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Translating Images into Maps
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Abstract— We approach instantaneous mapping, converting
images to a top-down view of the world, as a translation
problem. We show how a novel form of transformer network
can be used to map from images and video directly to an
overhead map or bird’s-eye-view (BEV) of the world, in a
single end-to-end network. We assume a 1-1 correspondence
between a vertical scanline in the image, and rays passing
through the camera location in an overhead map. This lets us
formulate map generation from an image as a set of sequence-to-
sequence translations. Posing the problem as translation allows
the network to use the context of the image when interpreting
the role of each pixel. This constrained formulation, based upon
a strong physical grounding of the problem, leads to a restricted
transformer network that is convolutional in the horizontal
direction only. The structure allows us to make efficient use
of data when training, and obtains state-of-the-art results for
instantaneous mapping of three large-scale datasets, including
a 15% and 30% relative gain against existing best performing
methods on the nuScenes and Argoverse datasets, respectively.

I. INTRODUCTION

Many tasks in autonomous driving are substantially easier
from a top-down, map or bird’s-eye view (BEV). As many
autonomous agents are restricted to the ground-plane, an
overhead map is a convenient low-dimensional representation,
ideal for navigation, that captures relevant obstacles and haz-
ards. For scenarios such as autonomous driving, semantically
segmented BEV maps must be generated on the fly as an
instantaneous estimate, to cope with freely moving objects
and scenes that are visited only once.

Inferring BEV maps from images requires determining the
correspondence between image elements and their location
in the world. Multiple works guide their transformation with
dense depth and image segmentation maps [1]-[5], while
others [6]-[10] have developed approaches which resolve
depth and semantics implicitly. Although some exploit the
camera’s geometric priors [8]-[10], they do not explicitly learn
the interaction between image elements and the BEV-plane.

Unlike previous approaches, we treat the transformation
to BEV as an image-to-world translation problem, where
the objective is to learn an alignment between vertical scan
lines in the image and polar rays in BEV. The projective
geometry therefore becomes implicit to the network. For our
alignment model, we adopt transformers [11], an attention-
based architecture for sequence prediction. With its attention
mechanisms, we explicitly model pairwise interactions be-
tween vertical scanlines in the image and their polar BEV
projections. Transformers are well-suited to the image-to-
BEV transformation problem, as they can reason about
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interdependence between objects, depths and the lighting
of the scene to achieve a globally consistent representation.

We embed our transformer-based alignment model within
an end-to-end learning formulation which takes as input
a monocular image with its intrinsic matrix, and predicts
semantic BEV maps for static and dynamic classes.

The contributions of our paper are (1) We formulate
generating a BEV map from an image as a set of 1D sequence-
to-sequence translations. (2) By physically grounding our
formulation we construct a restricted data-efficient transformer
network that is convolutional with respect to the horizontal
x-axis, yet spatially-aware. (3) By combining our formulation
with monotonic attention from the language domain, we show
that knowledge of what is below a point in an image is more
important than knowledge of what is above it for accurate
mapping; although using both leads to best performance.
(4) We show how axial attention improves performance by
providing temporal awareness and demonstrate state-of-the-art
results across three large-scale datasets.

II. RELATED WORK

BEYV object detection: Early approaches detected objects
in the image and then regressed 3D pose parameters [12]—
[17]. The Mono3D [18] model instead generated 3D bounding
box proposals on the ground plane and scored each one by
projecting into the image. However, all these works lacked
global scene reasoning in 3D as each proposal was generated
independently. OFTNet [19] overcame this by generating 3D
features from projecting a 3D voxel grid into the image, and
performing 3D object detection over those features. While it
reasons directly in BEV, the context available to each voxel
depends upon its distance from the camera, in contrast, we
decouple this relationship to allow each BEV position access
to the entire vertical axis of the image.

Inferring semantic BEV maps: BEV object detection
has been extended to building semantic maps from images
for both static and dynamic objects. Early work in road
layout estimation [1] performed semantic segmentation in
the image-plane and assumed a flat world mapping to the
ground plane via a homography. However, as the flat world
assumption leads to artifacts for dynamic objects such as cars
and pedestrians, others [3]-[5] exploit depth and semantic
segmentation maps to lift objects into BEV. While such
intermediate representations provide strong priors, they require
image depth and segmentation maps as additional input.

