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Abstract— Human assistive robotics have the potential to help
the elderly and individuals living with disabilities with their
Activities of Daily Living (ADL). Robotics researchers focus on
assistive tasks from the perspective of various control schemes
and motion types. Health research on the other hand focuses on
clinical assessment and rehabilitation, arguably leaving impor-
tant differences between the two domains. In particular, little
is known quantitatively on which ADLs are typically carried
out in a persons everyday environment - at home, work, etc.
Understanding what activities are frequently carried out during
the day can help guide the development and prioritization of
robotic technology for in-home assistive robotic deployment.
This study targets several lifelogging databases, where we
compute (i) ADL task frequency from long-term low sampling
frequency video and Internet of Things (IoT) sensor data, and
(ii) short term arm and hand movement data from 30 fps video
data of domestic tasks. Robotics and health care communities
have differing terms and taxonomies for representing tasks
and motions. In this work, we derive and discuss a robotics-
relevant taxonomy from quantitative ADL task and motion data
in attempt to ameliorate taxonomic differences between the
two communities. Our quantitative results provide direction
for the development of better assistive robots to support the
true demands of the healthcare community.

I. INTRODUCTION

Activities of Daily Living (ADL) can be a challenge for
individuals living with upper-body disabilities and assistive
robotic arms have the potential to help increase functional in-
dependence [1]. Assistive robot arms, such as the wheelchair-
mountable Kinova Jaco [2] (Fig. 1) and Manus/iArm [3],
have been commercially available for over a decade. Such
devices can increase independence, decrease the caregiver
load, and reduce healthcare costs [4]. Robot arms have the
potential to be as important to individuals living with upper
body disabilities as power wheelchairs have become to those
with lower body disabilities. However, outside of research
purposes, only a few hundred assistive arms, primarily in Eu-
rope and North America, are practically deployed and in use.
The gap between assistive robotic research and healthcare
needs impedes the wide adoption of assistive robot products.
Healthcare professionals, assistive technology users, and re-
searchers have differing biases towards what tasks are of high
priority to focus efforts on. For assistive robotics research,
knowing which ADLs are most important to support, as well
as the necessary performance parameters for these tasks will
be crucial to increase usability and deployment. In order
to build an assistive robotic task taxonomy that focuses
on functional independence, it is imperative to understand
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Fig. 1. Jaco assistive arm [2]. Wheelchair-mounted assistive robot arms
can help those living with disabilities carry out their Activities of Daily
Living (ADLs), such as picking up objects, eating, drinking, opening doors,
operating appliances, etc.

how the health care community defines independence; to
this end we briefly review the World Health Organization
Disability Assessment Schedule (WHODAS2.0) [5]. [6].
This classification was primarily developed to determine
an individuals level of disability and design an appropriate
rehabilitation plan, not to guide assistive robotics research.
To the best of the authors knowledge, in healthcare literature
there does not appear to be quantitative studies or statistics
breaking down individual ADL tasks and motions by able-
bodied or individuals living with disabilities. Health care
and robotic domains use different taxonomies to classify and
everyday activity tasks and motions [7], [8], [9], [10], [11],
[12]. By merging these taxonomies and quantifying health
care needs with robotic capabilities we seek to bridge the
two, often separate, communities. This would provide the
robotics community with guidance as to which tasks could
make a large impact to patient populations if implemented
on assistive robotic systems.

In the field of Computer Science, recent interest in video
object and activity recognition [13], [14] along with life-
logging capture has resulted in numerous public data-sets
[15]. In this work we analyzed over 30 such data-sets in order
to extract everyday tasks of high importance and relevant
motion data [16].

This paper aims to mitigate the gap dividing the health
care and robotics communities. Contributions include:

1) We build a task taxonomy consolidating the taxonomic
differences between the robotics and healthcare com-
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Fig. 2. Measures of Functional Ability that are defined as essential
in healthcare communities: Activities of Daily Living (ADLs) [7] and
Instrumental Activities of Daily Living (IADLs) [8]. ADLs are basic self-
care tasks, whereas IADLs are more complex skills. Together they represent
what a person needs to be able to manage on their own in order to live
independently.

munities for the purpose of further analyzing ADL
tasks and the motions they are composed of.

