
Efficient and High-quality Prehensile Rearrangement
in Cluttered and Confined Spaces

Rui Wang, Yinglong Miao, Kostas E. Bekris

Abstract— Prehensile object rearrangement in cluttered and
confined spaces has broad applications but is also challenging.
For instance, rearranging products in a grocery shelf means that
the robot cannot directly access all objects and has limited free
space. This is harder than tabletop rearrangement where ob-
jects are easily accessible with top-down grasps, which simplifies
robot-object interactions. This work focuses on problems where
such interactions are critical for completing tasks. It proposes a
new efficient and complete solver under general constraints for
monotone instances, which can be solved by moving each object
at most once. The monotone solver reasons about robot-object
constraints and uses them to effectively prune the search space.
The new monotone solver is integrated with a global planner to
solve non-monotone instances with high-quality solutions fast.
Furthermore, this work contributes an effective pre-processing
tool to significantly speed up online motion planning queries
for rearrangement in confined spaces. Experiments further
demonstrate that the proposed monotone solver, equipped with
the pre-processing tool, results in 57.3% faster computation
and 3 times higher success rate than state-of-the-art methods.
Similarly, the resulting global planner is computationally more
efficient and has a higher success rate, while producing high-
quality solutions for non-monotone instances (i.e., only 1.3 addi-
tional actions are needed on average). Videos of demonstrating
solutions on a real robotic system and codes can be found at
https://github.com/Rui1223/uniform object rearrangement.

I. INTRODUCTION

Rearranging objects in confined spaces are often useful in
logistic and domestic domains such as rearranging products
in warehouse shelves and retrieving food from a packed
refrigerator. At the same time, however, rearrangement in
such confined spaces is more challenging than less confined
setups, such as rearranging objects on a tabletop, which
exhibit fewer constraints and allow for increased efficiency
and providing desirable properties. In particular, tabletop
settings allow the robot to reach the majority of objects at any
point in time by using top-down grasps and then lift them
above the other objects. This allows ignoring robot-object
as well as object-object collisions during the rearrangement
process. As a result, the only hard constraints arise from the
potential overlap between the start and goal poses of objects.

Recent work [1] studied the tabletop rearrangement of
uniformly-shaped cylinders, where object-object collisions
cannot be ignored. It provided an efficient and complete
monotone solver DFSDP based on dynamic programming
that outperformed backtracking (e.g., mRS [2]). In monotone
instances, all objects can be moved at most once, while in

The authors are with the Department of Computer Science, Rutgers
University, NJ, USA. Email: {rw485, ym420}@rutgers.edu and
kb572@cs.rutgers.edu. The work is supported in part by an NSF
HDR TRIPODS award 1934924.

Fig. 1. (left) An example rearrangement problem in a confined space.
(right) The problem is challenging even with a few objects as the swept
volume of the arm’s motion can easily lead to collisions.

non-monotone instances, some objects have to be moved
first to an intermediate position, i.e., a buffer. The insight
of DFSDP is that instead of searching the space of all object
permutations (O(n!)) to solve monotone instances, it is
sufficient to search the space of object arrangements (O(2n)).

The first insight of the current paper is that even in the
reduced arrangement space, there is a lot of redundancy and
some branches of the search tree will not lead to a solution
as they violate constraints enforced in cluttered and confined
spaces. If these branches can be detected beforehand, they
can be pruned to increase efficiency. Consequently, it is
possible to improve upon the efficiency of DFSDP while main-
taining its completeness (which relies on the completeness
of the underlying motion planner).

In addition, the current work focuses on the harder setups
(Fig. 1) where the arm must carefully maneuver to avoid both
robot-object and object-object collisions. These constraints
significantly increase computational cost due to more expen-
sive collision checking. They also imply that the underlying
motion planner can be at best probabilistically complete. This
work aims to improve upon the efficiency of the motion
planner, which significantly impacts overall performance
since it is called multiple times by the rearrangement solvers.

This work also addresses non-monotone instances by
integrating the monotone solver with a global planner, which
is a probabilistically complete non-monotone solver [1] that
explores the placement of objects in buffers. The setup here
does not allow for buffers outside of the confined, cluttered
workspaces, which is the hard case. In summary, this work
focuses on rearranging uniformly-shaped cylindrical objects
in confined, cluttered spaces and contributes:
1. A more efficient constraint informed monotone solver,
which detects branches of the underlying search tree that can
be pruned without loss of completeness, i.e., the method is
complete, if the underlying motion planner is complete. The
proposed monotone solver is 57.3% faster and provides 3
times higher success rate than two leading alternatives with

ar
X

iv
:2

11
0.