Several works instead reason about semantics and depth
implicitly. Some use camera geometry to transform the image
into BEV [8]-[10] while others learn this transformation
implicitly [2], [6], [7]. Current state-of-the-art approaches



can be categorised as taking a ‘compression’ [8], [10] or
‘lift’ approach [9], [20] to the transformation. ‘Compression’
approaches vertically condense image features into a bot-
tleneck representation and then expand out into BEV, thus
creating an implicit relationship between an object’s depth
and the context available to it. This increases its susceptibility
to ignore small, distant objects. ‘Lift’ approaches instead
expand each image into a frustum of features to learn a depth
distribution for each pixel. However, each pixel is given the
entire image as context, potentially increasing overfitting due
to redundancies in the image. Furthermore, neither approaches
have spatial awareness, meaning they are unable to leverage
the structured environments of urban scenes. We overcome
issues with both these approaches by (1) maintaining the
spatial structure of the image to explicitly model its alignment
with the BEV-plane and (2) adding spatial awareness which
allows the network to assign image context across the ray
space based on both content and position.

Encoder-decoder transformers: Attention mechanisms
were first proposed by Bahdanau et al. [21] for machine
translation to learn an alignment between source and target
sequences using recurrent neural networks (RNNs). Transform-
ers, introduced by Vaswani et al. [11], instead implemented
attention within an entirely feed-forward network, leading to
state-of-the-art performance in many tasks [22], [23].

Like us, the 2D detector DETR [24] performs decoding in
a spatial domain through attention. However, their predicted
output sequences are sets of object detections, which have
no intrinsic order to them, and permits the use of attention’s
permutation invariant nature without any spatial awareness.
In contrast, the order of our predicted BEV ray sequences
is inherently spatial and so we need spatial awareness and
therefore permutation equivariance in our decoding.

III. METHOD

Our goal is to learn a model ® that takes a monocular
image I and produces a semantically segmented birds-eye-
view map of the scene Y. Formally, given an input image
I € R3*HXW and its intrinsic matrix C € R3%3, our model
predicts a set of binary variables Y* € RX*Z for each class
ke K:

p(Y*|I,C) = &(1,C), )

where @ is a neural network trained to resolve both semantic
and positional uncertainties.

The design of our network rests on our novel transformation
between the image-plane P! and BEV-plane PZZY. Our end-
to-end approach, as shown in Fig. la, is composed of the
following subtasks: (1) constructing representations in the
image-plane which encode semantics and some knowledge of
depth, (2) transforming the image-plane representation to BEV
and (3) semantically segmenting the BEV-representation.

A. Image-to-BEV Translation

Transforming from image to BEV requires a mapping
which determines the image pixel correspondence to BEV
polar ray. As camera geometry dictates a 1-1 correspondence
between each vertical scanline and its associated ray, we treat

the mapping as a set of sequence-to-sequence translations.
With reference to Fig. 1b, we want to find the discretized
radial depths of elements in the vertical scan line of an image,
up to 7 metres from the camera: we have an image column
ST € RH and we want to find its BEV ray SHBEV) ¢ R,
where H is the height of the column and r represents the
radial distance from the camera. This mapping can be viewed
as an assignment of semantic objects from the image-plane
to their positional slots along a ray in the BEV-plane.

We propose learning the alignment between input scanlines
and output polar rays through an attention mechanism [21].
We employ attention in two ways: (1) inter-plane attention
as shown in Fig.1b, which initially assigns features from a
scanline to a ray and (2) polar ray self-attention that globally
reasons about its positional assignments across the ray. We
motivate both uses below, starting with inter-plane attention.

Inter-plane attention: Consider a semantically segmented
image column and its corresponding polar BEV ground truth.
Here, alignment between the column and the ground truth
ray is ‘hard’, i.e. each pixel in the polar ray corresponds to
a single semantic category from the image column. Thus,
the only uncertainty that must be resolved to make this a
hard-assignment is the depth of each pixel. However, when
making this assignment, we need to assign features that aid
in resolving semantics and depth. Hence, a hard assignment
would be detrimental. Instead, we want a soft-alignment,
where every pixel in the polar ray is assigned a combination of
elements in the image column, i.e. a context vector. Concretely,
when generating each radial element Sf’ (BEV), we want to
give it a context c; based on a convex combination of elements
in the image column S’ and the radial position r; of the
element Sf (BEV) along the polar ray. This need for context
assignment motivates our use of soft-attention between the
image column and its polar ray, as illustrated in Fig. 1.