2) We analyze long term video-recordings from publicly
available life-logging data. From the video data we
extract ADL task frequencies, that quantify how often
a human performs particular ADLs.

3) From higher frame-rate video recordings of human
kitchen activities, we analyze human arm and hand
motion data to quantify the speed and variability of
human movement.

4) We discuss how the task frequency and human motion
characterization can prioritize what robotics techniques
will have high impact in assistance robotics for elderly
and disabled.

II. SOCIETAL AND ECONOMIC IMPACTS

The use of robotics to help increase functional indepen-
dence in individuals living with upper limb disabilities has
been studied since the 1960’s. We distinguish here between
a physically independent robot arm, typically mounted on
the users wheelchair, and a smart prosthesis, attached to
an amputated limb, with the former being our group of
interest. The United States Veterans Affairs estimate that ap-
proximately 150,000 Americans could benefit from currently
commercially available wheelchair-mounted robot arms [17].
With improved functionality, reliability, and ease of use
deployment to larger populations could be possible.

What is the magnitude of need and potential for robotic
assistance in the world? Many countries in the west and
Asia have an aging populations and disabilities also affect
younger populations, e.g. from accidents, disease, or inheri-
tance. Definitions and quality of statistics on disability differs
across nations and are difficult to integrate globally. Canada
has a multi-ethnic population and characteristics similar to
other industrialized nations. The proportion of seniors (age
65+) in the population is steadily increasing, with seniors

comprising a projected 23.1% of the population by 2031
[18]. In 2014, seniors constituted only 14% of the population,
but consumed 46% of provincial public health care dollars
[19]. A growing number of elderly and disabled, supported
by a dwindling young population is putting pressure both
on government budgets and available health care personnel.
Today, individuals with lower-body impairments and the
elderly are able to independently move around using power
wheelchairs. In the near future wheelchair-mounted robot
arms could help increase independence and reduce care needs
for those living with reduced upper-limb function.

Statistics Canada found that from 2001 - 2006 there was
a 20.5% increase in those identifying as having a disability,
corresponding to over 2.4 million people in Canada [20]. One
in twenty Canadians living with disabilities regularly receive
assistance with at least one ADL on a daily basis, although
not all of which will require the use of wheelchair-mounted
arms. This suggests that there is a significant need and
potential market for robotic solutions in Canada and similar
countries across the world. Some individuals may prefer
automation integration with their smart homes, and some
may require both cognitive and physical assistance. While
artificial intelligence might provide some basic cognitive
support, such as planning of the days tasks and reminders,
it cannot eliminate the need for human contact and sup-
port. However, robotic assistance can free up humans from
mundane chores, allowing more time for caregivers to focus
on high quality help and personal interaction. A four year
study of assistive arm users in care homes found that a robot
reduced the nursing assistance need by 40% from 3.7h/day to
2.8h/day [21]. While cost savings from reduced nursing are
already significant (about $20,000/year in an industrialised
economy), further savings and increased independence came
from half of the robot users being able to move out of
assistive living with one quarter obtaining jobs.

An advantage of wheelchair-mounted arms is that they are
with the person at all times. Nursing care is typically only
for morning and evening routines for those who live inde-
pendently. Imagine yourself dropping something important
and having to wait all day before someone is able to help
you retrieve it.