02
81

4v
2

 [
cs

.R
O

]
 1

8
M

ar
 2

02
2

https://github.com/Rui1223/uniform_object_rearrangement

similar completeness guarantees: mRS [2] and DFSDP [1].
2. A high-quality non-monotone global planner, which
uses the monotone solver as a local planner to effectively
solve non-monotone instances. The proposed global planner
with the proposed monotone solver integrated has a much
higher success rate and efficiency than counterparts while
maintaining an equal level of high quality, i.e., the solutions
need only 1.3 buffers on average.
3. An effective pre-processing tool, which improves the
efficiency of motion planning in cluttered rearrangement.
Given a workspace discretization, the approach stores offline
on a roadmap the sets of possible object target locations that
result in a collision with the arm to avoid expensive online
collision checking. The tool speeds up rearrangement solvers
(proposed and compared) 49.1% on average.

II. RELATED WORK

Object rearrangement relates to Navigation or Manipula-
tion Among Movable Obstacles (NAMO [3]–[6] and MAMO
[2], [7] respectively), which are computationally hard [8]–
[12] and more challenging in dynamic and uncertain environ-
ment [13]–[16]. It also relates to Task and Motion Planning
(TAMP) where a hierarchy is proposed to combine a high-
level task planner and a low-level motion planner [17], [18].
This work generally follows such hierarchy but identifies
task-specific constraints to effectively prune the action space
so as to achieve improved efficiency and scalability.

Even for tabletop rearrangement, the problem is hard to
solve optimally [19]. It is modeled as optimal matching over
a directed graph for two arms [20], or Answer Set Program-
ming (ASP) for cluttered surfaces [21], [22]. Minimizing
buffer usage solves non-monotone problems more efficiently
[23], [24]. Monte Carlo Tree Search (MCTS) [25]–[27] and
deep learning [28], [29] have been applied on rearrangement.
The above methods may not be always transferable to the
harder, confined setup considered here.

A fundamental strategy to solve monotone problems in
the general case, including confined setups, is backtracking
search [2], which is complete but does not scale well. An
alternative involves constructing a dependency graph [30],
which describes the constraints between objects. If the graph
has no cycles, the problem is monotone and topological
sorting provides the solution. In principle, one has to consider
all possible arm paths for picking and transferring an object
to generate the true dependency graph, which can be compu-
tationally intractable. Minimum Constraint Removal (MCR)
paths [31] have been used to construct an approximation of
the dependency graph with few constraints in practice [32].
Once a monotone solver is available, it can be integrated
into a global planner for solving more general, non-monotone
problems [32], [33]. This work provides an alternative way to
reason about constraints and aims for high quality solutions
and improved efficiency, without losing completeness.

A closely related problem is object retrieval. A fast and
complete algorithm has been proposed to determine obstacles
to be relocated before retrieving a target [34], with an
extension that studies where to relocate obstacles [35]. Often

the objective is to minimize the number of actions until the
target is accessible [36], [37]. Additional challenges include
low visibility and observability due to object occlusions [38]–
[41]. In the problem considered here, every object has a target
location, which is a more constrained objective.

Prehensile actions require good knowledge of objects’ 6D
pose [42]. Non-prehensile actions have been explored as they
can simultaneously move multiple objects [43]–[46], quickly
declutter a scene and help minimize uncertainty [47] under
a conformant probabilistic planning formulation [48], [49].
Though predicting the effect of pushing actions has been
studied [50], [51], they are not as predictable as prehensile
ones. In tasks where objects need to be safely placed (e.g.,
not dropping objects), prehensile actions are preferred.

III. PROBLEM FORMULATION

Consider a cubic workspace W ⊂ R3 with n movable
uniformly-sized cylinders O = {o1, · · · , on}, each of which
can acquire a position p ∈ R2 by resting stably at the bottom
surface of the workspace. An arrangement α ∈ A is an
assignment of O to a set of object positions {p1, · · · , pn},
where A is the arrangement space. α[oi] = pi indicates that
object oi is at position pi given the arrangement α.

A robot arm M is tasked to transfer one object at a time
and can access W from only one side of the cubic space.
The arm acquires a configuration q ∈ Q where Q is the
C-space of the arm. The swept volume of the robot at q is
denoted as V (q). If the arm is grasping an object, the swept
volume includes the object’s volume given the grasp. q(α[oi])
defines a configuration where the arm can grasp oi at position
α[oi]. A manipulation path πi : [0, 1] → Q for an object oi
corresponds to a sequence of configurations that move object
oi from one position to another. Such a path is valid if no
collision arises between

⋃︁1
t=0 V (πi(t)) with the boundary

of W (excluding the open side) and the static obstacles. A
manipulation path πi can be decomposed into a transit path
where the arm is approaching oi to be picked at α[oi] and
a transfer path where the arm is transferring oi to a new
position p′i. This will result in a new arrangement α′ where
α′[oi] = p′i and ∀j ∈ {1, · · · , n}, j ̸= i : α′[oj] = α[oj].

Based on these notations, the problem is defined as: given
an initial arrangement αI and a final arrangement αF of
n objects O, find a sequence of valid manipulation paths
Π = (π0, π1, . . . ,), which moves all objects from αI to αF .
A problem is monotone if the sequence Π consists of at
most one manipulation path for each object. Otherwise, the
problem is non-monotone and at least one object needs to be
moved to a buffer before being moved to its goal.