Formally, let h € R¥*C represent the encoded “memory’
of an image column of height H, and let y € R"*¢ represent
a positional query which encodes relative position along a
polar ray of length r. We generate a context ¢ based on
the input sequence h and the query y through alignment
o between elements in the input sequence and their radial
position. First, the input sequence h and positional query y
are projected by matrices Wg € RE*P and Wy € RE*P
to the corresponding representations () and K:

Qly:) =yiWq
Following common terminology, we refer to ¢ and K
as ‘queries’ and ‘keys’ respectively. After projection, an
unnormalized alignment score e; ; is produced between each
memory-query combination using the scaled-dot product [11]:

g = QLK) .

The energy scalars are then normalized using a softmax to
produce a probability distribution over the memory:

~exp(eiy)
=
Zk:l exp(ei,k)
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(A) Our model architecture. The Frontend extracts spatial features at multiple scales. Encoder-decoder transformers translate spatial features

from the image to BEV. An optional Dynamics Module uses past spatial BEV features to learn a spatiotemporal BEV representation. A BEV Segmentation
Network processes the BEV representation to produce multi-scale occupancy grids. (B) Our inter-plane attention mechanism. In our attention-based model,
vertical scan lines in the image are passed one by one to a transformer encoder to create a ‘memory’ representation which is decoded into a BEV polar ray.

Finally, the context vector is computed as a weighted sum of
K:

H
C; = Zam—K(hj). (5)
j=1

Generating the context this way allows each radial slot r;
to independently gather relevant information from the image
column; and represents an initial assignment of components
from the image to their BEV locations. Such an initial
assignment is analogous to lifting a pixel based on its depth.
However, it is lifted to a distribution of depths and thus
should be able to overcome common pitfalls of sparsity and
elongated object frustums. This means that the image-context
available to each radial slot is decoupled from its distance
to the camera. Finally, to generate BEV feature Sf (BEV)
at radial position r;, we globally operate on the assigned
contexts for all radial positions ¢ = {cy, ..., ¢, }:

GHBEV)

= g(c), (6)

where ¢(.) is a nonlinear function reasoning across the entire
polar ray. We describe its role below.

Polar ray self-attention: The need for the non-linear
function g(.) as a global operator arises out of the limi-
tations brought about by generating each context vector c;
independently. Given the absence of global reasoning for
each context c¢;, the spatial distribution of features across the
ray is unlikely to be congruent with object shape, locally or
globally. Rather, this distribution may only represent scattered
suggestions of object-part positions. Therefore, we need to
operate globally across the ray to allow the assigned scanline
features to reason about their placement within the context
of the entire ray, and thus aggregate information in a manner
that generates coherent object shapes.

Global computation across the polar ray is computed much
like soft-attention outlined in Eq. (2) - (5), except that the
self-attention is applied to the ray only. Eq. (2) is recalculated
with a new set of weight matrices with inputs to both equations
replaced with the context vector c;.

Extension to transformers: Our inter-plane attention can
be extended to attention between the encoder-decoder of
transformers by replacing the key K(h;) in Eq. (5) with
another projection of the memory h, the ‘value’. Similarly,
polar-ray self-attention can be placed within a transformer-

decoder by replacing the key in Eq. (5) with a projection of
the context c; to represent the value.

B. Infinite lookback monotonic attention

Although soft-attention is sufficient for learning an align-
ment between any arbitrary pair of source-target sequences,
our sequences exist in the physical world where the alignment
exhibits physical properties based on their spatial order-
ing. Typically, in urban environments, depth monotonically
increases with height i.e, as you move up the image,
you move further away from the camera. We enforce this
through monotonic attention with infinite lookback [25]. This
constrains radial depth intervals to observe elements of the
image column that are monotonically increasing in height
but also allows context from the bottom of the column (or
equivalently, previous memory entries).