III. ACTIVITIES OF DAILY LIVING, SELF-CARE, AND
FUNCTIONAL INDEPENDENCE

The International Classification of Functioning, Disability
and Health (ICF) provides a framework for determining the
overall health of individuals and populations [6]. Disability
information is an important indicator of a population’s health
status, as it shows the impact that functional limitations
have on independence. This concept is known as functional
disability, or the limitations one may experience in per-
forming independent living tasks [22]. A quantification of
functional disability includes measures of both Activities of
Daily Living (ADLs) [7] and Instrumental Activities of Daily
Living (IADLs) [8] (Fig. 2); in this work we will refer to
these collectively as ADLs. The World Health Organization
further developed the World Health Organization Disability



Fig. 3. The major life domains of functioning and disability as set out
in the World Health Organization Disability Schedule 2.0 (WHODAS2.0);
a standardized cross-cultural measurement of health status based on the
International Classification of Functioning, Disability and Health. WHO-
DAS2.0 can be used to measure the impact of health conditions, monitor
intervention effectiveness and estimate the burden of physical and mental
disorders across all major life domains. Physical motion activities relevant
to this paper are highlighted in bold

Assessment Schedule (WHODAS2.0) from the ICF as a stan-
dardized, cross-cultural measure of functioning and disability
across all life domains [23]. Figure 3 highlights these major
life domains with associated tasks; the tasks most relevant
to robotics research are emphasized in italics.

A common approach that drives research is to ask patients
and caregivers for their preferences when it comes to robotic
assistance [24], [25]. Notably, preferences vary and user
opinions shift over time. In particular, a survey of 67 users
surveyed both before and after they received and used an
assistive robotic arm found that caregivers tend to favor
essential tasks, such as taking medication. Pre-automation
patients favor picking up dropped objects and leisure-related
tasks, with a shift more towards work-related tasks post-
automation [17]. Combining user preferences with quanti-
tative ADL data will be important for robotics researchers to
consider when deciding what tasks should be focused on.

IV. A TASK TAXONOMY FOR ARM MANIPULATION

Robotic capabilities can be built bottom-up by designing
control methods for individual motions (i.e. motor primitives)
which can then be combined to solve specific tasks [26]. The
same motions can potentially be used to solve different ADLs
that fall within healthcare taxonomies. Dexterous in-hand
manipulation requires different contact configurations and
manipulation taxonomies have been developed to compen-
sate for these various configurations [27]. Robot arm manip-
ulation is generally thought of as a 6-DOF Euclidean (end-
effector) transform, thus requiring no taxonomy. Contrarily,
ADL tasks naturally contain a variety of movements with
different DOFs, as well as contact and precision motions.

Fig. 4. High-Level Taxonomy of Assistive Robot Tasks and Motions, and
how they intersect with example WHODAS tasks from Figure 3.

This suggests that an ADL-based taxonomy could help
guide the development of control subroutines tailored to
those specific requirements and that the composition of such
subroutines will be capable of solving a broad variety of
tasks.

Figure 4 introduces a high-level taxonomy of robotic tasks.
There are three general categories relevant to assistive robotic
applications: non-physical cognitive, locomotion-based mo-
bility, and arm-hand manipulation tasks. In this work we will
focus on arm and hand manipulations. In applied robotics,
the robot gripper is typically used for grasping while the
arm is responsible for gross pose alignment and contact point
decisions. There is much work to be done before robotic sys-
tems will be able to utilize fine dexterous finger manipulation
motions humans use for ADLs. Commonly the robot gripper
just grasps and the robot arm has to perform both coarse
and fine manipulations [12]. Coarse reaching motions are
mostly a 3-DOF translation and requires moderate accuracy.
Fine motions can be further subdivided into contact and non-
contact motions depending on the desired outcome. Non-
contact 6-DOF fine motions can be used to bring an object
into alignment with the target location before putting the
object down or inserting it. Although most applied robotics
is performed using position-based control, some studies take
contact forces into account, either through impedance control
or sensing and modeling of the surface for hybrid position-
force control [28]. Surface contact data allows for human-
like control strategies to overcome sensing and actuation
inaccuracies by utilizing practices such as feeling a table
and sliding across it before picking up a small object.

