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Abstract— Surgical instrument segmentation – in general a
pixel classification task – is fundamentally crucial for promoting
cognitive intelligence in robot-assisted surgery (RAS). However,
previous methods are struggling with discriminating instrument
types and instances. To address above issues, we explore a mask
classification paradigm that produces per-segment predictions.
We propose TraSeTR, a novel Track-to-Segment Transformer
that wisely exploits tracking cues to assist surgical instrument
segmentation. TraSeTR jointly reasons about the instrument
type, location, and identity with instance-level predictions i.e.,
a set of class-bbox-mask pairs, by decoding query embeddings.
Specifically, we introduce the prior query that encoded with
previous temporal knowledge, to transfer tracking signals to
current instances via identity matching. A contrastive query
learning strategy is further applied to reshape the query
feature space, which greatly alleviates the tracking difficulty
caused by large temporal variations. The effectiveness of our
method is demonstrated with state-of-the-art instrument type
segmentation results on three public datasets, including two
RAS benchmarks from EndoVis Challenges and one cataract
surgery dataset CaDIS.

Index Terms—AI-based methods, Transformer, surgical in-
strument segmentation, medical robotics

I. INTRODUCTION

Robot-assisted surgery (RAS) has revolutionized the min-
imally invasive surgery by remarkably extending the dexter-
ity and overall capability of surgeons. The robotic system
controls the movement of surgical instruments, enabling ef-
ficient manipulation and vivid observation for many surgical
tasks [1]–[3]. Intelligent parsing of such instruments, e.g.,
identifying their types or positions, is highly desired for
promoting cognitive assistance to surgeon perception [4], op-
erating workflow optimization [5], and skill assessment [6],
[7]. To this end, the instance-level semantic segmentation
of instruments, which can separate instruments to different
types, is required as a fundamental task to support many
downstream applications, such as tool pose estimation [8],
tracking [9], trajectory prediction [10], [11], and even fa-
cilitate the surgical task automation [12], [13] for next
generation of operating intelligence.

The similar instrument types, with small inter-class dis-
crepancy, are challenging to recognize, especially in complex
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Fig. 1. Two paradigms for surgical instrument type segmentation: (i) pixel
classification predicts a single class for each pixel (C classes in total). (ii)
mask classification predicts a set of binary masks and assigns a single class
to each mask. To account for the large temporal variations of instruments, we
exploit tracking cues with prior queries for video-level mask classification.

surgical scenes. Most of previous instrument segmentation
methods follow a pixel classification paradigm in which
the deep learning model predicts the probability distribution
over all classes for each pixel in a frame. The key idea
of them [14]–[18] is to modify the neural network (e.g.,
U-Net [19]) or differentiate instrument types by exploring
spatial or temporal cues, including depth maps [20], pose
estimation [21], optical flows [15], and motion flows [16].
Nevertheless, as shown in Fig. 1, these solutions are strug-
gling with the spatial class inconsistency problem, where one
instrument may be assigned multiple instrument types.

An alternative paradigm – mask classification that predicts
a set of binary masks, and each associated with a single class
– has been increasingly adopted for instance-level segmen-
tation. In robotic surgery, ISINet [22] takes the first step to
predict a single class for each instrument segment based on
Mask-RCNN [23]. One main challenge is to maintain the
class consistency over time. The relabelling strategy in [22]
takes into account the predictions of previous frames, but
tends to misassign labels to similar instances due to large
temporal variations (see Fig. 1). How to correctly perform
video-level mask classification for surgical instruments, to
tolerate the intra-class variations across time, is crucial yet
still remains unexplored.