Assumptions: The objects are cylinders of uniform, known
size. Since cylinders are symmetric and the height (z value) is
known, the planar position (x, y) ∈ R2 of an object’s center
is sufficient to generate grasps for picking and placing the
object by using an inverse kinematic (IK) solver. For motion
planning and collision checking during the manipulation
trajectory, however, the 6D poses of objects are used in order
to define their swept volume in the 3D workspace.

IV. METHODOLOGY

The solution sequence Π can be obtained by concatenating
multiple manipulation paths, the order of which is selected
by a rearrangement task planner. Each manipulation path is
the result of calling a motion planner. The task planner itself
is hierarchical, where a monotone solver attempts first to
connect monotonically αI and αF . If it fails, it returns a set
of reachable arrangements from αI as a partial solution to be
used by the global planner. Then the global planner explores
the selection of objects to be moved to buffers. Therefore, the
solution quality is determined by all these three components:
the global planner, the local monotone solver and the lower-
level motion planner. This section covers all three aspects,
starting with the monotone solver.

Fig. 2. Two examples of the robot arm moving object o4 (blue shaded
circle). For simplicity of illustration, only the goal positions of other objects
are shown (dashed circles). (left) The goal position of o1 makes it impossible
to arrange o4 after the placement of o1. (right) Similarly, the three arm
configurations for grasping o4 intersect with goal positions of {o2}, {o1}
and {o3, o5}, respectively.

A. Efficient and Complete Local Monotone Solver:
Constraint Informed Rearrangement Search (CIRS)

Two methods which solve monotone problems are back-
tracking search, referred to here as mRS [2], with time
complexity O(n!) and dynamic programming, referred to
here as DFSDP [1], with time complexity O(2n). They are
complete if the underlying motion planner is also complete.

Fig. 2(a) shows an example where the goal of o1 hinders
the rearrangement of o4. A search process is demonstrated in
Fig. 3(a). The red arrows indicate the inability of rearranging
o4 after o1, which is instantly detected upon arranging o4.
However, such inability should be detected in an earlier
stage when arranging o1 to its goal while o4 is at its
current position, as all branches afterwards will result in
failure. Therefore, the search should not consider moving
o1 at any arrangement states ˜︁A = {α | α[o4] = αC [o4]},
where αC represents the current arrangement state. Given
this observation, if such invalid action can be detected at ˜︁A,
the search tree can be significantly pruned, as in Fig. 3(b).

A problem can be more involved as shown in Fig. 2(b)
where each configuration for grasping o4 intersects with the
goals of a set of objects. Denote Cj

4 as the colliding object
set, where the goals of these objects hinder the grasping
of o4 for the j-th configuration. In this example, C1

4 =
{o2}, C2

4 = {o1}, C3
4 = {o3, o5}. The cross product of the

colliding object sets C1
4 × C2

4 × C3
4 results in two constraint

sets c1 = {o1, o2, o3} and c2 = {o1, o2, o5}, indicating that
if objects in {o1, o2, o3} or {o1, o2, o5} are all moved to their
goals before o4, the move of o4 will fail.

Therefore, each constraint set can elicit a set of arrange-
ments ˜︁A where moving certain object becomes invalid. Take

𝑜𝑜1

𝑜𝑜2

𝑜𝑜3

𝑜𝑜4

𝑜𝑜4 𝑜𝑜2

𝑜𝑜4

𝑜𝑜4

𝑜𝑜4

𝑜𝑜2

𝑜𝑜1

𝑜𝑜3

𝑜𝑜4

𝑜𝑜4

𝑜𝑜3

𝑜𝑜1

𝑜𝑜4

𝑜𝑜4

𝑜𝑜1

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭

𝑜𝑜1 𝑜𝑜2

𝑜𝑜1 𝑜𝑜3

𝑜𝑜1 𝑜𝑜4

𝑜𝑜1

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭
(a) (b)

Fig. 3. (a) A search tree that considers the sequence of actions to connect
αI to αF (yellow circles) for the problem in Fig. 2(a). Each node (green or
yellow circles) represents an arrangement α and each edge (arrows) indicates
the transition between nodes. Black arrows indicate successful transitions
and red ones unsuccessful. The solution is found as: o2 → o3 → o4 → o1.
(b) A search tree after enforcing the constraint of not moving o1 while o4
is at the start. Cyan arrows indicate the pruned actions.

c1 = {o1, o2, o3} as an example, from which it is true that
moving o1 is invalid at any arrangement states˜︁A = {α | α[o4] = αC [o4], α[o2] = αF [o2], α[o3] = αF [o3]}
Similar observations can be made on moving o2 and o3.

It now becomes clear that it is beneficial to build a struc-
ture Ainvalid : O → ˜︁A to store all invalid actions of moving
an object o ∈ O at an arrangement state α ∈ ˜︁A. Ainvalid

is then used to prune the search tree by disallowing invalid
actions. The two examples are generalized as the Constrained
Informed Rearrangement Search (CIRS) approach, which is
the monotone solver and shown in Alg. 1 with two steps
(1) detection of invalid actions upon arrangements before
the search (line 1) and (2) a search process with informed
constraints obtained from step 1 (line 2).