V. WHEELCHAIR-MOUNTED ASSISTIVE ARMS

A lightweight robotic arm can be attached to a wheelchair
to assist with ADLs [17]. With such a device, users with
limited upper limb functionality are able to independently
carry out a larger subset of their daily tasks. While there are
about 2 million robot arms deployed in industry, only two
assistive robot manufacturers have over 100 assistive arms
deployed with disabled humans, namely, Exact Dynamics
(Manus and iARM) [3] and Kinova (JACO and MICO) [29].



These arms are lightweight with integrated controllers and
cost around USD 20,000-35,000 with a gripper. For example,
the Kinova JACO robotic arm weighs 5.7kg (12.5lbs) and
comes with a wheelchair attachment kit. It is capable of
grasping and moving objects up to 1.5kg, Fig. 1. The
Manus/iARM has similar specifications.

In published assistive robotics research a variety of com-
mercial robot arms are used and several new prototype arms
have been designed, however neither new robots nor new
methods for motion control or Human Robot Interaction
(HRI) have reached noticeable deployment [30]. The few
hundred deployed JACO and Manus arms still use basic
joystick position-based teleoperation, where a 2 or 3 Degree
of Freedom (DOF) joystick is mapped to a subset of the
Cartesian arm translation and wrist rotation controls [2], [31].
To complete 6-DOF tasks the user needs to switch between
various Cartesian planes, known as mode switching, which
can be tedious and cognitively taxing.

Novel user interfaces have been implemented in research
settings and rely on a variety of input signals for shared
autonomy, such as gestures, eye gaze, electromyography
(EMG), electroencephalography (EEG), and electrocortico-
graphic (ECoG). Gesture-based systems allow the user to
specify an object to manipulate by either pointing [32] or
clicking on it through a touch screen interface [33], [34] and
then the robotic arm would autonomously move towards the
target object [35]. Eye gaze can be used in place of gestures
to capture an individuals intended actions and drive robot
control [36]. Neural interface systems (i.e. ECoG and EEG)
work by mapping neuronal activity to multidimensional
control signals that are used to drive robot arm movements
[37]. Hochberg et al. highlight the potential of ECoG-based
control methods, although it requires an invasive surgical
procedure in order to implant the microelectrode array. EEG-
and EMG-based methods provide an intuitive, non-invasive
alternative for closed-loop robot control using brain and
muscle activity [38], [39]. Recently, Struijk et al. developed
a wireless intraoral tongue interface device that enables
individuals with tetraplegia to use their tongue to control
a 7-DOF robotic arm and 3 finger gripper [40].

VI. ADL EVALUATION FROM LIFELOGGING DATA

Lifelogging data is a valuable source of quantitative ADL
and human motion information. Lifelogging involves long-
term recording of all activities performed by an individual
throughout the course of the day, usually through a video
camera, and occasionally using other types of sensors [15].
While lifelogging research has been published for over two
decades [41], hardware and method innovation has made the
field grow greatly within the past few years [16]. Small,
wearable cameras, such as the Microsoft Lifecam [42], with
a longer recording duration has made it more practical
compared to the analog video cameras and recorders used
in initial research. New methods for recognizing objects and
actions has driven Computer Vision (CV) research interests
to explore lifelogging data, which has been found to be a

Fig. 5. In the NCTIR Lifelog Dataset [47] 3 people wore lifelogging
cameras for a total of 79 days, collectively. These provide images of the
individuals arms and egocentric environment at a rate of 2 fpm. Due to the
low frame rate, fine arm and hand motions are not available, but actions are
instead inferred from context using visual concepts automatically computed
from the images.

source of more realistic “in-the-wild” data than typical CV
benchmarks [43], [44].