Recently, Transformers have shed light on mask clas-
sification by jointly reasoning about a number of query
embeddings for instance predictions via the encoder-decoder
attention mechanism [24]. The development of DETR [25]
and its variants [26] have widely demonstrated promising
performance on object tracking [27] and instance segmenta-
tion [28], [29]. Specifically in RAS scenarios, there emerge
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Fig. 2. TraSeTR overview. We use a backbone to extract frame feature F and a pixel decoder to produce pixel-level embeddings Epixel. A transformer
module computes from F and N queries to yield instance embeddings Einst, which are combined with Epixel to output N binary masks with bounding
boxes and classes. TraSeTR performs instance tracking for surgical instrument segmentation. It is realized by a two-stage identity matching mechanism that
allows the prior queries to be precisely transformed to the current predictions, and the current queries to infer newly-entered instances either initializing
prior queries for future frame. Based on the matching set σ, the contrastive query learning is applied to instance embeddings between time t and t− τ .

some works actively exploring transformer-based solutions
for surgical phase recognition [30], tool detection [31],
and surgical scene reconstruction [32]. All these successes
motivate us to explore the potential of Transformer for
discriminating instrument types in a way of leveraging the
temporal knowledge of dynamic instances.

In this paper, we propose TraSeTR, a novel track-to-
segment transformer that dynamically integrates tracking
cues to assist instance-level surgical instrument segmenta-
tion. Rooted in the mask classification paradigm, TraSeTR
employs a Transformer module [24] to infer a set of in-
stance predictions from current frame features and query
embeddings, each consisting of a class prediction, a bounding
box prediction, and a binary mask prediction. The query
embeddings are initialized as (i) prior queries to encode
prior knowledge of previous frame instances and (ii) cur-
rent queries to detect newly-appeared instances in a frame.
Furthermore, they are learned to be temporally contrastive
to tolerate the dynamic changes of instruments. TraSeTR
performs instance tracking via a two-stage identity matching
between prediction set and ground-truth set such that the
current instances can be precisely inferred from their corre-
sponding prior queries. Our main contributions include:

• We propose a novel track-to-segment transformer to
wisely discriminate both instances and types for accu-
rate surgical instrument segmentation.

• The keys to the success of TraSeTR are the new
mechanisms of identity matching and contrastive query
learning, which are carefully designed to track surgical
instruments with large temporal variations.

• We design a link-by-link inference strategy to infer
instrument segments with dynamically changed prior
queries in an auto-regressive fashion.

• We extensively evaluated the proposed method on two
RAS benchmarks EndoVis17 [33] and EndoVis18 [34],

and a public eye surgery dataset CaDIS [35]. TraSeTR
set new state-of-the-art results on instrument type seg-
mentation tasks at a fast speed of 23 FPS.

II. METHODS

TraSeTR is a mask classification model for instance-level
surgical instrument segmentation. In this section, we first
describe how to formulate the track-to-segment problem.
Then, we introduce the architecture and matching mechanism
of the model. Finally, we illustrate the training and inference
strategies which are specifically designed for TraSeTR.

A. Track-to-Segment Formulation

TraSeTR segments the instruments by (i) partitioning the
frame into N instances where N is significantly larger than
the real instrument number Ñ , and (ii) merging the selected
instances into one segmentation map over C classes. The
predictions of N instances are a set of N probability-bbox-
mask pairs z = {(pi, bi,mi)}Ni=1, where the probability
distribution pi contains an auxiliary “no object” label (∅)
to denote instances that do not correspond to any classes;
bi ∈ [0, 1]4 is the bounding box of the instance; and mi

is the binary mask. To train the mask classification model,
a matching set σ between the prediction set z and the
ground-truth set z̃ = {(c̃i, b̃i, m̃i)}Ñi=1 is required, where
c̃i ∈ {1, ..., C}. The predictions that are not matched by
σ are assigned with the ground-truth label ∅.

For accurate video-level mask classification, TraSeTR
incorporates tracking cues to assist segmentation by tracking
instrument instances {z1, ..., zk} with identity K = {1, ...k}.
Specifically, TraSeTR initialize N query embeddings for
instance prediction. Among them, Nprior prior queries are
initialized with the output embeddings of previous frame,
and N cur current queries are randomly initialized to learn to
detect newly-entered instruments. Once the matching set σ



assigns the predictions from prior queries to corresponding
ground truths, the instances are successfully tracked.

B. TraSeTR Architecture

The overall architecture of TraSeTR is simple and depicted
in Fig. 2. We now describe three basic components that
enable instance-level segmentation.