Algorithm 1: CIRS(αC , αF , O, K)
1 Ainvalid = DETECTINVALIDITY(αC , αF ,O,K)
2 return CIDFSDP(∅, αC , αF , Ainvalid)

Step 1 is described in Alg. 2, which constructs Ainvalid.
For each object oi (line 3), K grasping configurations
[q1, · · · , qK] are generated for moving oi from αC to αF

(line 4). Here qk is short for qk(αC [oi]) or qk(αF [oi])
representing the kth arm configuration either to pick oi at
αC , or to place oi at αF . As mentioned in the example
(Fig. 2(b)), the cross product of all colliding object sets
{C1

i × · · · × CK
i } gives all constraint sets (line 5), each of

which (denoted as cj) elicits a set of arrangements ˜︁A (line
6) to be added to Ainvalid (line 7).

Algorithm 2: DETECTINVALIDITY(αC , αF , O, K)
1 for oi ∈ O do
2 Ainvalid[oi] = ∅
3 for oi ∈ O do
4 [q1, · · · , qK], [C1i , · · · , CKi] =

GENERATEARMCONFIGURATIONS(αC , αF ,K)
5 for cj ∈ {C1i × · · · × CKi } do
6 ˜︁A = ELICITARRANGEMENTS(cj)
7 Ainvalid.ADD(˜︁A)
8 return Ainvalid

Once Ainvalid is constructed, step 2 is performed for
searching the solution for the monotone problem αC → αF ,

which is shown in Alg. 3. CIDFSDP is a search method
recursively solving a subproblem: αC → αF , which is built
on top of the original DFSDP [1]. It grows a search tree T
in the arrangement space A from αC to αF . Every time an
object yet to move o is selected at αC (line 1), Alg. 3 checks
if αC is one of the arrangements that invalidates the action of
moving object o (line 2). If it does, Alg. 3 will not consider
moving o at αC and moves on to another object (line 2).
Otherwise, moving o is valid. If the resulting αnew (line 3-
4) after moving o has not been explored before (line 5), a
motion planner is called to check the feasibility of moving o
from αC [o] to αF [o] (line 6). If a feasible π is found (line 7),
the search tree will expand to αnew (line 8). If the problem is
not solved yet (line 9), a recursive process will be triggered
to solve a subproblem αnew → αF (line 10). If the problem
is solved (line 11), the search tree T is returned, from which
the path sequence Π can be obtained. Otherwise, a subtree
is returned as a partial solution (line 12).

Algorithm 3: CIDFSDP(T , αC , αF , Ainvalid)
1 for o ∈ O\O(αC) do
2 if αC ∈ Ainvalid[o] then continue
3 αnew[O\{o}] = αC [O\{o}]
4 αnew[o] = αF [o]
5 if αnew /∈ T then
6 π ← MOTIONPLANNING(αC , αnew, o)
7 if π ̸= ∅ then
8 T [αnew].parent← αC

9 if αnew ̸= αF then
10 T = CIDFSDP(T , αnew, αF , Ainvalid)
11 if αF ∈ T then return T
12 return T

The key feature of the monotone solver is that it checks
whether it is valid to move an object o at the current
arrangement αC (line 2). If it is not, Alg. 3 will not generate
a new arrangement αnew. Therefore, no time will be wasted
on growing a useless subtree rooted at such αnew, which
gives significant speed-ups as shown in section V.
Proposition 1. CIRS is complete for any monotone rear-
rangement problem given a generalized constraint checker
and a complete motion planner.
Proof. It suffices to show that if the problem has at least
one solution, CIRS will return one. W.l.o.g, denote one
of the solutions as Π = (π1, . . . , πn) corresponding to an
object arrangement order [o1, . . . , on]. CIRS only prunes
arrangement sequences that violate the constraints as shown
in the generation of Ainvalid and in the constraint checker.
Meanwhile, CIRS exhaustively searches for all possible ob-
jects at each step that have not been arranged yet. Given the
completeness of the motion planner, the search tree includes
the solution sequence [o1, . . . , on] and feasible motion plans
can be found to execute it.

B. Addressing Non-Monotone Challenges: (PERTS)

When a problem cannot be solved monotonically, the local
monotone solver can return a partial solution, i.e., a subtree
of arrangements attached to αI . The proposed approach
follows a systematic way of building a global tree out of
these partial trees. It selects an existing arrangement that

is reachable from the root node αI and performs an action
where an object moves to a buffer. Such an action is referred
to here as a perturbation and is a feature of the global
planner. Alg. 4 describes how perturbations are used in the
global task planner PERTS (short for perturbation) to extend
beyond monotonically reachable arrangements, which are
generated by CIRS.