In this work we evaluated over 30 lifelogging datasets1,
most of which targeted the performance of a particular
algorithm (e.g. video object recognition in home environ-
ments) and therefore did not encompass the full day. These
datasets typically did not have a statistically sound sampling
over all objects and tasks in order to meet our analysis
inclusion criteria for this work. We found that long term
video recordings of several days or more were done at 1-
2 frames per minute (fpm), making these data useful to
analyze gross ADL task frequency and duration, but not
suitable for studying detailed timing of individual arm and
hand motions. An additional downfall of the low fpm video
datasets is that they fail to capture daily tasks which are
repeated with high frequency but are performed quickly, such
as opening doors or turning on lights. Another category of
datasets had regular video rate recordings of specific tasks,
at 30 frames per second (fps), making the detailed timings
of individual arm and hand motions possible. We were able
to choose three sources of data for analysis: two from long
duration recordings in order to extract ADL task frequency
and duration [15], [45], and one from short-term recordings
of individual tasks [46].

A. ADL Task Frequency Analysis

To compute quantitative data on ADL task frequency
and duration we analyzed both egocentric lifelogging videos
(referred to as ‘NTCIR’ [15], [47]), and exocentric data
from Internet-of-Things type sensing built into home objects
(referred to as ‘MIT’) [45]. Example lifelogging images
from the NTCIR dataset are shown in Fig. 5. The use
of complementary sensing turned out to be important for
capturing a broader set of tasks. Similar to other CV research,
we were able to infer actions from automatically computed
visual concepts [46]. Our supplementary web page (footnote

1For a detailed table of specific datasets investigate please visit
http://webdocs.cs.ualberta.ca/∼vis/ADL/

http://webdocs.cs.ualberta.ca/~vis/ADL/


Fig. 6. Human ADL task frequencies from MIT IoT sensors (yellow
bars), and NTCIR lifelogging video (blue bars). The largest bar measure
is the most accurate, as explained in the text. The 2 frame/minute video
analysed from NCTIR misses fast cabinet door and drawer openings to
retrieve objects, so under counts doors. MIT under counts electronics, as
mobile devices were not sensored. Door and drawer opening and robot
feeding are high priority tasks robot researchers already publish on, while
hand washing is high priority task where robot assistance has not been
studied.

1) contains the visual context to actions inference bindings,
so readers can replicate results or add other rules and actions
to classify. We hand-labeled a small portion of the data
to verify the accuracy of the automatic computations. This
enabled us to label in-home data sequences spanning multiple
days according to what ADLs were carried out at particular
times and compute their statistics. Figure 6 illustrates the
frequency of the most common ADL tasks found in these
datasets.

We have grouped tasks together that correspond with
robot skills rather than specific healthcare ADL/ICF codes.
Some events are detected more reliably by the embedded
sensors used in MIT, others only in the lifelogging videos.
For examples sensors detect quick events more reliably
that the lifelogging video data misses. In contrast, outdoor
activities are only captured in the video data. By combining
results from both datasets, we were able to obtain a better
quantitative measure of task significance.

Opening and closing doors is the most frequent task at
94 times per day; this category includes doors between
rooms, cabinet doors and drawers. Our rationale for including
cabinet doors and drawers is that the robot would approach
each situation in the same fashion as a standard door. We
believe the MIT data was more accurate since the ‘door
opening’ data was obtained from built in door sensors; the
low video frequency (2 fpm) of the NTCIR data presented
low accuracy with the automatic visual concepts extraction
by missing quick openings, particularly of cabinet doors
and drawers to retrieve objects. Following door opening,
electronics is the second most frequent task performed dur-
ing the day; the electronics category refers to the use of

