ andR′ are then obtained by removing

1More illustrative examples can be found on our website:
https://github.com/ramdrop/autoplace.
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Fig. 4. Overview of the proposed deep spatial-temporal encoder: in
the Spatial Encoder diagram, the block color reflects layer type while
the block size indicates the layer’s output size, which is annotated as
channel@width×height.

dynamic points in P and R. Next, we introduce the Deep
Spatial-Temporal Encoder to encode radar point clouds spa-
tial and temporal information for robust place recognition.

As the automotive radar in this study provides 2D point
clouds, we convert a radar point cloud to a radar image by
projecting all 2D points to the image panel with the occupied
pixel assigned value 1, and the pixels that are not occupied
by any points are assigned value 0.

1) Spatial Encoder: To encode the spatial information
of a radar image, we propose a convolution-based spatial
encoder as shown in Fig. 4: all convolutional layers have
the same kernel size (3× 3) and stride (1× 1), followed by
a ReLU layer. Max-pooling layers are used to downsample
feature map, and all have a kernel size (2 × 2) and stride
(2× 2), except the last one has a larger kernel size (3× 3)
and a stride (3 × 3). An L2-normalization layer is used at
the end of the spatial encoder. The feature map of the last
layer has a size of C ×H ×W , which can be regarded as
C-dimensional features in (H ×W ) spatial locations.

2) Temporal Encoder: As point clouds given by automo-
tive radar are noisy and sparse [9], a measured object may
come and go at random across consecutive radar images.
Such inconsistency, however, makes it hard for the network
to learn a consistent feature map even for the same place. To
address this, we propose to utilize the temporal information
in a series of radar images. The underlying idea here is that
the object’s inconsistency between consecutive scans can be
mitigated by sequential smoothing. Inspired by the recent
success of recurrent neural networks in smoothing sequential
data [9], [29], we here adopt the single-layer LSTM [30]
as the temporal encoder subsequent to the aforementioned
spatial encoder. Fig. 4 illustrates the overall architecture of
the proposed deep spatial-temporal encoder.

3) Loss Function: Similar to NetVLAD [4], the triplet
margin loss is used to train the model, which is given by
L =

∑
k

max{dE(f(q), f(p))− dE(f(q), f(nk)) +m, 0}



Fig. 5. An example of RCSHR: The lower right figure is the RCS
histograms of a query and two candidates, while others are their bird view
radar images. Given a query, the retrieved top-1 candidate before RCSHR is
a false positive; after performing RCSHR based on their RCS histograms,
we identified the true positive candidate. (we use point size larger than 1
pixel for better visualization)

where f(·) denotes the network mapping a radar image to a
feature vector, dE(·) Euclidean distance, q the query sample,
p the best positive matching sample, nk the true negative
samples, m = 0.1 the predefined margin, and k = 10 the
number of negative samples. See NetVLAD [4] for more
details about the triplet loss function.

C. RCS Histogram Re-ranking

RCS values, as a type of radar output, are finally used
in AutoPlace to refine the recognition accuracy. RCS is a
property of the object’s reflectivity, mainly determined by the
object’s material, size and reflected angle. This measurement
provides an additional feature for an object and has proven
effective in assisting odometry task [31], [32]. However, the
question remains whether and how the RCS can contribute
to a place recognition task. To answer this question, we
propose a novel method, dubbed RCS Histogram Re-Ranking
to further improve place recognition accuracy. The intuition
is that geometrically-close places should share similar RCS
histograms regardless of weather and illumination variances.
Therefore, when measuring the similarity of two radar point
clouds, we consider not only their feature distance but also
RCS histogram distance. Concretely, the steps of deriving
the RCS histogram distance are as follows:

For the RCS measurement R′, we first normalize it to
range (0, 1). To filter RCS of trivial objects, we only retain
RCS within (bm, 1), where bm is the lower RCS bound and
the bin width bw is empirically determined from a validation
set. Finally, by calculating counts in each bin, the RCS
histogram is obtained. For consistency across different scans,
the histogram is normalized to have a unit sum over all bins.