Algorithm 4: PERTS(CIRS)(αI , αF , O)
1 T = ∅, Π = ∅
2 Tsub = CIRS(αI , αF ,O,K)
3 T = T + Tsub

4 while αF /∈ T and TIMEPERMITTED do
5 αC = SELECTNODE(T)
6 αpert = PERTURBNODE(αC)
7 if αpert = ∅ then continue
8 Tsub = CIRS(αpert, αF ,O,K)
9 T = T + Tsub

10 if αF ∈ T then
11 Π = TRACEBACKPATH(T, αF , αI)
12 return Π

Given the task of rearranging objects O from αI to αF , the
local solver first tries to solve the problem with a monotonic
connection (lines 1-3). If the problem is solved in a given
time, the solution path sequence Π can be obtained by tracing
back the path along the search tree T (line 10-11). Otherwise
(line 4), a node αC from the subtree reachable from the root
αI is randomly selected to perform a random perturbation
(randomly select an object to be placed in a buffer randomly
selected) (line 5-6). If such perturbation is not successful
(line 7), line 5 and 6 will be repeated given time permitted.
Otherwise, such perturbation results in perturbation node
αpert. The monotone solver then is called to solve the task
of monotonically rearranging from αpert to αF (line 8-9).
This process continues until either a solution is eventually
found (line 10-11) or time exceeds a specified threshold (line
4). Fig. 4 illustrates the process. This search can also be
executed in a bidirectional manner but here for simplicity,
the unidirectional version is described and used.

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭𝜶𝜶𝑪𝑪
𝜶𝜶 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝑻𝑻 𝒔𝒔𝒔𝒔𝒔𝒔 𝑻𝑻 𝒔𝒔𝒔𝒔𝒔𝒔
′

Fig. 4. The global search tree from PERTS. The monotone solver is used
to connect αI to αF (yellow circles). If this fails, it can still provide a
subtree Tsub out of αI . Then, a node αC on Tsub is selected to perform a
perturbation (red arrow), i.e., an object is moved to a buffer. This leads to
a node αpert (red circle). Then, the monotone solver is called to connect
αpert to αF . If the resulting subtree T

′
sub connects with αF , the non-

monotone problem is solved with a single buffer.

The perturbation level of an arrangement α is defined as
the total number of perturbations (i.e., buffers) it takes to
reach α from αI . Alg. 4 increments the perturbation level
one at a time and grows a subtree Tsub rooted at αpert, which
consists of nodes with the same perturbation level as that of
αpert. In this way, PERTS promotes high-quality solutions in
terms of low number of buffers used to fulfill the task.

𝒲𝒲
𝒪𝒪

ℳ
(a)

𝛼𝛼𝐼𝐼
(b)

𝛼𝛼𝐹𝐹

𝒫𝒫𝑇𝑇

(c) (d)

𝒬𝒬

�𝒬𝒬𝑝𝑝𝑡𝑡

𝑝𝑝𝑡𝑡
𝑞𝑞𝑖𝑖 𝑞𝑞𝑗𝑗

Fig. 5. (a) An example of a robot arm M rearranging objects O in the workspace W . (b) The current positions of all 6 objects in the workspace. (c) The
workspace is discretized offline given a dense set of candidate positions for the objects. In this task, goal positions are selected so as to rearranging objects
to be aligned in two rows. (d) Offline collision checking is performed on each transition from one arm configuration to another based on all pre-defined
object positions (middle layer). For instance, if the transition from qi to qj collides with an object position pt, the edge connecting qi and qj will be
labeled with pt (top and bottom layer). Here the roadmap consists of two modes where the validity of each edge can vary (1) Q: transiting to an object
(bottom layer) (2) ˜︁Q: transferring an object (top layer). For instance, transition from qi to qj is valid (black solid line) in Q (bottom layer) while it is not
invalid (red dotted line) in ˜︁Q (top layer) as the grasped object results in a collision (yellow regions)

C. Speeding Up Motion Planning: Labeled Roadmap

Efficiently computing whether transitions between ar-
rangement nodes are feasible plays a critical role in solv-
ing the task efficiently. This relates to the computational
efficiency of the underlying motion planner. A sampling-
based planner similar to PRM∗ is used to first generate a
roadmap upon which any standard search algorithms, such
as A∗, can be used to search. Due to sampling-based nature
of the approach, the quality of the solution sometimes may
suffer. Furthermore, the cost of online query resolution can
be high due to the amount of collision checking required in
confined and cluttered spaces.

The problem requires the swept volume of the arm’s
motion to be minimized inside the confined workspace to
minimize the chances of colliding with the objects. This
work generates a roadmap with a significant ratio of the
arm configurations (50% in experiments) capable of grasping
objects at different reachable positions inside the workspace.
The remaining set of configurations are randomly sampled to
provide coverage of the C-space. With this pre-processing,
the pick and place configurations are more likely to connect
to each other. They can also produce shorter solutions paths,
which minimize the chances of intersecting objects.

This work also incorporates offline collision information
on each roadmap edge, which corresponds to the transition
between two sampled arm configurations. The purpose is to
save computation from collision checking online. To achieve
that, the workspace is discretized into a set of possible
object positions PT . Then the objects’ goal positions can
be selected from the pre-processed set PT (Fig. 5(c)) but
the start positions do not have to be aligned with the pre-
processing (Fig. 5(b)). For instance, consider a practical
scenario where a grocery store customer casually leaves an
item they no longer want to purchase in a shelf and the task
is to put the item back to a pre-assigned grid location.