Frame extractor. Taking a frame at time t as input, the
CNN backbone generates a feature map F ∈ RH

S ×
W
S ×CF ,

where CF is the number of channels, S is the sampling
stride, and H×W is the frame size. The feature map is then
upsampled via a decoder to produce pixel-level embeddings
Epixel ∈ RHW×CE , where CE is the number of channels.

Transformer module. We employ a standard encoder-
decoder Transformer [24] to compute from frame features
F and N query embeddings (including Nprior prior queries
from time t − τ and N cur current queries). We add F
with positional embeddings as Transformer is permutation
invariance. Thanks to the self- and cross-attention mecha-
nisms in Transformer, its output, i.e., N instance embeddings
Einst ∈ RN×CQ of dimension CQ, encode global information
about all instruments appeared in the surgical scene. Note
that the channel number of query embeddings is CQ as well.

Instance fusion module. It first maps instance embed-
dings Einst to three types of predictions. For class prediction,
we apply a Multi-Layer Perceptron (MLP) followed by
a softmax function to yield class probability predictions
{pi}Ni=1. For bounding box prediction, we use a MLP to
produce N bounding boxes {bi}Ni=1. For mask prediction, we
convert Einst to mask embeddings Emask ∈ RN×CQ with a
MLP, which are used to generate N binary mask predictions
{mi}Ni=1 via a dot production with pixel-level embeddings
Epixel, followed by a sigmoid activation. Finally, instances
are fused to instrument type segmentation. We assign each
pixel [h,w] to one of the probability-bbox-mask pair from
the matching set σ via argmaxi∈σpi(ci) ·mi[h,w]. Here, ci
is the predicted class ci = argmaxc∈{1,...,C,∅}pi(c).

C. Tracking with Identity Matching

TraSeTR infers a dynamic-size set of N predictions in
a single pass of the model, where N is changing with the
number of prior queries. To score the N predictions with
respect to the Ñ ground truths (N > Ñ ), we need to find
a matching set σ such that the jth ground truth matches
the prediction with index σ(j). Essentially, the correct link
between the prediction from prior query and the current
ground truth can be regarded as a tracking task, which is
crucial to enhance the temporal class consistency.

However, tracking instruments is difficult because of the
large temporal variations (e.g., tool tips) caused by the
zoom in and zoom out of endoscopic camera. The bipar-
tite matching used in DETR [25] and TrackFormer [27],
i.e., minimizing an assignment cost between the prediction
zσ(j) and ground truth z̃j , Lassign(zσ(j), z̃j) = pσ(j)(c̃j) +

Lbox(bσ(j), b̃j), tends to cause invalid tracking by matching
the prediction from current query to the ground truth.

To correctly track instances, we propose a two-stage
identity matching strategy. At the first stage, we search
for a matching subset σ1 between predictions from prior
queries and the current ground truths. A naive matching is
possible if all instances belong to different classes. In this
case, the jth ground truth matches to σ1(j)

th prediction if
their classes are the same. A more general method can be
achieved by employing the prior ground truths {z̃priori }Nprior

i=1

of these predictions for cost calculation, such that instrument
identities can be explicitly associated with current ground
truths {z̃i}Ñi=1 via a matching cost defined as:

Lmatch(zσ1(j), z̃j) = 1c̃prior
σ1(j)

=c̃j
|x̃priorσ1(j)

− x̃j |, (1)

where x̃j and x̃priorσ1(j)
are the horizontal coordinates of the jth

ground truth’s center and σ1(j)th prior ground truth’s center,
derived from the bounding boxes b̃j and b̃priorσ1(j)

, respectively.
We then define the relative horizontal distance (RHD) as
|x̃priorσ1(j)

− x̃j | to distinguish instances, especially those of
the same class, since the horizontal displacement of the
same instance is smaller than that of the other. It can be
inherently supported by the “dual-arm distribution”, i.e., one
instrument moves within the right-half scene, while the other
(of the same class) within the left-half scene. Unlike the IoU-
based bounding box loss [36], RHD could still track the fast
moving instruments in robotic surgery. The optimal subset
then can be found by minimizing the matching cost:

σ̂1 = argmin
σ1

∑
j

Lmatch(zσ1(j), z̃j), σ1(j) ∈ [1, Nprior]. (2)