Now the problem arises how to measure the similarity
of two histograms. As a histogram is an empirical estimate
of a probability distribution [33], we can use a wide range
of similarity functions for comparing two distributions to
measure the similarity of two histograms. In this work we

Input : RCS measurements
R′1 = {r1,i|i = 1, 2, ..., N1}
R′2 = {r2,i|i = 1, 2, ..., N2}, bm, bw

Output: RCS histogram distance dR
bin the range (bm, 1) with equal width bw;
foreach R′ in {R′1,R′2} do

foreach r in R′ do
r ← r−minR′

maxR′−minR′

end
calculate counts in each bin and we get
H(R′) = {ck|k = 1, 2, ..[bm/bw]};
H̃(R′) = { ck∑

k

ck
|k = 1, 2, ..[bm/bw]};

end

dR =
∑
k

H̃(R′1; k) log(
H̃(R′

1;k)

H̃(R′
2;k)

)

Algorithm 2. Calculate RCS Histogram Distance

use KL divergence as the similarity function since it is proven
to be the an effective metric among a variety of similarity
functions [33]. By denoting RCS histogram distance of two
RCS histograms H̃(R′1) and H̃(R′2) as dR, we have:

dR(H̃(R′1; k), H̃(R′2; k)) =
∑
k

H̃(R′1; k) log(
H̃(R′1; k)
H̃(R′2; k)

)

where k is the bin index. Note that a more similar RCS
histogram pair leads to a smaller RCS histogram distance
dR. Algorithm 2 summarises the above procedures. With
the derived RCS histograms and top-M candidates retrieved
based on their feature distance, a re-rank is performed by
holistically considering the combined total distance dtotal:

dtotal(q, c) = α · dR(H̃(q), H̃(c))+ (1−α) · dE(f(q), f(c))

where α is an adjustable parameter used to balance the two
distances, q and c denotes the query sample and the candidate
sample. And we empirically set M=100 in this study. An
example of RCSHR is shown in Fig. 5 where we can see
that the retrieved top-1 candidate without using the RCSHR
is only plausibly correct but not really close to the query.
After the RCSHR re-rank is applied, the real match pops up
as the new top-1 candidate due to their more similar RCS
histograms, and consequently smaller dR over the others.

IV. EXPERIMENTAL SETUP

A. nuScenes Dataset

As automotive radar is relatively new, the public dataset
of this novel sensor is limited. The newly released nuScenes
dataset [20] is the first and only one for large-scale environ-
ments with multi-modal sensors, including automotive radar.
Since no previous work has been done for place recognition
on this dataset, we provide necessary information about the
dataset and our data pre-processing pipelines.

There are five radar sensors installed at the front, left, right
and back parts of the vehicle, covering a 360° FOV. Each
radar works at 77GHz with 250m measurement range and
13Hz capture frequency. The final data is comprised of 1000



Fig. 6. Precision-recall curve of SOTA methods on the nuScenes dataset.

scenes of 20 s duration from four locations, which is 15 h of
driving data (242 km traveled at an average of 16 kmh−1).

In order to train and evaluate place recognition methods,
a large number of loop closures and diverse road situations
are desired. Therefore, we choose to train and evaluate
AutoPlace on the largest split, Boston split, among all the
four splits. For the 550 scenes collected in Boston over 120
days, we take the data from the last 15 days as the validation
query set and the test query set, while the rest as the training
set. The training set is further divided into the database set
and the training query set. Specifically,
• The database set is created by taking as many places

as possible from the training set, until a newly added
place is no 1m farther than any existing places in the
database set.

• The training query set is created by substracting the
database set from the training set.

• The validation query set : the test query set=1 : 4, and
they are refined by removing places that have no ground
truth true positives in the database set.

The final database set, training query set, validation query
set and test query set contains 6312, 7075, 924 and 3696
radar images, respectively.

B. Implementation Details

Since a single radar point cloud is too sparse to extract
useful information due to the low sensing quality, we follow
typical data pre-processing of [17], [32] and concatenate the
nearest seven radar point clouds to form a denser point cloud.
Ground truth ego-motion is used for concatenation, but this
could be relaxed by using a simple local pose estimator, e.g.,
IMU. Besides, as the far-range measurement is less accurate,
we crop the radar measurements to retain the points within
100m from the sensor. When projected to the image plane,
each point occupies one pixel. Thus, the converted 2D bird
view radar image has a size of 200× 200.