Monotonic attention (MA) was originally proposed for
computing alignments for simultaneous machine translation
[26]. However, the ‘hard’ assignment between source and
target sequence means important context is neglected. This
led to the development of MA with infinite lookback (MAIL)
[25], [27], [28], which combined hard MA with soft-attention
that extends from the hard assignment to the beginning of the
source sequence. We adopt MAIL as a way of constraining
our attention mechanism to potentially prevent overfitting by
ignoring the redundant context in the vertical scan line of an
image. The primary objective of our adoption of MAIL is
to understand whether context below a point in an image is
more helpful than what is above.

We employ MAIL by first calculating a hard-alignment
using monotonic attention. This makes a hard assignment
of context ¢; to an element of the memory h;, after which
a soft-attention mechanism over previous memory entries
hy,...,h;_; is applied. Formally, for each radial position y; €
y along the polar ray, the decoder begins scanning memory
entries from index j = t;_1, where ¢; is the index of the
memory entry chosen for position y;. For each memory entry,
it produces a selection probability p; ;, which corresponds
to the probability of either stopping and setting ¢; = j and
¢i = hy,, or moving onto the next memory entry j + 1.
As hard assignment is not differentiable, training is instead
carried out with respect to the expected value of c;, with the
monotonic alignments o ; calculated as follows:

pi,; = sigmoid(Energy(y;, h;)), (7



Qi = Dij <(1 *Pi,j—l)M + Oéi—l,j) ; (®)
Dij—1
where the Energy function is calculated in the same manner
as Eq. (3). Assuming monotonic attention stops at t;, the
infinite lookback strategy first computes energies ¢; j, using
equation Eq. 3 for k € 1,2, ...,¢;. The attention distribution
over the allowed states is calculated as follows:

k=j

ai,kexp(ei,k)
k
> 1—1 exp(ein)

This effectively represents a distribution over image-elements
which lie below a point in the image; to calculate a distribution
over only what lies above a point in the image, the image
column can be flipped. The context vector is calculated similar
to inter-plane attention, where ¢; = Zflzl Bi i K (hj).

Bij &)

C. Model architecture

We build an architecture that facilitates our goal of
predicting a semantic BEV map from a monocular image
around this alignment model. As shown in Fig. 1, it contains
three main components: a standard CNN backbone which
extracts spatial features in the image-plane, encoder-decoder
transformers to translate features from the image-plane to
BEV and finally a segmentation network which decodes BEV
features into semantic maps.

2D Multi-scale feature learning in P’: Reconstructing
an image in BEV requires representations which can detect
scene elements at varying depths and scale. Like prior object
detection methods [8], [10], [29], we handle this scale variance
using a CNN backbone with a feature pyramid to produce
feature maps ft{S € REXPsxws at multiple scales u € U.

1D Transformer encoders in P’ : This component encodes
long-range vertical dependencies across the input features
through self-attention, using an encoder for each scale u of
features (second left block of Fig. 1a). Each scale of features
ft{ . 1s first reshaped into its individual columns, creating
w,, sequences of length h, and dimension C. Each encoder
layer has a standard architecture consisting of multi-head
attention and a feed forward network. Given the permutation
invariance of the transformer, we add fixed 1D sinusoid

positional encodings [11] to the input of each attention layer.
c Rwuxhuxc"

The U encoders each produce a memory h{yu

1D Transformer decoders in PP®V: This component
generates independent sequences of BEV features along a
polar ray through multi-head attention across the encoder
memory. As shown in the second left block of Fig. 1, there is
one transformer decoder for each transformer encoder. Every
encoded image column h? € R"«*¢ s transformed to a BEV
polar ray f*(BEV) ¢ R™*C where r, is the radial distance
along the ray. Given the desired output sequence of length r,,
the decoder takes in r,, positional embeddings, which we refer
to as positional queries. These are r, unique embeddings
with fixed sinusoid positional information added to them, just
like our encoder above. When replacing the encoder-decoder
multi-head soft-attention with monotonic attention, each head
in the decoder is replaced with a monotonic attention head

from Eq. (8). The U decoders each output w,, BEV sequences
of length r,, along the polar ray, producing a polar encoding
fABEV) ¢ RwwxmuxC Similar to prior work which builds
stixel representations from an image [30], [31], each image
column in our model corresponds to an angular coordinate in
the polar map. Finally we concatenate along the ray to obtain
a single 2D polar feature map and convert to a rectilinear
grid, to create our BEV representation fF7V € RE*Z*X,