At the second stage, we search for a matching subset σ2
between ground truths that are not matched by σ̂1 and predic-
tions of current queries, to detect the newly-entered instance.
Here, we optimize a bipartite matching-based assignment:

σ̂2 = argmin
σ2

∑
j

Lassign(zσ2(j), z̃j), σ2(j) ∈ (Nprior, N ]. (3)

We assign a new identity (i.e., ID) for the newly-entered
instance if its class appears in the video for the first time
or there have already exist instances of the same class.
Otherwise, it will be assigned a previous identity according
to the class. Overall, the optimal matching set is a union of
the subsets, i.e., σ = σ̂1 + σ̂2, where σ̂2 can be ∅.

D. Contrastive Learning-based Training

Given the matching set σ, we encourage the model to
transform the prior query to its current position, even with
large temporal variations. Basically, we could compute the
Hungarian loss for all matched pairs, which are commonly
used in prior works [25], [27], [29]. This loss contains a
negative log-likelihood for class prediction, a bounding box
loss and a mask loss for all instances:

LHung(z, z̃) =

Ñ∑
j=1

[−log pσ(j)(c̃j) + Lbox(bσ(j), b̃j)

+ Lmask(mσ(j), m̃j)].

(4)

Here, we use the same Lmask and Lbox as DETR [25].
Specifically, Lmask is a linear combination of dice loss [37]



and focal loss [38]. Lbox is a linear combination of `1 loss
and a generalized IoU loss Liou [36].

Contrastive query learning. To further improve the track-
ing capability of TraSeTR based on the matching index σ, we
push the model towards maximizing the query agreements
on different temporal views of the instance. Let us denote
N instance embeddings Einst as {ei}Ni=1 and some of them
are decoded from prior query embeddings. Unlike previous
video-level contrastive learning [39], [40], our key idea (see
Fig. 2) is to pull the instance embedding ei (i ∈ σ) with its
prior query epriori , while pushing ei with the remaining in-
stance embeddings ej where ci 6= cj . Formally, we construct
two types of contrastive pairs, including the positive pairs
(ei, e

prior
i ) and the negative pairs (ei, ej), which allow us to

learn contrastive query embeddings via a contrastive loss:

Lctr = −
1

|σ|
log

∑
i∈σ

φ(ei, e
prior
i )

φ(ei, e
prior
i ) +

∑
j φ(ei, ej)

, (5)

where φ(·, ·) is a similarity function and can be achieved by a
dot production between two embeddings. In Eq. (5), we omit
the calculation of instance embeddings that are matched by
σ but not have prior embeddings, i.e., those newly-entered
instances. We now define the overall training loss as LHung+
λctrLctr, where λctr is a balancing weight.

E. Link-by-link Inference

We describe a link-by-link inference procedure specifically
designed for instance-level instrument segmentation. At the
beginning, TraSeTR predicts all the instruments that appear
in the first frame with the identity K1 = {1, ..., k} being
a subset of all K in the video sequence. It only decodes
N cur instance embeddings and then select k instances whose
classification scores are above τd. The k output embeddings
are used to initialize the prior queries for the next frame.
At time t, TraSeTR outputs N cur +Nprior instance embed-
dings. Apart from detecting newly-appeared instruments with
classification threshold τd, TraSeTR tracks prior instances
whose classification scores are above τt. Note that Nprior

changes between frames as prior queries are removed or
new instances are detected. We remove prior queries if their
classification scores drop below τt for more than 50 time
steps. The time tolerance allows TraSeTR to infer an instance
with multiple prior queries collected from different time
steps, which provides the long-range temporal information
of one certain instrument.

III. EXPERIMENTS AND RESULTS

We evaluated TraSeTR’s performance on instrument type
segmentation using three public datasets [33]–[35].

A. Datasets and Evaluation Metrics

EndoVis17. The EndoVis17 dataset [33], a benchmark
of instrument type segmentation, contains 8 robot-assisted
surgery videos recorded from da Vinci Xi Surgical System.
We used the instance annotations generated by [22].