After searching hyper-parameters on validation set, we set
τ = 0.15, vτr = 1, pτ = 0.5 for DPR, and bm = 0.02, bw =
0.04, α = 0.41 for RCSHR. For the network training, we
use a batch size of 8 and SGD with an initial learning

TABLE I
PERFORMANCE OF SOTA METHODS ON THE NUSCENES DATASET

Method Recall@1/5/10 maxF1 AP
MinkLoc3D [8] 31.8/53.6/61.1 0.53 0.49
M2DP [6] 30.3/43.4/48.4 0.58 0.65
ScanContext [21] 10.4/15.3/17.2 0.42 0.45
UnderTheRadar [11] 38.5/53.8/59.1 0.67 0.75
KidnappedRadar [10] 41.0/56.6/61.5 0.65 0.71
NetVLAD [4] 73.1/80.5/82.4 0.92 0.96
NetVLAD+TE*1 70.8/79.5/81.2 0.90 0.95
SeqNet [36]* 73.3/80.0/82.1 0.92 0.97
Ours: SE 73.3/80.0/81.9 0.89 0.96
Ours: SE+TE* 76.7/81.7/83.4 0.93 0.97
Ours: AutoPlace *2 78.9/83.1/84.3 0.94 0.98
1 * denotes using sequential frames for place recognition.
2 i.e., SE+TE+DPR+RCSHR.

TABLE II
ABLATION STUDY OF AUTOPLACE

SE TE DPR RCSHR Recall@1/5/10 maxF1 AP√
73.3/80.0/81.9 0.89 0.96√ √
76.7/81.7/83.4 0.93 0.97√ √
75.3/81.4/83.0 0.91 0.96√ √
73.4/80.3/82.2 0.89 0.96√ √ √
75.8/82.1/83.8 0.91 0.96√ √ √
77.7/82.1/83.4 0.93 0.98√ √ √
77.8/82.3/83.7 0.94 0.98√ √ √ √
78.9/83.1/84.3 0.94 0.98

rate of 0.01, momentum 0.9 and weight decay 0.001. We
decay the learning rate by 0.5 every 5 epochs. Following the
scale of KidnappedRadar [10] and PointNetVLAD [7], we
regard places in database that are within the radius=9m area
to the query as true positives, while those are outside the
radius=18m area as true negatives.

C. Evaluation Metrics

We follow four standard metrics in place recognition tasks:
recall@N [4], [5], precision-recall curve [34], [35], maxF1

[10] and average precision (AP) [34]. See [34] for details of
generating precision-recall curve and AP.

V. RESULTS

A. Comparison with State-Of-The-Art Methods

In what follows, we denote our proposed Spatial Encoder
and Temporal Encoder as SE and TE for brevity. We compare
our approach with the SOTA methods, including:
• Visual place recognition: NetVLAD [4], SeqNet [36].

We adapt the implementation of the above works to the
settings of the nuScenes dataset. To fairly evaluate the
effectiveness of our spatial encoder, we also investigated
the performance of NetVLAD+TE by adding our TE to
the original NetVLAD network.

• LiDAR place recognition: M2DP [6], ScanContext
[21] and MinkLoc3D [8]. We feed them the pseudo-
3D point clouds by adding a pseudo axis z = 0 and
then normalize point clouds to range (−1, 1).

• Spinning radar place recognition: UnderTheRadar [11]
and KidnappedRadar [10]. For KidnappedRadar, we
convert the radar images from Cartesian coordinates to
polar coordinates.



Fig. 7. Qualitative analysis of SOTA methods. The first and second columns show the query radar images and ground truth radar images, and the other
columns are the retrieved top 1 candidate via different methods. Green means the retrived candidate is a true positive, while red denotes false positive.

Table. I presents the performance of SOTA methods and
our methods. As expected , brute-force applying the place
recognition approaches of LiDAR sensors to automotive
radar results in inferior performance: ScanContext, M2DP
and MinkLoc3D only achieve 10.4%, 30.3% and 31.8%
recall@1, respectively. Their failures can be attributed to
the reasons that (1) automotive radar point clouds are much
sparser than LiDAR point clouds [17], and (2) pseudo 3D
point clouds of the automotive radar lack valid information
on z axis. These factors make 3D point cloud-based methods
ill-suited to automotive radar.