Our transformer encoder and decoder use the same set of
projection matrices for every sequence-to-sequence translation,
giving it a structure that is convolutional along the z-axis
and allowing us to make efficient use of data when training.
We constrain our translations to 1D sequences as opposed to
using the entire image to make learning easier, a decision we
analyze in section IV-A.

Polar-adaptive context assignment: The positional en-
codings applied to the transformer so far have all been 1D.
While this allows our convolutional transformer to leverage
spatial relationships between height in the image and depth, it
remains agnostic to polar angle. However, the angular domain
plays an important role in urban environments. For instance,
images display a broadly structured distribution of object
classes across their width (e.g. pedestrians are typically only
seen on sidewalks, which lie towards the edges of the image).
Furthermore, object appearance is also structured along the
width of the image as they are typically orientated along
orthogonal axes and viewing angle changes its appearance.
To account for such variations in appearance and distribution
across the image, we add additional positional information by
encoding polar angle in our 1D scanline-to-ray translations.

Dynamics with axial attention in PZFV: This component
incorporates temporal information from past estimates to
build a spatiotemporal BEV representation of the present.
As the representations built by the previous components
are entirely spatial, we add a simple component based on
axial attention to make the model temporally aware. The
placement of this optional module can be seen in Fig. la.
We obtain BEV features for multiple timesteps, creating a
representation fZFY € RTXCXZxX We apply axial-attention
across the spatial and temporal axes, giving every pixel at
every timestep axial context from the other timesteps. Our
temporal aggregation means the features of any timestep now
contain dynamics across the sequence, and the module can
use any of these features in its forward pass. This module is
optional as it builds a spatiotemporal representation. It can
be omitted when constructing a purely spatial model.

Segmentation in PP#V: To decode our BEV features into
semantic occupancy grids, we adopt a convolutional encoder-
decoder structure used in prior segmentation networks [10],
[32]. The aggregated module structure (right block of Fig. 1a),
takes BEV features f5EV € RE*Z>X and outputs occupancy
grids mPEY e Relassesxzuxzu for scales u € U. Moving
from the 1D attention mechanisms of our transformer to the
two-dimensional locality of convolutions provides contextual
reasoning across the horizontal z-axis which helps stitch
together potential discontinuities between adjacent polar rays
and their subsequent rectilinear resampling.



Loss in PPV As the training signal provided to the
predicted occupancy grids must resolve both semantic and
positional uncertainties, we use the same multi-scale Dice
loss as [10]. At each scale u, the mean Dice Loss across
classes K is:

K N <k, k
cuzl—%Z—i;}j b (10)
| |k:1 Y Uity te
where y¥ is the ground truth binary variable grid cell, §¥ the
predicted sigmoid output of the network, and € is a constant
used to prevent division by zero.

IV. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of treating the image-to-BEV
transformation as a translation problem on the nuScenes
dataset [33]; with ablations on lookback direction in mono-
tonic attention, the utility of long-range horizontal context and
the effect of polar positional information. Finally, we compare
our approach to current state-of-the-art approaches on the
nuScenes [33], Argoverse [34] and Lyft [35] datasets.

Dataset: The nuScenes dataset [33] consists of 1000 20-
second clips captured across Boston and Singapore, annotated
with 3D bounding boxes and vectorized road maps. We
follow [8]’s data generation process, object classes and
training/validation splits to allow fair comparison. We use
nuScenes for our ablation studies as it is considerably larger
and contains more object categories.

Implementation: Our frontend uses a pretrained ResNet-
50 [36] with a feature pyramid [37] on top. BEV feature
maps built by the transformer decoder have a resolution of
100x 100 pixels, with each pixel representing 0.5m? in the
world. Our spatiotemporal model takes a 6Hz sequence of 4
images, where the final frame is the time step we make the
prediction for. Our largest scale output is 100x 100 pixels,
which we upsample to 200x200 for fair evaluation with the
literature. We train our network end-to-end with an Adam
optimizer, batch size 8 and initial learning rate of 5e—5,
which we decay by 0.99 every epoch for 40 epochs.