Given the pre-processing, the most expensive part of the
collision checking can be performed offline on each edge in
the roadmap (Fig. 5(d)) to detect if robot-object or object-
object collisions arise assuming an object is at position
pt ∈ PT . If a collision occurs, the edge will be labeled
with that corresponding position pt. During online planning,
if the planning query takes place at an arrangement α where

position pt is occupied, that edge will not be considered by
the A* search algorithm when it is called at α. This process
also differentiates two manipulation modes, one for the arm
transiting to an object, and one for transferring to an object.
This pre-processing results in significant speed-ups, as will
be shown in section V.

The labeled roadmap does not incorporate collision in-
formation for the initial positions of the objects, which
are assigned online upon the generation of an instance.
In order to utilize the labeled roadmap, each initial object
position is approximated by the nearest pre-defined position,
which is then used for online planning query. This results
in an approximation that depends on the density of the
discretization and affects completeness. In that regard, the
pre-processing introduces a level of resolution completeness.

V. EXPERIMENTS

This section evaluates the effectiveness and the impact of
the proposed work: (1) pre-processed labeled roadmap; (2)
efficient local monotone solver CIRS; and (3) global task
planner PERTS.

Impact of Pre-processing: The proposed pre-processing
is first evaluated in terms of the speed-up it provides to
the low-level motion planner. Here the experiments are per-
formed with and without the labeled roadmap (random sam-
pling + unlabeled edges) on the monotone problems using the
proposed CIRS and the comparison methods mRS and DFSDP
given a limit of 3 minutes to find a solution. The number of
samples in the roadmap is 2000. 7-10 objects are selected
to test the effectiveness of the proposed labeled roadmap in
speeding up and increasing feasibility under the given time
threshold. 30 experiments are performed on each number of
objects. Table I demonstrates the performance difference of
all methods (proposed and comparison methods) when they
are implemented with (w/) and without (w/o) the labeled
roadmap. The proposed labeled roadmap provides 65.9%,
52.8% and 28.5% speed-ups for CIRS, DFSDP and mRS,
respectively. Furthermore, introducing the labeled roadmap
improves the feasibility of solving harder problems for less
efficient methods, as the success rate increases from 57% to
91% for DFSDP and from 21% to 43% for mRS on 10-object
cases. Based on this computational improvement and to elicit
the best performance for all the methods in the following

Objects CIRS DFSDP mRS

w/o w/ w/o w/ w/o w/

7 23.2 (100%) 8.9 (100%) 40.5 (100%) 19.5 (100%) 68.2 (83%) 45.8 (92%)
8 27.1 (100%) 11.2 (100%) 83.8 (80%) 37.5 (100%) 112.2 (60%) 80.8 (73%)
9 75.9 (88%) 18.2 (100%) 121.8 (65%) 53.9 (91%) 141.5 (48%) 99.0 (65%)
10 58.4 (100%) 19.1 (100%) 156.1 (57%) 80.9 (91%) 173.0 (21%) 132.9 (43%)

TABLE I
COMPARISON WITH AND WITHOUT THE LABELED ROADMAP: SECONDS/ (SUCCESS RATE)

Objects CIRS DFSDP mRS

9 1.0 (100%) 1.3 (75%) / (0%)
10 1.2 (85.7%) 1.0 (14.3%) / (0%)
11 1.6 (94.1%) 1.5 (11.8%) / (0%)
12 1.5 (88.2%) / (0%) / (0%)

TABLE II
NUMBER OF BUFFERS NEEDED FOR

NON-MONOTONE INSTANCES (SUCCESS RATE)

experiments on monotone and non-monotone problems, all
methods are compared with the labeled roadmap integrated.

Impact of Monotone Solver: The efficiency of the mono-
tone solver CIRS is evaluated on monotone problems with
6-12 objects given a time limitation of 3 minutes. Here ”6
objects” corresponds to rearranging objects to be aligned
in one row at the front of the workspace and 12 objects
to occupy two rows. The metric for comparing monotone
solutions involves success rate and computation time. 60
experiments are performed for each number of objects.
Fig. 6 demonstrates that the proposed CIRS outperforms
the complete alternatives mRS and DFSDP with 57.3% faster
computation time (right column) on average. In harder cases
(10 and 12 objects), the success rate (left column) of the
comparison points mRS and DFSDP significantly drops while
CIRS remains high (100% for 10 objects and 88.7% for 12
objects). It aligns with the observation that the proposed
CIRS uses constraint reasoning to detect invalid actions ahead
of time and performs online validity checking when deciding
to move an object or not. Therefore, it saves significant time
by not growing a tree, which will not lead to a solution.
In contrast, mRS and DFSDP do not perform any constraint
reasoning and will explore many redundant branches of the
search tree.