We can also observe from this table that spinning radar
place recognition approaches perform slightly better than
LiDAR-based methods: KidnappedRadar and UnderTheR-
adar achieve 41.0% and 38.5% recall@1, respectively, which
are still far from being satisfactory. KidnappedRadar takes
mechanically spinning radar’s spectra as input and performs
max-pooling upon the last feature map along the azimuth axis
to achieve rotational invariance. However, since automotive
radar point clouds are higher-level but less informative than
spectra, max-pooling operation on automotive radar’s feature
map only makes things worse, preventing the network from
producing a discriminative radar image descriptor.

Visual place recognition methods, NetVLAD and SeqNet,
achieve 73.1% and 73.3% recall@1, respectively. We sup-
pose their relatively good performance results from the
strong feature representative capability of VGG16 [37]. Our
SE surpasses NetVLAD and achieves a comparable perfor-
mance of the sequence-based method, SeqNet. Notice that
NetVLAD+TE performs even worse than NetVLAD, this is
because NetVLAD is designed to produce high dimensional
features (larger than 30k-dimensions in [4]) while LSTM in
TE works well when fed low dimensional data (less than 10k-
dimensions in [9], [38]), such a incompatibility results in its
poor performance. In contrast, our SE produces compact fea-
tures and works better with TE than NetVLAD. By utilizing
all information from automotive radar, AutoPlace extends
the gap to the runner-up to 5.6%, 0.02 and 0.01 for recall@1,
maxF1 and AP. A similar trend can also be observed in Fig.
6 that LiDAR and spinning radar place recognition methods
are outperformed by their visual counterparts, NetVLAD
and SeqNet. Still, AutoPlace exceeds the others by a
significant margin.

We also provide qualitative analysis in Fig. 7. As we can
see, when the queried scene structure is incomplete (first

row) or the point cloud in a query is extremely sparse (second
row), competing approaches struggle while AutoPlace can
still retrieve the correct match.

In summary, the experimental results suggest: (1) existing
visual, LiDAR or spinning radar place recognition methods
perform unsatisfactorily when being directly applied to au-
tomotive radar, and (2) by fully utilizing all the information
provided by automotive radar, our AutoPlace is superior
to all competing methods.

B. Ablation Study

We study each component of AutoPlace by evaluating
different groups shown in Table. II. It can be observed that
• SE (c.f. Sec. III-B.1) alone achieves recall@1=73.3%,

which is comparable with NetVLAD.
• TE (c.f. Sec. III-B.2) boosts recall@1 by 3.4% when

added to SE, and decreases it by 3.1% when removed
from AutoPlace.

• DPR (c.f. Sec. III-A) increases recall@1 by 2.0% when
added to SE, and decreases it by 1.2% when removed
from AutoPlace.

• RCSHR (c.f. Sec. III-C) improves recall@1 by 0.1%,
0.5%, 1.0% and 1.1% when added to SE, SE+DPR,
SE+TE and SE+TE+DPR, respectively. Improvements
vary because RCSHR works as a refinement mod-
ule, bringing more remarkable improvement when the
descriptors themselves are more discriminative (i.e.,
RCSHR hardly changes candidates’ order when mis-
matches have small feature distances). This is in ac-
cordance with our observation that more discrimina-
tive descriptors lead to fewer mismatches between
geometrically-close places, and thus, RCSHR helps more
in distinguishing these places (more illustrative exam-
ples are available in our supplementary video).

The results indicate that each component is critical in im-
proving the overall performance, of which the most signifi-
cant benefit is from TE.

VI. CONCLUSION

Observing that existing place recognition methods ill-suits
the emerging automotive radar, we propose AutoPlace,
a novel place recognition framework by fully exploiting
automotive radar’s rich measurements. Experimental results
show remarkable performance gain of AutoPlace on the
public nuScenes dataset. Future work will further investigate
AutoPlace for simultaneous localization and mapping.
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