A. Ablation studies

Which way to look? In Table II (top) we compare soft-
attention (looking both ways), monotonic attention with
lookback towards the bottom of the image (looking down)
and monotonic attention with lookback towards the top of the
image (looking up). The results indicate looking downwards
from a point in the image is better than looking upwards.
This is consistent with how humans try to determine the
distance of an object in an urban environment — along with
local textural clues of scale, we make use of where the object
intersects the ground plane. The results also show that looking
in both directions further increases accuracy, making it more
discriminative for depth reasoning.

Long-range horizontal dependencies: As our image-to-
BEV transformation is carried out as a set of 1D sequence-
to-sequence translations, a natural question is what happens
when the entire image is translated to BEV (similar to ‘lift’
approaches [9], [20] ). Given the quadratic computation time

and memory required to produce attention maps, this is
prohibitively expensive. However, we can approximate the
contextual benefits of using the entire image by applying
horizontal axial-attention on the image-plane features before
the transformation. With axial-attention across the rows of the
image, the pixels in the vertical scanline now have long-range
horizontal context, after which we provide long-range vertical
context as before by translating between 1D sequences.

Table II (middle) shows that incorporating long-range
horizontal context does not benefit the model and its impact
is slightly detrimental. This suggests two things. Firstly, every
transformed ray does not need information from the entire
width of the input image, or rather, the long-range context
does not provide any additional benefit over the context that
has already been aggregated through the convolutions of
our frontend. This indicates that performing the translation
using the entire image would not increase model accuracy
over the constrained formulation of our baseline. Finally, the
decrease in performance from the introduction of horizontal
axial-attention is possibly a sign of the difficulty in training
using attention for sequences which are the width of the
image; we should expect that using the entire image as the
input sequence would be much harder to train.

Polar-agnostic vs polar-adaptive transformers: Table II
(bottom) compares a polar-agnostic (Po-Ag) transformer to its
polar-adaptive (Po-Ad) variants. A Po-Ag model has no polar-
positional information, Po-Ad in the image-plane involves
polar encodings added to the transformer encoder while for the
BEV-plane this information is added to the decoder. Adding
polar encodings to any one plane provides similar benefit
over an agnostic model, with dynamic classes increasing the
most. Adding it to both planes increases this further, but has
the largest impact on static classes.

B. Comparison to state-of-the-art

Baselines: We compare against a number of prior state-of-
the-art methods. We begin our comparison against ‘compres-
sion’ approaches [8], [10] on nuScenes and Argoverse using
the train/val splits of [8]. We then compare against the ‘lift’
approach of [9], [20] on nuScenes and Lyft.

In Table I, our spatial model outperforms the current state-
of-the-art compression approach of STA-S [10] with a mean
relative improvement 15%. It is the smaller dynamic classes
in particular on which we show significant improvement, with
buses, trucks, trailers and barriers all increasing by a relative
35-45%. This is supported by our qualitative results in Fig. 2,
where our models show greater structural similarity to the
ground truths and a better sense of shape. This difference
can be partly attributed to the fully-connected layer (FCL)
used in compression: when detecting small, distant objects, a
large portion of the image is redundant context. Expecting the
weights of the FCL to ignore redundancies to maintain only
the small objects in the bottleneck is a challenge. Furthermore,
objects such as pedestrians are often partially occluded by
vehicles. In such cases, the FCL would be inclined to ignore
the pedestrian and instead maintain the vehicle’s semantics.
Here the attention method shows its advantages as each radial



TABLE I
IoU(%) ON THE NUSCENES VALIDATION SPLIT AND BASELINE RESULTS OF [8].