electronic handheld devices and was dominated by smart
phone use. These devices were mostly not covered by the
MIT sensors, but were detected in the NTCIR video data.
Drinking and eating were essential tasks in both studies, with
a frequency of 8.8/day from NTCIR and 4.4/day from MIT.
MIT-data captured hand washing by the number of faucet
openings/closing (ie. turning the sink on and off resulted
in two tasks), which overestimated hand washing frequency.
We removed this outlier and relied on the NTCIR results of
4.7/day. These results capture the actions of able adults, and
hence can guide robotics researchers both what to implement,
and how - a task that is frequent and executed quickly
by a human such as door openings need to be easy and
fast for a disabled to do with their robot. This depends on
the physical velocity of the robot, as well as the time and
cognitive load it takes the user to handle the human-robot
interface. Door openings are covered in the literature e.g.
[], and robot feeding has been studied for over 30 years,
with some prominent recent results [24], [48]. By contrast,
hand washing would also be high-priority. Hand washing has
been studied in assistive Computer Vision [49], to prompt
Alzheimer patients though the steps, but we know of no
robotics researchers to have attempted this highly important
ADL. Yet, we know anecdotally that disabled users of robot
arms use the robot to support their own arm (please see
the accompanying video). Hence, it should be possible to
study motion programming where a robot arm brings the
human arm and hand under a water tap (the water tap can
be automatically activated as is already common).

B. Arm and Hand Motion Analysis.

From high frame-rate video datasets we were able to
extract the number and timings of individual arm and hand
motions required to perform a particular ADL and, for a few
tasks, similar timings for robot execution. The Georgia Tech
Egocentric Activity Datasets (GTEA Gaze+) 2 contain full
frame rate (30 fps) video recordings of humans performing
domestic tasks [46]. We analyzed the annotated GTEA
Gaze+ dataset, which contained approximately 25GB of
annotated kitchen activity videos to extract individual human
motion timings performed during these tasks (Fig. 7).

Figure 8 illustrates four common motions out of the
33 captured in the GTEA Gaze+ dataset. Notably, human
motions were far faster than typical assistive robot motions.
For example, as seen in the histogram, reach motions that
take just a second for a human, can take anywhere from
ten seconds to several minutes in published HRI solutions
[50]. This has implications for how many tasks a robot
system can practically substitute in a day without taking
up an excessive amount of time. In other motions, such
as pouring liquids, the task itself constrains the human to
proceed rather slowly. The door task covers both lightweight
cabinet doors and drawers, along with heavier doors (e.g.
refrigerator); with lighter doors, the human times approached
that of an unconstrained reach, despite the more challenging

2http://www.cbi.gatech.edu/fpv/



Fig. 7. The GTEA Gaze+ dataset contains 7 kitchen activities performed
by 6 persons. We analyzed the frequency and mean human execution time
of each human activity. Top 4 frequent activities are as shown above.

physical constraint of hinged or sliding motion, while heavier
doors represent the long tail of the time distribution. Unlike
NTCIR, GTEA Gaze+ is not a representative sampling of
all human activities. It is still notable that the number of
reaches is three times the number of door openings (1800
reaches versus 600 door and drawer openings over 11 hours
of video).

In the following table the frequency (occurrences per hour)
and mean human task execution time are presented. The tasks
involve kitchen activities - food preparation, but movement
times are likely typical of other human activities. It is notable
how quickly human moves and how many movements we
make. Replicating human motion speed and agility is a gold
standard to benchmark robots against.

Task freq time
Reach and pick item 88 1.5s
Reach and place item 84 1.2s
Turn switch on or off 10 2.1s
Wash hands or items 3 6.7s
Flip food in pan 2 4.9s
Transfer food (e.g. to plate) 6 8.6s

VII. DISCUSSION

Door opening/closing, drinking/eating, hand washing and
toileting would arguably be the most essential to support for
assistive robot arm and hand systems, out of all the ADL
tasks analyzed in this work. The first three are relatively
feasible to accomplish given the payload capacity of current
robotic arms.

Activities such as using electronics (primarily smart-
phones), socializing, and reading could be physically aided
by robot arms, but since these activities are not inherently
physical, alternative solutions are possible and can be a
simpler and more reliable solution (e.g. hands-free phone
use and other computational automation).

Fig. 8. Timing histograms for four common human motions. Human arm
and hand motions are very quick and accurate, just seconds long. By contrast
current robots are slow.

Toileting is a high priority task that involves transferring
from a wheelchair to the toilet. Assistive arms do not support
this, but there are specialized transfer devices - also useful
for transfer from beds - that are generally used in health care,
and be employed in peoples homes.