EndoVis18. The EndoVis18 dataset [34] provides 15
videos of different porcine procedures acquired by da Vinci

Xi Surgical System, and corresponding semantic annotations
of the whole scene. The instruments are annotated with
their parts (shaft, wrist and jaws). To distinguish among
instrument types, we followed prior work [22] to generate
the additional instance annotations for 7 instrument types.

CaDIS. The CaDIS dataset [35] includes 25 surgical
videos recording cataract surgery by an OPMI Lumera T
microscope. We used the semantic annotations of instruments
and converted them to instance annotations by extracting
each instrument from the scene and assigning it one of the
10 instrument types in Table II. Our annotations can be
transformed to the MS-COCO standard dataset format.

As the ground-truth instance ID is not provided, we only
assess the segmentation quality following prior works [14]–
[16], [22], [35]. Specifically, we adopted two commonly
used metrics including mean intersection-over-union (mIoU)
and Dice coefficient (Dice) that only consider the classes
presented in a frame. For fair comparisons, EndoVis17 was
evaluated by 4-fold cross-validation using the standard folds
described in [14]. EndoVis18 and CaDIS were evaluated
using the same data splitting as [22] and [35], respectively.

B. Implementation Details

Model settings. TraSeTR is compatible with any back-
bone architecture. In this work, we use the ResNet-50 [41]
backbone. The Transformer consists of 6 encoder and 6
decoder layers with 8 attention heads. As TraSeTR predicts
1∼4 instruments for each frame, the query number N cur is
20 (see query number ablation in supplementary video).

Training. The time interval τ between prior frame and
current frame is in the range of [1, 10]. Our model is
implemented in Pytorch and trained with a NVIDIA Titan
Xp GPU. We initialize the backbone with pretrained weights
on COCO [42]. The initial learning rates of Transformer and
backbone are 1e−4 and 1e−5, which will be multiplied by
0.1 after 50 epochs. We use the same balancing weights as
DETR [25] for LHung. The hyper-parameter λctr is set as
0.2. To increase model robustness, we augment query em-
beddings by adding false negatives with a probability of 0.4
and false positives with a probability of 0.1, following [27].

Inference. During inference, we set the detection thresh-
old τd as 0.9. To tolerate large temporal variations of instru-
ments, we set the track threshold τt as 0.6. We also apply
non-maximum suppression (NMS) with a high IoU threshold
of 0.9 to filter out overlapped instances. The inference speed
could be 23 FPS without extra acceleration.

C. Main Results

1) EndoVis 17&18: In Table I, we compare our TraSeTR
with (i) pixel classification approaches [14]–[16] and (ii)
mask classification approaches [22], [26], [27] for instrument
type segmentation. For DETR [26] and TrackFormer [27],
we use the source code provided by the authors to train
the models. Other results are reported from the original
papers. For EndoVis17, TraSeTR outperforms Dual-MF [16]
by 14.6% mIoU and 9.1% Dice, indicating that mask
classification formulation has great potential for instrument



TABLE I
INSTRUMENT TYPE SEGMENTATION RESULTS OF DIFFERENT METHODS ON ENDOVIS17 AND ENDOVIS18 DATASETS (7 CLASSES).

Dataset Method Bbox mIoU Dice Instrument classes (mIoU)
BF PF LND VS / SI GR / CA MCS UP

EndoVis17

TernausNet [14] 35.3 44.9 13.3 12.4 20.5 6.0 1.1 1.0 16.8
MF-TAPNet [15] 37.4 48.0 16.4 14.1 19.0 8.1 0.3 4.1 13.4

Dual-MF [16] 45.8 56.1 34.4 21.5 64.3 24.1 0.8 17.9 21.8
DETR [25] X 53.1 58.0 36.5 37.2 54.5 24.2 0.6 23.3 11.3

TrackFormer [27] X 54.9 59.7 37.6 38.0 53.1 25.5 2.8 24.6 15.7
ISINet [22] X 55.6 62.8 38.7 38.5 50.1 27.4 2.0 28.7 12.6

TraSeTR (ours) X 60.4 (+4.8) 65.2 (+2.4) 45.2 56.7 55.8 38.9 11.4 31.3 18.2

EndoVis18

TernausNet [14] 46.2 53.2 44.2 4.7 0.0 0.0 0.0 50.4 0.0
MF-TAPNet [15] 67.9 72.5 69.2 6.1 11.7 14.0 0.9 70.2 0.6