6 8 10 12
Success rate (%)

0

25

50

75

100

6 8 10 12
Computational time (s)

0

50

100

150

mRS DFSDP CIRS

Fig. 6. Experimental results on monotone problems with 6-12 objects
evaluating (1) success rate on finding a solution (left column) and (2)
computation time (right column).

Performance in non-monotone problems: The global
task planner PERTS is evaluated on harder non-monotone
instances with 9-12 objects given a time limitation of 6
minutes. CIRS, DFSDP and mRS are integrated as the local
solvers in the PERTS structure for comparison. The metric
for comparing non-monotone solutions involves success rate,
computation time and the total number of actions to fulfill
the tasks. 60 experiments are performed for each number
of objects. Fig. 7 indicates how the efficiency of the local
solver determines the success rate (left column) of solv-
ing non-monotone problems with the global task planner.
PERTS(mRS) fails to solve non-monotone problems with at
least 9 objects and the success rate of PERTS(DFSDP) drops to

14% in 10-object cases and 0% in 12-object cases. Since the
proposed CIRS is capable of growing trees much faster than
comparison methods, PERTS(CIRS)’s success rate remains
high (91.7%) and is on average 52.7% faster than other
methods in computational time (right column).

9 10 11 12
Success rate (%)

0

25

50

75

100

9 10 11 12
Computational time (s)

0

100

200

300

mRS DFSDP CIRS

Fig. 7. Experimental results on non-monotone problems with 9-12 objects
evaluating (1) success rate on finding a solution (left column) and (2)
computation time (right column).

Table II provides the number of buffers needed to fulfill a
non-monotone task together with the success rate of its vari-
ations of the PERTS planner. PERTS(CIRS) needs on average
only 1.3 buffers to solve the harder non-monotone problems.
Given the PERTS global planner, even PERTS(DFSDP) returns
high-quality solutions with an average of 1.26 buffers needed
when the approach can find a solution.

VI. CONCLUSION AND FUTURE WORK

This work improves the efficiency of monotone primitives
for prehensile rearrangement in cluttered and confined spaces
while maintaining properties. This is achieved by identifying
the problem’s combinatorial constraints to properly prune
the search space. The primitive is integrated with a global
planner to address non-monotone instances efficiently and
with high-quality solutions. A useful pre-processing tool has
been proposed for minimizing the cost of online collision
checking in this domain via a labeled roadmap. The exper-
iments demonstrate that the proposed integration achieves
higher success rate, shorter computation time and uses fewer
buffers to solve general prehensile rearrangement tasks.

An important extension involves considering the effects of
perception. Occlusions may arise often in highly-constrained
workspaces, which result in partial observability and uncer-
tainty. These aspects can affect the decision-making pro-
cess for rearranging objects, i.e., priority may be given
to rearrange objects which can increase visibility of other
objects, or for which the robot is more certain about their
location. Non-prehensile actions can also be integrated with
the proposed framework to provide even more effective
algorithms that appropriately select between prehensile and
non-prehensile actions.

REFERENCES

[1] R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris, “Uniform
object rearrangement: From complete monotone primitives to efficient
non-monotone informed search,” in IEEE International Conference on
Robotics and Automation, 2021.

[2] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Proceedings 2007 IEEE
international conference on robotics and automation. IEEE, 2007,
pp. 3327–3332.

[3] P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” Sandia National Labs., Albuquerque, NM (USA), Tech.
Rep., 1990.

[4] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[5] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” in Algorithmic Foundation of Robotics VIII. Springer,
2009, pp. 599–614.

[6] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102.

[7] J. Ota, “Rearrangement planning of multiple movable objects by using
real-time search methodology,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 1. IEEE, 2002, pp. 947–953.

[8] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity
of motion planning for multiple independent objects; pspace-hardness
of the” warehouseman’s problem”,” The International Journal of
Robotics Research, vol. 3, no. 4, pp. 76–88, 1984.

[9] G. Wilfong, “Motion planning in the presence of movable obstacles,”
Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp.
131–150, 1991.

[10] S. Bereg and A. Dumitrescu, “The lifting model for reconfiguration,”
Discrete & Computational Geometry, vol. 35, no. 4, pp. 653–669,
2006.

[11] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[12] D. Halperin, M. v. Kreveld, G. Miglioli-Levy, and M. Sharir, “Space-
aware reconfiguration,” in International Workshop on the Algorithmic
Foundations of Robotics. Springer, 2020, pp. 37–53.

[13] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Work-
ing with movable obstacles using on-line environment perception
reconstruction using active sensing and color range sensor,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 1696–1701.

[14] H.-n. Wu, M. Levihn, and M. Stilman, “Navigation among movable
obstacles in unknown environments,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 1433–
1438.

[15] M. Levihn, M. Stilman, and H. Christensen, “Locally optimal navi-
gation among movable obstacles in unknown environments,” in 2014
IEEE-RAS International Conference on Humanoid Robots. IEEE,
2014, pp. 86–91.

[16] S. D. Han, S. W. Feng, and J. Yu, “Toward fast and optimal robotic
pick-and-place on a moving conveyor,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 446–453, 2019.

[17] L. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion plan-
ning inthe now,” in Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA, 2010.