Overall, there is great potential for supporting ADLs for
those living with disabilities as well as the elderly. Over the
past few decades there has been an increasing demand for
health care services due to the rising elderly and disability
populations [51]. Assistive robots can help bridge this gap
by alleviating the labour burden for health care specialists
and caregivers. Furthermore, an assistive robot could help
one perform ADL they are otherwise incapable of managing
on their own, thus increasing functional independence.

However, challenges remain before these robots will reach
mainstream adoption, including but not limited to: system
costs, task completion times, and ease of use via user
interfaces. Currently costing around USD 30,000, an arm is a
significant expense for an individual, who may already have a
limited income. While western health insurance often covers
expensive prostheses for amputees, only in the Netherlands
does insurance cover a wheelchair mounted arm.

Speed of robot motion, which affects task completion time,
is another challenge. While a human reach takes just 1-2s
(Fig. 8), published assistive robots take 40-90s, resulting in
robot solutions that are magnitudes slower [52], [32], [50].
In the GTEA Gaze+ kitchen tasks, humans performed 160
reaches per hour. Substituting robot reaches would turn a
moderate 30 minute meal preparation and eating time into a
2 hour ordeal. Anecdotal comments from users of assistive
robot arms are that everyday morning kitchen and bathroom
activities, which an able person easily performs in less than
an hour, takes them several hours.

Robots may solve tasks differently than humans as robots



are often limited to grasping one item at a time, while
humans can handle many. When setting a table we will for
instance pick several utensils at a time from a drawer. In
restaurants, waiters can clear a table for four, and handle
all the plates, utensils, glasses, etc. in their hands and arms.
Analysing the publicly available TUM Kitchen Data Set of
activity sequences recorded in a kitchen environment [53],
we found that the robot strategy on average required 1.6
times more movements than a human. Users of assistive
robots adopt compromises to deal with the speed and ac-
curacy of robots. For example, foods and drinks that can be
consumed while held statically in front of the humans face by
the robot, e.g. eating a snack bar, or drinking with a straw,
are far quicker to consume than those requiring numerous
robot reach motions, such as eating a bowl of cereal.

User interfaces need improvements. Currently deployed
arms are, as mentioned before, joystick operated, while most
research is on autonomous movement, e.g. autonomously
delivering a piece of food once the system has detected
an open mouth [54], [48]. Sheridan’s conventional scale
from tele-operation to autonomy [55], has been redefined
by Goodrich to have seamless human-robot collaboration as
the goal rather than robot autonomy [31].

We, and others, have found that users generally prefer
to have continuous in-the-loop control [32], [56]. Someone
may change their mind midway through autonomous food
delivery, and may instead open their mouth to say something
- only to get their mouth stuffed with food. In very recent
work a low dimensional control space is learned from
demonstrations. This allows a human user to have direct
control over a 6DOF motion using a low DOF HRI, such as a
joystick [57], [58]. Getting the balance right between human
interaction and semi-autonomous assistive systems will be
challenging. Currently, most research is evaluated with a few
participants trying it for about an hour each in a research lab
setting. We expect that new HRI solutions will need to be
deployed longer term in real users homes in order to properly
evaluate usability.

VIII. CONCLUSION

In this paper we presented assistive robotics for Activities
of Daily Living - ADL from both from a health care
perspective and robotics perspective. We analyzed human
ADL task frequency from public life-logging datasets and
computed motion timings from public Computer Vision data.
Overall, reach motions (to grasp objects) and door openings
(including cabinets and drawers) were the most frequent
motions. Drinking, eating and hand washing are other high
priority tasks that can be addressed by current assistive robot
arms. Toileting and dressing, while ranking just below, are
generally thought to be more challenging for robotics, since
they require the transfer of body weight. Detailed data on
frequency and duration information for all analyzed tasks and
motions, as well as the analysis methods are available on the
companion website http://webdocs.cs.ualberta.
ca/˜vis/ADL
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