Dual-MF [16] 70.4 76.9 74.1 6.8 46.0 30.1 7.6 80.9 0.1
DETR [25] X 68.0 72.5 70.3 15.9 31.6 16.7 0.9 80.2 0.0

TrackFormer [27] X 71.1 77.3 75.8 20.1 38.5 30.6 4.8 82.5 1.5
ISINet [22] X 73.0 78.3 73.8 48.9 31.0 37.7 0.0 88.2 2.2

TraSeTR (ours) X 76.2 (+3.2) 81.0 (+2.7) 76.3 53.3 46.5 40.6 13.9 86.3 17.5
Instrument classes include: Bipolar Forceps (BF), Prograsp Forceps (PF), Large Needle Driver (LND), Vessel Sealer (VS), Suction
Instrument (SI), Grasping Retractor (GR), Clip Applier (CA), Monopolar Curved Scissors (MCS), and Ultrasound Probe (UP).

Fig. 3. Qualitative comparisons of TernausNet [14], MF-TAPNet [15], Dual-MF [16], DETR [26], TrackFormer [27], ISINet [22], and our TraSeTR on
EndoVis17 (top) and EndoVis18 (bottom) videos. Each color represents one instrument type. More results can be found in supplementary video.

type segmentation. Compared with transformer-based ap-
proaches [26], [27], TraSeTR shows great improvements by
tracking instances such that prior queries can be leveraged to
infer current instances. TraSeTR is also superior to ISINet
[22], achieving a new state-of-the-art of 60.4% mIoU and
65.2% Dice. For EndoVis18, TraSeTR still outperforms the
prior state-of-the-art [22] by 3.2% mIoU and 2.7% Dice. In
particular, the improvements of some types, e.g., Clip Applier
and Ultrasound Probe, are more than 10% mIoU. Fig. 3
shows the qualitative comparisons. As expected, TraSeTR
maintains both spatial and temporal class consistency of
instruments, while other methods fail to do so.

2) CaDIS: Table II compares the type segmentation
results of TraSeTR and three strong baselines reported
in [35], including DeepLabV3+ [43], UPerNet [44], and
HRNetV2 [45]. Observe that TraSeTR achieves the best
overall results of 69.9% mIoU. For some certain types,
e.g., Ph. Handpiece and I/A Handpiece, the similar tool
tips could be better distinguished by the high-resolution
representations of HRNetV2 [45]. But promisingly, TraSeTR
peaks the segmentation performance of 7 instrument types.
This result suggests that our method is robust to various
surgical instruments and surgical scenes.

3) Instance-level Tracking: Fig. 4 visualizes the tracking
process of our method. Each color bar represents an instru-
ment with a specific identity (ID) and class. The length of the

TABLE II
INSTRUMENT TYPE SEGMENTATION RESULTS (MIOU) OF DIFFERENT

METHODS ON CADIS DATASET (10 CLASSES).

Instrument
classes

DeepLabV3+
[43]

UPerNet
[44]

HRNetV2
[45]

TraSeTR
(ours)

Cannula 48.9 50.0 49.5 53.1
Cap. Cystotome 55.7 54.5 61.7 64.4
Tissue Forceps 70.0 74.0 78.0 79.2
Primary Knife 86.1 89.5 89.3 92.3
Ph. Handpiece 75.0 77.6 77.9 76.2
Lens Injector 78.5 81.0 82.8 87.1
I/A Handpiece 74.0 73.6 75.3 71.3
Secondary Knife 69.0 68.2 79.5 82.7
Micromanipulator 59.3 63.6 64.4 66.3
Cap. Forceps 28.9 23.0 27.2 26.1
Total 64.6 65.5 68.6 69.9

bar indicates the time span of the instrument showing in the
video. Compared with ground truth, TraSeTR correctly tracks
instruments that newly-appear or re-appear in the scenes.
More importantly, it assigns the instance ID to each of them,
thereby achieving satisfying instance-level tracking.