Method Drivable  Crossing ~ Walkway  Carpark Bus Bike Cons.Veh. Motorbike ~ Trailer ~ Truck  Ped. Cone  Barrier | Mean
VED [6] 54.7 12.0 20.7 13.5 0.0 0.0 0.0 0.0 7.4 0.2 0.0 0 4.0 8.7
VPN [2] 58.0 27.3 29.4 12.3 20.0 44 255 4.9 5.6 16.6 17.3 7.1 4.6 10.8 17.5
PON [8] 60.4 28.0 31.0 18.4 20.8 9.4 24.7 12.3 7.0 16.6 16.3 8.2 5.7 8.1 19.1
STA-S [10] 71.1 31.5 32.0 28.0 228 146 346 10.0 7.1 11.4 18.1 7.4 5.8 10.8 21.8
Our Spatial 72.6 36.3 324 30.5 325 151 374 13.8 8.1 15.5 24.5 8.7 74 15.1 25.0
STA-ST [10] 70.7 31.1 324 335 29.2 12.1 36.0 12.1 8.0 13.6 22.8 8.6 6.9 14.2 23.7
Our Spatiotemp. 74.5 7.6 14.7 25.7

Ground truth

Image

VPN [2]

PON [8]

Drivable [l
Ped. crossing [l
Walkway [l
Carpark [l
Car
Truck [l
sus [l
Trailer [l
Constr. veh. [l
Pedestrian
Motorcycle [l
Bicycle [l
Traffic cone [l
Barrier [l

STA-S [10] Our spatial Our spatiotemporal

Fig. 2. Qualitative results on the nuScenes validation set of [8]. We compare against baseline results of prior work reported in [8] and follow their colour
scheme. For fair comparison, we apply the ground truth visibility mask (black) to the predicted images as was done in [8].

TABLE II

IoU(%) FOR ABLATION STUDIES.
Model Static classes ~ Dynamic classes ~ Mean
Looking down 29.5 15.8 22.1
Looking up 29.9 171 23.0
Looking both ways 324 194 25.0
Baseline 324 194 25.0
Baseline w/ h. context 29.4 17.3 22.9
Po-Ag 30.3 18.1 237
Po-Ad (image-plane) 30.9 19.1 242
Po-Ad (BEV-plane) 313 19.2 24.3
Po-Ad (both planes) 324 194 25.0

depth can independently attend to the image — so the further
depths can look at the pedestrian’s visible body, while depths
before can attend to the vehicle. Our results on the Argoverse
dataset in Table III demonstrate similar patterns, where we
improve upon PON [8] by a relative 30%.

In Table IV we outperform LSS [9] and FIERY [20] on
nuScenes and Lyft (FIERY [20] uses the ‘lift’ approach of
[9]). A true comparison on Lyft is not possible as it doesn’t
have a canonical train/val split and we were unable to acquire
those used by [9]. While we used splits of similar sizes
to [9], the exact scenes are unknown. As a °lift’ approach
bears some similarity to our translation approach in that the
network is able to select how to distribute image context across
its polar ray, the difference in performance here can likely
be attributed to our constrained, spatially-aware translations
between scanlines and rays. One of the avenues for future work
is improving localisation accuracy for distant objects, and their
false negatives. Finally, our approach is easily transferrable

TABLE III
IoU(%) ON THE ARGOVERSE VALIDATION SPLIT OF [8].
Driv.  Veh. Ped. L.Veh. Bic. Bus. Trail. Mot. | Mean
PON [8] | 654 314 74 11.1 3.6 11 0.7 5.7 17.0
Ours 759 358 5.7 14.9 37 302 122 26 22.6
TABLE IV
IoU(%) FOR SPATIAL (S)/SPATIOTEMPORAL (ST) METHODS.
nuScenes Lyft
Driv. Car Veh. | Driv. Car  Veh.
(S) LSS 72.9 32.0 32.0 - 43.1 446
(S) FIERY - 37.7 - - - -
(S) Ours 78.9 399 389 | 82.0 459 454
(ST) FIERY - 39.9 -
(ST) Ours 80.5 413 40.2

to indoor mobile robotics applications once ground truth has
been collected to train the models.

V. CONCLUSION

We proposed a novel use of transformer networks to map
from images and video sequences to an overhead map or bird’s-
eye-view of the world. We combine our physical-grounded and
constrained formulation, with ablation studies that make use
of progress in monotonic attention to confirm our intuitions
whether context above or below a point is more important for
this form of map generation. Our novel formulation obtains
state-of-the-art results for instantaneous mapping of three
well-established datasets.
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