[18] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[19] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“Complexity results and fast methods for optimal tabletop rearrange-
ment with overhand grasps,” The International Journal of Robotics
Research, vol. 37, no. 13-14, pp. 1775–1795, 2018.

[20] R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin, “Fast, high-
quality two-arm rearrangement in synchronous, monotone tabletop
setups,” IEEE Transactions on Automation Science and Engineering,
2021.

[21] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric re-
arrangement of multiple movable objects on cluttered surfaces: A
hybrid reasoning approach,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2014, pp. 445–452.

[22] A. R. Dabbour, “Placement generation and hybrid planning for robotic
rearrangement on cluttered surfaces,” Ph.D. dissertation, 2019.

[23] K. Gao, S. W. Feng, and J. Yu, “On minimizing the number of running
buffers for tabletop rearrangement,” arXiv preprint arXiv:2105.06357,
2021.

[24] K. Gao, D. Lau, B. Huang, K. E. Bekris, and J. Yu, “Fast high-
quality tabletop rearrangement in bounded workspace,” arXiv preprint
arXiv:2110.12325, 2021.

[25] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 9433–9440.

[26] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715–3722, 2020.

[27] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight tree
for object retrieval from clutter with nonprehensile rearrangement,”
arXiv preprint arXiv:2105.02857, 2021.

[28] W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, and K. Hang, “Rear-
rangement with nonprehensile manipulation using deep reinforcement
learning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 270–277.

[29] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,”
arXiv preprint arXiv:2010.14406, 2020.

[30] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Cen-
tralized path planning for multiple robots: Optimal decoupling into
sequential plans.” in Robotics: Science and systems, vol. 2, no. 2.5,
2009, pp. 2–3.

[31] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 5–17, 2014.

[32] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrange-
ment tasks: A fast extension primitive for an incremental sampling-
based planner,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 3924–3931.

[33] ——, “Dealing with difficult instances of object rearrangement.” in
Robotics: Science and Systems, 2015.

[34] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle rear-
rangement for object manipulation tasks in cluttered environments,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 183–189.

[35] S. H. Cheong, B. Y. Cho, J. Lee, C. Kim, and C. Nam, “Where
to relocate?: Object rearrangement inside cluttered and confined en-
vironments for robotic manipulation,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
7791–7797.

[36] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martı́n-Martı́n, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 1614–1621.

[37] C. Nam, S. H. Cheong, J. Lee, D. H. Kim, and C. Kim, “Fast and
resilient manipulation planning for object retrieval in cluttered and
confined environments,” IEEE Transactions on Robotics, 2021.

[38] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa, “Object
search by manipulation,” Autonomous Robots, vol. 36, no. 1, pp. 153–
167, 2014.

[39] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online planning
for target object search in clutter under partial observability,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8241–8247.

[40] R. Wang, C. Mitash, S. Lu, D. Boehm, and K. E. Bekris, “Safe and
effective picking paths in clutter given discrete distributions of object
poses,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 5715–5721.

[41] W. Bejjani, W. C. Agboh, M. R. Dogar, and M. Leonetti,

“Occlusion-aware search for object retrieval in clutter,” arXiv preprint
arXiv:2011.03334, 2020.

[42] B. Wen, C. Mitash, S. Soorian, A. Kimmel, A. Sintov, and K. E.
Bekris, “Robust, occlusion-aware pose estimation for objects grasped
by adaptive hands,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 6210–6217.

[43] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rear-
rangement tasks,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 4, pp. 549–565, 1998.

[44] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object re-
arrangement,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 211–218.

[45] Z. Pan and K. Hauser, “Decision making in joint push-grasp action
space for large-scale object sorting,” arXiv preprint arXiv:2010.10064,
2020.

[46] E. R. Vieira, D. Nakhimovich, K. Gao, R. Wang, J. Yu, and K. E.
Bekris, “Persistent homology for effective non-prehensile manipula-
tion,” arXiv preprint arXiv:2202.02937, 2022.

[47] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-
prehensile manipulation under clutter and uncertainty,” Autonomous
Robots, vol. 33, no. 3, pp. 217–236, 2012.

[48] M. C. Koval, J. E. King, N. S. Pollard, and S. S. Srinivasa, “Robust
trajectory selection for rearrangement planning as a multi-armed bandit
problem,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 2678–2685.

[49] A. S. Anders, L. P. Kaelbling, and T. Lozano-Perez, “Reliably ar-
ranging objects in uncertain domains,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
1603–1610.

[50] K. M. Lynch, “Estimating the friction parameters of pushed objects,” in
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’93), vol. 1. IEEE, 1993, pp. 186–193.

[51] B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in IEEE
International Conference on Robotics and Automation, 2021.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Methodology
	IV-A Efficient and Complete Local Monotone Solver: Constraint Informed Rearrangement Search (CIRS)
	IV-B Addressing Non-Monotone Challenges: (PERTS)
	IV-C Speeding Up Motion Planning: Labeled Roadmap

	V Experiments
	VI Conclusion and Future Work
	References