D. Ablation Studies

1) Bipartite matching vs. identity matching: In Table III
(a), we verify that the main gains of TraSeTR come from
tracking instances with identity matching. We start by com-
paring (i) TraSeTR uses bipartite matching, and (ii) TraSeTR
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Fig. 4. Visualization of instance-level tracking on EndoVis17 and CaDIS videos. The color bar represents the time steps that one instrument appearing
in the scene. Different color indicates different instrument types. Besides the tracking process, we also show the instrument type segmentation results of
intermediate frames. TraSeTR achieves 88.8% and 92.3% tracking accuracy (i.e., how many instances being correctly tracked) on two example videos.

uses identity matching. We report the mean tracking rate
of two methods at training time, i.e., how many predictions
from prior queries can be matched to the current ground
truths. Only 27.3% instances can be successfully tracked
via bipartite matching, which means that the model cannot
always use prior queries for prediction. On the contrary,
our identity matching tracks all instances by associating
their identities at training time. As a result, it leads to
3.5% mIoU and 2.1% Dice improvements on EndoVis17
dataset, suggesting the necessity of fully exploiting temporal
information to discriminate instrument types.

TABLE III
ABLATION STUDIES OF TRASETR ON ENDOVIS17 DATASET.

(a) Mean tracking rate (at training) mIoU Dice
Bipartite matching 27.3% 56.9 63.1
Identity matching 100% 60.4 65.2

(b) Query Embeddings mIoU DiceCurrent Prior Contrastive
TraSeTR-NT X 54.6 62.0
TraSeTR-NC X X 59.6 64.7

TraSeTR X X X 60.4 65.2

2) Types of Query embeddings: Table III (b) analyzes
the different types of query embeddings in TraSeTR. We
implement three configurations: (i) TraSeTR-No Tracking
(NT): TraSeTR with current queries only, and trained with
Hungarian loss LHung; (ii) TraSeTR-Non Contrastive (NC):
TraSeTR with current and prior queries, and trained with
LHung; (iii) TraSeTR: TraSeTR with contrastive queries,
and trained with a combination of LHung and contrastive
loss Lctr. TraSeTR-NT achieves instance-level instrument
segmentation but tends to predict wrong classes for some
segments. Adding prior queries alleviates this issue as
the temporal information can be explicitly leveraged. The
contrastive query embeddings further improve the model’s
discrimination capability of largely changed instruments,
peaking the segmentation results on two metrics. As shown
in Fig. 5, contrastive query learning inherently strengthens
the encoder-decoder attention mechanism in TraSeTR, such

that the instance attention regions can be precisely found.

Fig. 5. Attention maps of TraSeTR-NC and TraSeTR. We visualize instance
embeddings whose indexes are in the matching set σ using the projection
algorithm [27]. The green box indicates the largely changed instrument.

IV. CONCLUSION AND FUTURE WORK

This paper presents a novel transformer-based mask clas-
sification approach to dynamically track instances in robotic
surgical video for accurate semantic segmentation of instru-
ments. Our method addresses the difficulties in this task,
i.e., most notably the small inter-class discrepancy and large
intra-class variations of instruments, by fully leveraging the
set prediction mechanism in the designed transformer to
produce per-instance predictions, and a identity matching
strategy to incorporate tracking cues. TraSeTR was evaluated
on three public datasets, including two RAS datasets and
one cataract surgery dataset that contains different instrument
types and surgical techniques performed in diverse platforms.
TraSeTR outperforms the state-of-the-art performance by up
to 5% mIoU and promisingly tracks the positions of instru-
ments entering or leaving the scene. The improvements can
facilitate the real-world RAS task automation, such as sutur-
ing and dissection, which greatly benefit from instance-level
perception. Ablation studies demonstrated the effectiveness
of our transformer design and the necessity of contrastive
query inductions to tolerate temporal variations. We plan
to further investigate the alternative guidance for instance-
level instrument segmentation. One potential direction is to
integrate the multi-modal data, e.g., the kinematics data (the
position, velocity of the tool tips) from the robotic systems,
into the flexible transformer architecture. We will also extend
TraSeTR into a unified framework to generate instrument
trajectory maps online, which can be applied to downstream
scenarios such as robot motion planning in RAS.
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